The Cauchy problem treated as a convex optimization problem

Yann Brenier (CNRS, DMA-ENS, PSL)

5 mars 2018
The Cauchy problem treated as a convex optimization problem

Yann Brenier
CNRS, DMA-ENS, PSL
en association avec le projet CNRS-INRIA "MOKAPLAN"

COLLOQUIUM,
CERMICS, 5 Mars 2018
An important class of evolution PDEs
An important class of evolution PDEs

\[\partial_t U + \nabla \cdot (F(U)) = 0, \quad U = U(t, x) \in \mathcal{W} \subset \mathbb{R}^m, \]

for some smooth pair \((\mathcal{E}, Q) : \mathcal{W} \to \mathbb{R}^{1+d}\) (with \(\mathcal{W}\) open convex and \(\mathcal{E}\), called "entropy", strictly convex), which implies \(\partial_t (\mathcal{E}(U)) + \nabla \cdot (Q(U)) = 0\), for all smooth solutions \(U\).
An important class of evolution PDEs

\[\partial_t U + \nabla \cdot (F(U)) = 0, \quad U = U(t, x) \in \mathcal{W} \subset \mathbb{R}^m, \]

for some smooth pair \((\mathcal{E}, Q) : \mathcal{W} \to \mathbb{R}^{1+d}\) (with \(\mathcal{W}\) open convex and \(\mathcal{E}\), called "entropy", strictly convex), which implies \(\partial_t (\mathcal{E}(U)) + \nabla \cdot (Q(U)) = 0\), for all smooth solutions \(U\).

A famous example: the equations of an isothermal gas (Euler, 1755)

\[\partial_t \rho + \nabla \cdot q = 0, \quad \partial_t q + \nabla \cdot \left(\frac{q \otimes q}{\rho} \right) + \nabla \rho = 0, \quad \mathcal{E} = \frac{|q|^2}{2\rho} + \rho \log \rho, \quad \rho > 0, \quad q \in \mathbb{R}^d. \]
An important class of evolution PDEs

\[\partial_t U + \nabla \cdot (F(U)) = 0, \quad U = U(t, x) \in \mathcal{W} \subset \mathbb{R}^m, \]

for some smooth pair \((\mathcal{E}, Q) : \mathcal{W} \rightarrow \mathbb{R}^{1+d}\) (with \(\mathcal{W}\) open convex and \(\mathcal{E}\), called "entropy", strictly convex), which implies \(\partial_t(\mathcal{E}(U)) + \nabla \cdot (Q(U)) = 0\), for all smooth solutions \(U\).

A famous example: the equations of an isothermal gas (Euler, 1755)

\[\partial_t \rho + \nabla \cdot q = 0, \quad \partial_t q + \nabla \cdot \left(\frac{q \otimes q}{\rho} \right) + \nabla \rho = 0, \quad \mathcal{E} = \frac{|q|^2}{2\rho} + \rho \log \rho, \quad \rho > 0, \quad q \in \mathbb{R}^d. \]

Typically, these systems are locally well-posed, with generic formation of shock waves.
Inviscid Burgers equation: \(\partial_t u + \partial_x (u^2/2) = 0 \), \(u = u(t, x), \ x \in \mathbb{R}/\mathbb{Z}, \ t \geq 0 \).
Formation of two shock waves. (Vertical axis: \(t \in [0, 1/4] \), horizontal axis: \(x \in \mathbb{T} \).)
A variational approach to the Cauchy problem

Given U_0 on $T^d = \mathbb{R}^d / \mathbb{Z}^d$ and $T > 0$, we minimize the entropy among all weak solutions U of the Cauchy pb:

$$\inf_{U} \int_{[0,T] \times \mathbb{T}^d} E(U) \, dx \, dt,$$

subject to

$$\frac{\partial}{\partial t} A \cdot U + \nabla F(U) + \int_{T^d} A(0) \cdot U_0 = 0$$

for all smooth $A = A(t,x)$ with $A(T,\cdot) = 0$.

