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Objective
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Parameterized model order reduction (pMOR) for PDEs

The goal of parameterized model order reduction (pMOR)
is to reduce the marginal cost associated with the
solution to parameterized problems.

pMOR is motivated by real-time and many-query problems
design and optimization, UQ, control.

Pb: find uµ ∈ X : Gµ(uµ, v) = 0 ∀ v ∈ Y .
• Gµ : X → Y ′ variational (non)linear operator;
• µ = [µ1, . . . , µP ] ∈ P ⊂ RP vector of parameters;

material properties, geometric features,....
• M := {uµ : µ ∈ P} solution manifold.
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Monolithic projection-based pMOR: general recipe

Pb: find uµ ∈ X : Gµ(uµ, v) = 0 ∀ v ∈ Y , µ ∈ P
Approx: ûµ = Z α̂µ, α̂ : P → Rn, Z : Rn → X

Offline (learning) stage: (performed once)
compute uµ1, . . . , uµntrain using a FE (or FV...) solver;
construct Z = [ζ1, . . . , ζn] and define Z = span{ζi}ni=1;
define a reduced-order model (ROM) for α̂ : P → Rn.

Online (prediction) stage: (performed for new µ′)
estimate the solution coefficients α̂µ′ ∈ Rn.
estimate ‖ûµ′ − uµ′‖.

n� N = dofs of the full-order model
(

FOM︸ ︷︷ ︸
=FE,...

)
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Limitation of monolithic approaches

Monolithic approaches rely on two assumptions:

• the solution is defined over a parameter-independent
domain or over a family of diffeomorphic domains;

no topology changes

• it is possible to solve the FOM for several parameters.

These conditions might not be fulfilled for several
problems of interest.

Example of topology change:
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Component-based model reduction

Offline stage

• Define a set of archetype components.

• Build local ROMs for each component.

Online stage

• Define the system as instantiation of components.

• Solve the global problem by gluing together the local
ROMs.

⇒
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Component-based model reduction: research questions

1. Data compression: how can we build “good”
approximation spaces for each archetype component?

2. Reduced formulation: how can we glue together
local ROMs to estimate the global solution?

• non-overlapping conforming methods; scRBE

• non-overlapping non-conforming methods; RBE, LRBMS

• overlapping methods. zonal POD

RBE: Maday, Rønquist, 2002. scRBE: Huynh, Knezevic, Patera,
2013. LRBMS: Kaulmann et al., 2012; Ohlberger, Schindler, 2015.
zonal POD: Bergmann et al., 2018.
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Aim of the talk

Define effective local approximation spaces for
component-based MOR.

• Linear problems: optimal approximations, randomized
methods.

• Randomized methods for nonlinear problems: theoretical
and numerical considerations.

Bibliography: (for linear PDEs)
Babuska, Lipton, Multiscale Model. Simul., 2011.
Smetana, Patera, SISC, 2016.
Buhr, Smetana, SISC, 2018.
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Working problem

Model pb: −∇ · (κµ(uµ)∇uµ) = fµ in Ω, uµ
∣∣
∂Ω

= 0

Ω = (0, 1)2 =
⋃Ndd

i=1 Ωi , µ =
[
µ(1), . . . , µ(Ndd), i?

]
,

κµ(u)
∣∣

Ωi
=

36

µ
(i)
2

 u(1− u)

u3 + 12
µ
(i)
2

(1− u)3

2

+ µ
(i)
1 , i = 1, 2, . . .

fµ(x) = 100e

(
−100

‖x−xc,i?‖
2
2

2

)
1Ω?

i
(x), xc,i? :=

1
Ω?

i

∫
Ω?

i

x dx .

µ(i) ∈ P = [0.1, 0.2]× [30, 40], i? ∈ {1, . . . ,Ndd}.
• Idealized model for subsurface flows; challenging
problem for monolithic MOR — 2Ndd + 1 parameters.
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Target application (PhD thesis of G Sambataro)

Goal: assess long-term behavior of radioactive waste
districts. Projet CIGEO
Mathematical model: THM equations — nonlinear
unsteady parabolic equations with internal variables.

Monolithic pMOR: Iollo, Sambataro, Taddei, Arxiv, 2021.
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Localized training

Oversampling
Linear problems
Randomization
Numerical results
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Archetype components

Three archetype components: corner (co), edge (ed) and
internal (int).

• Ω̂ = (0, h)2 reference domain;
• Φi : Ω̂→ Ωi i -th deformation map;
• I ∈ {co, ed, int}Ndd instantiated components’ labels.