The problem is not trivial since there may be many weak solutions starting from U_0 which are not entropy-preserving (by "convex integration" à la De Lellis-Székelyhidi).
A variational approach to the Cauchy problem

Given U_0 on $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ and $T > 0$, we minimize the entropy among all weak solutions U of the Cauchy pb:

\[
\inf_{U} \mathbb{Z}_{[0, T]} \left[\mathbb{Z} \cdot \left[\frac{\partial}{\partial t} A \cdot U + r \cdot A \cdot F(U) + \mathbb{Z} \cdot A \left(0, \cdot \right) \cdot U_0 \right] = 0 \right] \\
\text{subject to } \mathbb{Z}_{[0, T]} \cdot A \cdot U \in \mathcal{W}^\infty_{\mathbb{R}^{m}} \\
\text{for all smooth } A = A(t, x) \in \mathbb{R}^{m} \text{ with } A(T, \cdot) = 0.
\]
A variational approach to the Cauchy problem

Given U_0 on $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ and $T > 0$, we minimize the entropy among all weak solutions U of the Cauchy pb:

$$\inf_U \int_{[0,T] \times \mathbb{T}^d} \mathcal{E}(U), \quad U = U(t,x) \in \mathcal{W} \subset \mathbb{R}^m$$

subject to
A variational approach to the Cauchy problem

Given U_0 on $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ and $T > 0$, we minimize the entropy among all weak solutions U of the Cauchy pb:

$$\inf_U \int_{[0, T] \times \mathbb{T}^d} \mathcal{E}(U), \quad U = U(t, x) \in \mathcal{W} \subset \mathbb{R}^m$$

subject to

$$\int_{[0, T] \times \mathbb{T}^d} \partial_t A \cdot U + \nabla A \cdot F(U) + \int_{\mathbb{T}^d} A(0, \cdot) \cdot U_0 = 0$$

for all smooth $A = A(t, x) \in \mathbb{R}^m$ with $A(T, \cdot) = 0$.

The problem is not trivial since there may be many weak solutions starting from U_0 which are not entropy-preserving (by "convex integration" à la De Lellis-Székelyhidi).
A variational approach to the Cauchy problem

Given U_0 on $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ and $T > 0$, we minimize the entropy among all weak solutions U of the Cauchy pb:

$$\inf_U \int_{[0,T] \times \mathbb{T}^d} \mathcal{E}(U), \quad U = U(t,x) \in \mathcal{W} \subset \mathbb{R}^m$$
subject to

$$\int_{[0,T] \times \mathbb{T}^d} \partial_t A \cdot U + \nabla A \cdot F(U) + \int_{\mathbb{T}^d} A(0,\cdot) \cdot U_0 = 0$$

for all smooth $A = A(t,x) \in \mathbb{R}^m$ with $A(T,\cdot) = 0$.

The problem is not trivial since there may be many weak solutions starting from U_0 which are not entropy-preserving (by "convex integration" à la De Lellis-Székelyhidi).
The resulting saddle-point problem

\[
\begin{align*}
\inf_{U} & \sup_{A} Z \left[0, T \right] \cdot T dE(U) \\
& A \cdot U \cdot F(U) \\
& Z T dA \left[0, \cdot \right] \cdot U_0
\end{align*}
\]

where \(A = A(t, x) \) is smooth with \(A(T, \cdot) = 0 \). Here \(U_0 \) is the initial condition and \(T \) the final time.

N.B. The supremum in \(A \) exactly encodes that \(U \) is a weak solution with initial condition \(U_0 \), all test functions \(A \) acting like Lagrange multipliers.
The resulting saddle-point problem

\[
\inf_U \sup_A \int_{[0,T] \times \mathbb{T}^d} \mathcal{E}(U) - \partial_t A \cdot U - \nabla A \cdot F(U) \\
- \int_{\mathbb{T}^d} A(0, \cdot) \cdot U_0
\]

where \(A = A(t, x) \in \mathbb{R}^m \) is smooth with \(A(T, \cdot) = 0 \). Here \(U_0 \) is the initial condition and \(T \) the final time.
The resulting saddle-point problem

\[
\inf_U \sup_A \int_{[0,T] \times \mathbb{T}^d} \mathcal{E}(U) - \partial_t A \cdot U - \nabla A \cdot F(U)
\]

\[
- \int_{\mathbb{T}^d} A(0, \cdot) \cdot U_0
\]

where \(A = A(t, x) \in \mathbb{R}^m \) is smooth with \(A(T, \cdot) = 0 \). Here \(U_0 \) is the initial condition and \(T \) the final time.

N.B. The supremum in \(A \) exactly encodes that \(U \) is a weak solution with initial condition \(U_0 \), all test functions \(A \) acting like Lagrange multipliers.
Reversing infimum and supremum...
Reversing infimum and supremum...

leads to a concave maximization problem in A, namely

$$\sup_{A} \inf_{U} \int_{[0,T] \times \mathbb{T}^d} \mathcal{E}(U) - \partial_t A \cdot U - \nabla A \cdot F(U) - \int_{\mathbb{T}^d} A(0, \cdot) \cdot U_0$$
Reversing infimum and supremum...

leads to a concave maximization problem in A, namely

$$
\sup_A \inf_U \int_{[0, T] \times \mathbb{T}^d} \mathcal{E}(U) - \partial_t A \cdot U - \nabla A \cdot F(U) - \int_{\mathbb{T}^d} A(0, \cdot) \cdot U_0
$$

$$
= \sup_A \int_{[0, T] \times \mathbb{T}^d} -K(\partial_t A, \nabla A) - \int_{\mathbb{T}^d} A(0, \cdot) \cdot U_0
$$

$$
K(E, B) = \sup_{V \in \mathcal{W} \subset \mathbb{R}^m} E \cdot V + B \cdot F(V) - \mathcal{E}(V), \ (E, B) \in \mathbb{R}^m \times \mathbb{R}^{m \times d}.
$$
Reversing infimum and supremum...

leads to a \textit{concave} maximization problem in A, namely

$$
\sup_A \inf_U \int_{[0,T] \times \mathbb{T}^d} \mathcal{E}(U) - \partial_t A \cdot U - \nabla A \cdot F(U) - \int_{\mathbb{T}^d} A(0, \cdot) \cdot U_0
$$

$$
= \sup_A \int_{[0,T] \times \mathbb{T}^d} -K(\partial_t A, \nabla A) - \int_{\mathbb{T}^d} A(0, \cdot) \cdot U_0
$$

$$
K(E, B) = \sup_{V \in \mathcal{W} \subset \mathbb{R}^m} E \cdot V + B \cdot F(V) - \mathcal{E}(V), \ (E, B) \in \mathbb{R}^m \times \mathbb{R}^{m \times d}.
$$

Notice that K is automatically convex.
Here is the paradox!

How a convex optimization problem could be compatible with a well-posed evolution problem?

\[\sup_{A \in [0, T]} \langle \frac{\partial}{\partial t} A \rangle^{2} \| r_{A} \|^{2} \leq \int_{0}^{T} d A(0, \cdot) \cdot U_{0} \]

Answer: in our construction, \(K \) is convex degenerate!
Here is the paradox!

How a convex optimization problem could be compatible with a well-posed evolution problem? For instance, if K were just a square, we would get

$$\sup_A \int_{[0,T] \times \mathbb{T}^d} -|\partial_t A|^2 - |\nabla A|^2 - \int_{\mathbb{T}^d} A(0, \cdot) \cdot U_0$$

which would correspond to an ill-posed equation for A:

$$\partial_{tt}^2 A + \Delta A = 0.$$
Here is the paradox!

How a convex optimization problem could be compatible with a well-posed evolution problem? For instance, if K were just a square, we would get

$$
\sup_A \int_{[0,T] \times \mathbb{T}^d} -|\partial_t A|^2 - |\nabla A|^2 - \int_{\mathbb{T}^d} A(0, \cdot) \cdot U_0
$$

which would correspond to an ill-posed equation for A:

$$
\partial_{tt}^2 A + \Delta A = 0.
$$

Answer: in our construction, K is convex degenerate!
A consistency result

Theorem: If \(U \) is a smooth solution to the Cauchy problem and \(T \) is not too large (*), then \(U \) can be recovered from the concave maximization problem which admits \(A(t, x) = (t T) E_0(U(t, x)) \) as solution.

(*) more precisely if, for all \(t, x, V \in \mathbb{R}^2, E(V) \cdot r(E_0(U(t, x))) > 0 \), which requires, in particular, \(E(V) T F(V) \cdot r(E_0(U_0(x))) > 0 \).

...But what about shocks and large \(T \)??

Yann Brenier (CNRS)
Cauchy by convex optimization
CERMICS, 5 Mars 2018
A consistency result

Theorem: If U is a smooth solution to the Cauchy problem and T is not too large
A consistency result

Theorem: If U is a smooth solution to the Cauchy problem and T is not too large (*), then U can be recovered from the concave maximization problem which admits $A(t, x) = (t - T)E'(U(t, x))$ as solution.

(*) more precisely if, $\forall t, x, V \in \mathcal{W}, E''(V) - (T - t)F''(V) \cdot \nabla(E'(U(t, x))) > 0$, which requires, in particular, $E''(V) - TF''(V) \cdot \nabla(E'(U_0(x))) > 0$.
A consistency result

Theorem: If U is a smooth solution to the Cauchy problem and T is not too large (*), then U can be recovered from the concave maximization problem which admits $A(t, x) = (t - T)\mathcal{E}'(U(t, x))$ as solution.