Ω̂ ⇒

co

ed
int

Ω
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Oversampling (I): basic idea

Task: find low-dimensional spaces Zco,Zed,Zint s.t.
min
ζ∈Z Ii

‖uµ|Ωi
◦ Φi − ζ‖H1(Ω̂) � 1 for i = 1, . . . ,Ndd

Idea:
• Define the patch U ⊃ Ω̂ with input boundary Γin ⊂ ∂U .

• Define the transfer operator T s.t., given g ∈ G ⊂
H1/2(Γin) and µ ∈ P , Tµ(g) = w |Ω̂ with
−∇ · (κµ(w)∇w) = fµ in U , w |Γin = g , w |∂U\Γin = 0.
• Determine a low-dimensional approximation space
for the manifold M̂ = {Tµ(g) : g ∈ G , µ ∈ P}.

scRBE: Eftang, Patera 2013; Smetana, Patera, 2016. multiscale FE:
Henning, Peterseim, 2013.
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Oversampling (II): role of U ,G

Input boundary Γin should be
well-separated from Ω̂ to ensure
decay of high-frequency modes,
but |U | � |Ω| to ensure
computational speed-ups.

Example: corner

Ω̂

Γin

Set G should be representative of the behavior of uµ|Γin :

⇒ in absence of prior information, G is high-dimensional;

Question: why should the localized manifold M̂ =

{Tµ(g) : g ∈ G , µ ∈ P} be reducible?

15



Motivating example: semi-infinite wave-guides (I)

Consider the problem for g(x2) =
∞∑
n=1

cn cos(nπx2)
−∆ug − µ2ug = 0 inU

∂x2ug = 0 onR+ × {0, 1}

ug = g on {0} × (0, 1)
Γin Ω̂

L

Define Ω̂ = (L,∞)× (0, 1), C , µ̄ ∈ R+ and the extracted
manifoldML =

{
ug
∣∣

Ω̂
: ‖g‖H1/2 ≤ C , µ = µ̄

}
.

G = {g : ‖g‖H1/2 ≤ C} is infinite-dimensional and is
irreducible.
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Motivating example: semi-infinite wave-guides (II)

ug =

Npr∑
n=1

cne
−iαnx1 cos(nπx2)︸ ︷︷ ︸

=(I)

+
∞∑

n=Npr+1

cne
−αnx1 cos(nπx2)

︸ ︷︷ ︸
=(II)

,

with Npr =
⌊
µ
π

⌋
, αn = |n2π2 − µ2|. (I) = propagating

modes; (II) = evanescent modes.

The differential operator acts as a low-pass filter.

• Effect of evanescent modes is negligible far from Γin.

• ManifoldML can be well-approximated by an
n-dimensional space if e−αn+1L � 1.

Filtering properties depend on the value of µ̄.
17



Localized training

Oversampling
Linear problems
Randomization
Numerical results
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Transfer operator

Define the transfer operator T : U × P → Y . For
second-order elliptic PDEs, G ⊂ U ⊂ H1/2(Γin),
Y ⊂ H1(Ω̂); (U , ‖ · ‖U), (Y , ‖ · ‖Y) Hilbert spaces.
We assume that P = {µ̄} and that T is compact.

Proposition: Sufficient conditions for compactness of T :
• dist

(
Ω̂, Γin

)
> 0;

• ‖T (g)‖H1(U ′) ≤ C (U ,U ′)‖T (g)‖L2(U) for U ′ b U .
Caccioppoli’s ineq.

Caccioppoli’s inequality is satisfied by a broad class of
elliptic problems (Helmholtz, advection-diffusion, Stokes).

Babuska, Lipton, 2011. Taddei, Patera, 2018.
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Transfer eigenproblem (TE)

Introduce the transfer eigenproblem:

(ϕi , λi) ∈ U × R+ (T (ϕi), T (g))Y = λi(ϕi , g)U ∀ g ∈ U

with i = 1, 2, . . . , λ1 ≥ λ2 ≥ . . .

Define the transfer eigenspace Zte
n = span{T (ϕi)}ni=1.

If U = span{φk}Nin
k=1, then ϕi=

Nin∑
k=1

(ϕi)kφk , Aϕi = λiBϕi

with Ak,k ′ = (T (φk),T (φk ′))Y , Bk,k ′ = (φk , φk ′)U .

• Solution to TE requires computation of {T (φk)}k .
• If {φk}k is orthonormal, then Zte

n is the POD space
associated with the snapshots {T (φk)}k .
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Transfer eigenproblem: properties (II)

Optimality: (Pinkus, 1985)

Zte
n ∈ arg inf

W⊂Y, dim(W)=n
sup
g∈U

‖ΠYW⊥T (g)‖Y
‖g‖U

• The transfer eigenspace is optimal in the sense of
Kolmogorov.

Error analysis: (Taddei, Patera, 2018)
‖ΠY

(Zte
n )⊥

T (g)‖Y
‖g‖U

≤ ‖T‖L(U⊥;Y)

‖ΠUU⊥g‖U
‖g‖U

+
√
λn+1

for any g ∈ H1/2(Γin).

• If g /∈ U , performance of Zte
n depends on the product

‖T‖L(U⊥;Y)‖ΠUU⊥g‖U .
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Extension to the parametric case

TE + POD: given U = span{φi}Nin
i=1, {µk}

ntrain
k=1 , n ∈ N

For k = 1, . . . , ntrain

Compute Zte
n,k := span{Tµkϕk

i }ni=1 s.t. (ϕk
i , ϕ

k
j )U = δi ,j .

EndFor

Return Zn := POD
(
{Tµkϕk

i }i ,k , n
)
.

i = 1, . . . , n, k = 1, . . . , ntrain

• Equivalent to hierarchical approximate POD.
Himpe, Leibner, Rave, 2018.

• Alternative approach: TE + strong Greedy in parameter.
Smetana, Patera 2016.

Taddei, Patera, SISC, 2018.
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Motivation

TE + POD requires Nin · ntrain PDE solves.
Possible fix: Krylov subspace methods for the TE.
Randomized methods offer an alternative strategy to
tackle the problem.
Mahoney 2016: randomness is an algorithmic resource
creating efficient, unbiased approximations of nonrandom
operations.
Key features of randomized algorithms:
• Incremental (iterative) approach.
• Probabilistic error estimation.

Randomized SVD: Mahoney, Martinsson, Tropp... Randomized
model reduction: Buhr & Smetana; Smetana, Zahm, Patera. 24



Adaptive randomized algorithm

Inputs: maxit, rtrain, n ∈ N, pdfs pµ, pG (sampling);
Output: Zn = span{ζi}ni=1 reduced space. (ζi , ζj) = δi ,j

Set Zn = ∅, λ1 = . . . = λn = 0.
For i = 1, . . . , maxit

Generate µ(k) iid∼ pµ, g (k) iid∼ pG , k = 1, . . . , rtrain.

Compute uk,i = Tµ(k)g (k) for k = 1, . . . , rtrain.

Compute Ê =
1

rtrain

rtrain∑
k=1

‖ΠZ⊥n u
k ,i‖Y/‖uk,i‖Y .

if Ê ≤ tol , BREAK
else [Zn, {λj}j ] = POD

({
ζj
√
λj
}n
j=1 ∪

{
uk,i
}rtrain
k=1 , n

)
EndFor

Return Zn := POD
(
{Tµkϕk

i }i ,k , n
)
.

i = 1, . . . , n, k = 1, . . . , ntrain
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Adaptive randomized algorithm: comments

Interpretation: incremental randomized POD in
parameter and boundary data. Yu, Chakravorty, 2015
• Snapshots {uk ,i}k,i are used for testing and then to
update the reduced space.

• [Zn, {λj}j ] = POD
({
ζj
√
λj
}n
j=1 ∪

{
uk ,i
}rtrain
k=1 , n

)
• Snapshots from previous iterations are not stored.
• Factors {

√
λj}j serve to properly fuse information

from different iterations. Himpe, Leibner, Rave 2018

• Ê is a MC estimate of Eµ∼pµ,g∈pG
[‖ΠZ⊥n Tµ(g)‖Y
‖Tµ(g)‖Y

]
For linear problems, see also Buhr, Smetana, 2018.

Randomized Greedy: Cohen et al, M2AN, 2020. 26



Choice of the boundary distribution

Idea: since we expect solution to be smooth, we control
the smoothness of the samples.

Consider gco(s; cre, cim) =

Nf−1∑
k=0

c re
k + ic im

k√
1 + (2πk)2α

e2πksi,

with c re
k , c

im
k

iid∼ N (0, 1). Then, if α ∈ N

‖gco(·; cre, cim)‖2L2(0,1) + ‖g (α)
co (·; cre, cim)‖2L2(0,1) ∼ χ2(2Nf)

Proposal: g(·; cre, cim) = Real
[
gco(·; cre, cim)

]
.

For edge and corner components, we need to enforce
Dirichlet boundary conditions. details omitted
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Linear advection-diffusion-reaction equation

Pb: given µ ∈ P , g ∈ H1/2(Γin), κ(x) = 1 + ‖x‖22,
U = [0, 0.3]2, P = [0.2, 1]× [−1, 1]2 × [0, 1], find uµ s.t.{
−∇ ·

(
µ1κ

−1∇uµ + [µ2, µ3]uµ
)

+ µ4uµ = 0 inU
uµ
∣∣
∂U=Γin

= g ,

We consider the extracted domain Ω̂ = [0.1, 0.2]2.