(*) more precisely if, $\forall t, x, V \in \mathcal{W}$, $\mathcal{E}''(V) - (T - t)F''(V) \cdot \nabla(\mathcal{E}'(U(t, x))) > 0$, which requires, in particular, $\mathcal{E}''(V) - TF''(V) \cdot \nabla(\mathcal{E}'(U_0(x))) > 0$.

...But what about shocks and large T???
Let us look at the simple Burgers equation!
Let us look at the simple Burgers equation!

Then, the maximization problem in A simply reads

$$
\sup_A \int_{[0,T] \times \mathbb{T}} - \frac{(\partial_t A)^2}{2(1 - \partial_x A)} - \int_{\mathbb{T}} A(0, \cdot) u_0.
$$

with $A = A(t, x) \in \mathbb{R}$ subject to $A(T, \cdot) = 0$, $\partial_x A \leq 1$.

Let us look at the simple Burgers equation!

Then, the maximization problem in A simply reads

$$
\sup_A \int_{[0,T] \times \mathbb{T}} - \frac{(\partial_t A)^2}{2(1 - \partial_x A)} - \int_{\mathbb{T}} A(0, \cdot) u_0.
$$

with $A = A(t, x) \in \mathbb{R}$ subject to $A(T, \cdot) = 0$, $\partial_x A \leq 1$.

Introducing $\rho = 1 - \partial_x A \geq 0$, $q = \partial_t A \in \mathbb{R}$, this problem is equivalent to

$$
- \inf\{ \int_{[0,T] \times \mathbb{T}} \frac{q^2}{2\rho} - qu_0, \ (\rho \geq 0, q) \text{ subject to } \partial_t \rho + \partial_x q = 0, \ \rho(T, \cdot) = 1 \}.
$$
Let us look at the simple Burgers equation!

Then, the maximization problem in A simply reads

$$\sup_{A} \int_{[0,T] \times \mathbb{T}} -\frac{(\partial_t A)^2}{2(1 - \partial_x A)} - \int_{\mathbb{T}} A(0, \cdot) u_0.$$

with $A = A(t, x) \in \mathbb{R}$ subject to $A(T, \cdot) = 0$, $\partial_x A \leq 1$.

Introducing $\rho = 1 - \partial_x A \geq 0$, $q = \partial_t A \in \mathbb{R}$, this problem is equivalent to

$$-\inf \left\{ \int_{[0,T] \times \mathbb{T}} \frac{q^2}{2\rho} - qu_0, \ (\rho \geq 0, q) \text{ subject to } \partial_t \rho + \partial_x q = 0, \ \rho(T, \cdot) = 1 \right\}.$$

i.e. the "ballistic" version (à la Ghoussoub) of the optimal transport problem with quadratic cost (à la Benamou-B.), and, as well, an elementary "mean-field game".
Inviscid Burgers equation: \(\partial_t u + \partial_x \left(\frac{u^2}{2} \right) = 0, \ u = u(t, x), \ x \in \mathbb{R}/\mathbb{Z}, \ t \geq 0. \)

Formation of two shock waves. (Vertical axis: \(t \in [0, 1/4] \), horizontal axis: \(x \in \mathbb{T} \).)
Numerics: 2 lines of code differ from a standard (Benamou-B.) OT solver!
Inviscid Burgers equation: \(\partial_t u + \partial_x \left(\frac{u^2}{2} \right) = 0, \ u = u(t, x), \ x \in \mathbb{R}/\mathbb{Z}, \ t \geq 0. \)

Recovery of the solution at time \(T=0.1 \) by convex optimization.

Observe the formation of a first vacuum zone as the first shock has formed.
Inviscid Burgers equation: $\partial_t u + \partial_x (u^2/2) = 0$, $u = u(t, x)$, $x \in \mathbb{R}/\mathbb{Z}$, $t \geq 0$.

Recovery of the solution at time $T=0.16$ by convex optimization.

Observe the formation of a second vacuum zone as the second shock has formed.
Inviscid Burgers equation: $\partial_t u + \partial_x (u^2/2) = 0$, $u = u(t, x)$, $x \in \mathbb{R}/\mathbb{Z}$, $t \geq 0$.

Recovery of the solution at time $T=0.225$ by convex optimization.

Observe the extension of the two vacuum zones.
Analogy with mountain climbing: going from Everest to Lhotse without following the crest! (Credit to Th. Gallouët.)
Merci de votre attention!
Merci de votre attention!