Description of the test
• P3 FE with Nin = 360 dofs on Γin.

ntest = 100 samples {Tµ(k)g (k)}k with g (k) iid∼
psmooth
G (α = 1), µ(k) iid∼ Uniform(P).

• TE+POD based on ntrain = 100.
µ(k) iid∼ Uniform(P).
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• Maximum relative projection error Emax,rel based on
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Choice of the boundary distribution: visualization (int)

Samples of the datum on Γin for α = 1.

Γin

Ω̂

s
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Choice of the boundary distribution: visualization (int)

Samples of the datum on Γin for α = 2.

Γin

Ω̂

s
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Choice of the boundary distribution: visualization (int)

Samples of the datum on Γin for α = 3.

Γin

Ω̂

s
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Out-of-sample performance

Gaussian sampling: g ∼ pgauss
G ⇔ g(x) =

∑
i∈Idir

ciφ
fe
i (x)

10 20 30 4010−6

10−5

10−4

10−3

10−2

10−1

100

n

E
m

ax
,r

el

Smooth sampling

TE+POD
rnd (it = 1)
rnd (it = 3)
rnd (it = 5)

10 20 30 4010−6

10−5

10−4

10−3

10−2

10−1

100

n

E
m

ax
,r

el

Gaussian sampling

TE+POD
rnd (it = 1)
rnd (it = 5)
rnd (it = 15)

• Randomized training performs similarly to TE+POD
after 5 iterations.
• Smooth samping is (slightly) more effective than
Gaussian sampling at early iterations.
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Effectivity of the error indicator

We compare estimates Eµ∼pµ,g∈pG
[‖ΠZ⊥n Tµ(g)‖Y
‖Tµ(g)‖Y

]
computed during the iterations of the randomized
algorithm with the estimates on the ntest = 100
datapoints.

Randomized training based
on smooth sampling
(α = 1).

Effectivity η =
Êrtrain=10

Êntest=100
.

Results over 100 independent
runs.
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Randomized sampling for nonlinear PDEs

Numerical results
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Towards the extension to nonlinear PDEs

Objective: extend the localized training procedure to
nonlinear PDEs.

• Error estimation and oversampling can be extended as is.

• How should we choose pG?

Theoretical questions
• Compactness of the solution manifold1.

Caccioppoli’s ineq.

• Constructive optimal approximations2

1Compactness of the transfer operator is key for approximability of the
nonlinear set of functions, and ultimately justifies oversampling.

2Generalization of transfer eigenproblems to nonlinear PDEs.
34



Choice of pG for the model problem

Model pb: −∇ · (κµ(uµ)∇uµ) = fµ in Ω, uµ
∣∣
∂Ω

= 0

κµ(u)
∣∣

Ωi
=

36

µ
(i)
2

 u(1− u)

u3 + 12
µ
(i)
2

(1− u)3

2

+ µ
(i)
1 , i = 1, 2, . . .

fµ(x) = 100e

(
−100

‖x−xc,i?‖
2
2

2

)
1Ω?

i
(x), xc,i? :=

1
Ω?

i

∫
Ω?

i

x dx .

Obs (I): uµ ∈ [0, 1) ⇒ we assume that g(x) ∈ [0, ūmax]

Obs (II): uµ|Γin is expected to be smooth (at least H1/2) .
⇒ smooth sampling.
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Choice of pG : internal component

We consider the following sampling algorithm:

1. Draw cre, cim ∈ RNf s.t. c re
k , c

im
k

iid∼ N (0, 1).

2. Draw X1,X2
iid∼ Uniform(0, ūmax), set a = min{X1,X2},

b = max{X1,X2}.
3. Set g ′ = Real

[
gco(·; cre, cim)

]
.

4. Set g = a +
b − a

max g ′ −min g ′
(g ′ −min g ′).

Memo: gco(s; cre, cim) =

Nf−1∑
k=0

c re
k + ic im

k√
1 + (2πk)2α

e2πksi,.
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Choice of pG : internal component (visualization)

• pG encodes the fact that Im[g ] ⊂ [0, ūmax].

• α encodes prior knowledge on the regularity of g .

Samples of the datum on Γin for α = 1 (ūmax = 0.5).

Γin

Ω̂

s
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Choice of pG : internal component (visualization)

• pG encodes the fact that Im[g ] ⊂ [0, ūmax].

• α encodes prior knowledge on the regularity of g .

Samples of the datum on Γin for α = 2 (ūmax = 0.5).

Γin

Ω̂

s
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Choice of pG : internal component (visualization)

• pG encodes the fact that Im[g ] ⊂ [0, ūmax].

• α encodes prior knowledge on the regularity of g .

Samples of the datum on Γin for α = 3 (ūmax = 0.5).

Γin

Ω̂

s
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Randomized sampling for nonlinear PDEs

Numerical results
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Description of the test: localized training

We perform localized training based on ntrain = 102

simulations for each component to build Zco,Z int,Zed.

Oversampling domains: each subregion is
characterized by a value of µ ∈ P ; source term is
activated with probability p = 0.5.

Γin

Ω̂

s
Ω̂

Γin
Ω̂

Γin
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Description of the test: global solves

We compute ntest global solutions for Ndd subdomains and
we extract solution in each element.

ntest = 15, Ndd = 100, Ω = (0, 1)2

We use the datasets of local solutions to measure
performance of localized training .

nint
test = 960, nco

test = 60, ned
test = 480
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Description of the test: error measures

Error measures
• Average H1 relative projection error at component level.

• Average L2 relative global projection error.

We compare performance of
• smooth sampling for various α;

• Gaussian sampling with clipping max (min (g , ūmax) , 0);

• benchmark: POD space based on test set “opt” 3.

3Not computable for practical applications due to the impossibility to
perform global solves.
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Results: local errors for non-overlapping domains

• Randomized sampling provides accurate spaces for
moderate n.
• Gaussian sampling is inaccurate for edge and corner
components.
• Performance is nearly independent of α.
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components.
• Performance is nearly independent of α.
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Results: local errors for non-overlapping domains

• Randomized sampling provides accurate spaces for
moderate n.
• Gaussian sampling is inaccurate for edge and corner
components.
• Performance is nearly independent of α.
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Results: global errors

Relative error is below 10−4 for n = 30.

Total number of degrees of freedom: ROM n · 100, FOM
90601.

43



Conclusions
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Summary

Component-based model reduction offers the opportunity
to address large-scale parameterized problems.

topology changes, high-dimensional parameterization

Tasks: localized training and domain decomposition.

In this talk, we discussed localized training for steady
PDEs:

• transfer operator and optimal approximations;

• randomized training based on random samples of BCs;

• probabilistic error estimation.
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Summary

Component-based model reduction offers the opportunity
to address large-scale parameterized problems.

topology changes, high-dimensional parameterization

Tasks: localized training and domain decomposition.

In this talk, we discussed localized training for steady
PDEs:

• transfer operator and optimal approximations;

• randomized training based on random samples of BCs;

• probabilistic error estimation.
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Ongoing work and perspectives

Extension to nonlinear problems requires major advances
to state-of-the-art methods.

Localized training

• Problem-aware sampling distribution of BCs.

• Online basis enrichment. Schlinder, Ohlberger, 2015

Domain decomposition

• Partition-of-unity overlapping methods.
Melenk, Babuska, 1996

• Hyper-reduction.
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Thank you for your
attention!

For more information, visit the website:

math.u-bordeaux.fr/~ttaddei/ .
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Backup slides

More plots
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Backup slides

More plots
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Choice of the boundary distribution: visualization (corner)

g(s; cre, cim) = Real
[
gco(0.7 · s; cre, cim)

]
s(1− s).

• gco is not periodic in (0, 1).
• gco(s) = 0 for s ∈ {0, 1}.
Samples of the datum on Γin for α = 1.

sΩ̂

Γin
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Choice of the boundary distribution: visualization (corner)

g(s; cre, cim) = Real
[
gco(0.7 · s; cre, cim)

]
s(1− s).

• gco is not periodic in (0, 1).
• gco(s) = 0 for s ∈ {0, 1}.
Samples of the datum on Γin for α = 2.

sΩ̂

Γin
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Choice of the boundary distribution: visualization (corner)

g(s; cre, cim) = Real
[
gco(0.7 · s; cre, cim)

]
s(1− s).

• gco is not periodic in (0, 1).
• gco(s) = 0 for s ∈ {0, 1}.
Samples of the datum on Γin for α = 3.

sΩ̂

Γin
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Is the Newton solver affected by pG?

For ūmax = 0.5, Newton solver with line search converges
for all training points.
For ūmax = 0.75, Newton solver with line search fails to
converge 1% of the times for smooth sampling α = 0.5
and 30% of the times for Gaussian sampling.
Results for the edge component:

ūmax = 0.5 ūmax = 0.75 51
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