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An important class of evolution PDEs

! tU + ! á (F(U)) = 0, U = U(t, x) " W # Rm,

t > 0, x ! Rd , " = (
!

! xi
)

d

i= 1
, such that

mX

! = 1

! ! E(W)! " F i! (W) = ! " Qi (W), #W ! W ,

for some smooth pair (E, Q) : W $ R1+ d (with W open convex and E, called "entropy",
strictly convex), which implies ! t (E(U)) + " á (Q(U)) = 0, for all smooth solutions U.

A famous example: the equations of an isothermal gas (Euler, 1755)

! t " + " á q = 0, ! tq + " á (
q %q

"
) + " " = 0, E =

|q|2

2"
+ " log ", " > 0, q ! Rd .

Typically, these systems are locally well-posed, with generic formation of shock waves.
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Õfort.10Õ

Inviscid Burgers equation :! tu + ! x (u2/ 2) = 0, u = u(t, x), x " R/ Z, t $ 0.
Formation of two shock waves. (Vertical axis:t " [0, 1/ 4], horizontal axis:x " T.)
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A variational approach to the Cauchy problem

Given U0 on Td = Rd/ Zd and T > 0, we minimize the
entropy among all weak solutions U of the Cauchy pb:

inf
U

!

[0,T ]%Td
E(U), U = U(t, x) " W # Rm subject to

!

[0,T ]%Td
! tA áU + ! A áF(U) +

!

Td
A(0, á) áU0 = 0

for all smooth A = A(t, x) ! Rm with A(T , á) = 0.

The problem is not trivial since there may be many weak solutions starting from U0

which are not entropy-preserving (by "convex integration" ˆ la De Lellis-SzŽkelyhidi).
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The resulting saddle-point problem

inf
U

sup
A

!

[0,T ]%Td
E(U) & ! tA áU & ! A áF(U)

&
!

Td
A(0, á) áU0

where A = A(t, x) ! Rm is smooth with A(T , á) = 0. Here U0 is the initial condition and
T the Þnal time.

N.B. The supremum in A exactly encodes that U is a weak solution with initial condition

U0, all test functions A acting like Lagrange multipliers.
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Reversing inÞmum and supremum...

leads to a concave maximization problem in A, namely

sup
A

inf
U

!

[0,T ]%Td
E(U) & ! tA áU & ! A áF(U) &

!

Td
A(0, á) áU0

= sup
A

!

[0,T ]%Td
&K (! tA, ! A) &

!

Td
A(0, á) áU0

K (E, B) = sup
V!W" Rm

E áV + B áF(V) & E(V), (E, B) ! Rm ' Rm# d .

Notice that K is automatically convex.
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Here is the paradox!

How a convex optimization problem could be
compatible with a well-posed evolution problem?

For instance, if K were just a square, we would get

sup
A

!

[0,T ]%Td
&| ! tA|2 & |! A|2 &

!

Td
A(0, á) áU0

which would correspond to an ill-posed equation for A:

! 2
ttA + ' A = 0.

Answer: in our construction, K is convex degenerate!
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A consistency result

Theorem: If U is a smooth solution to the Cauchy
problem and T is not too large (*), then U can be
recovered from the concave maximization problem
which admits A(t, x) = ( t & T )E((U(t, x)) as solution.

(*) more precisely if, # t, x, V ! W , EÓ(V) & (T & t)FÓ(V) á " (E$(U(t, x))) > 0, which

requires, in particular, EÓ(V) & TFÓ(V) á " (E$(U0(x))) > 0.

...But what about shocks and large T ???
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Let us look at the simple Burgers equation!

Then, the maximization problem in A simply reads

sup
A

!

[0,T ]%T
&

(! tA)2

2(1 & ! xA)
&

!

T
A(0, á)u0.

with A = A(t, x) " R subject to A(T , á) = 0, ! xA ) 1.

Introducing " = 1 & ! x A ( 0, q = ! tA ! R, this problem is equivalent to

& inf{
Z

[0,T ]# T

q2

2"
& qu0, (" ( 0, q) subject to! t " + ! x q = 0, " (T , á) = 1} .

i.e. the "ballistic" version (ˆ la Ghoussoub) of the optimal transport problem with

quadratic cost (ˆ la Benamou-B.), and, as well, an elementary "mean-Þeld game".
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Õfort.10Õ

Inviscid Burgers equation :! tu + ! x (u2/ 2) = 0, u = u(t, x), x " R/ Z, t $ 0.
Formation of two shock waves. (Vertical axis:t " [0, 1/ 4], horizontal axis:x " T.)
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Õburgers-2cÕ

Numerics: 2 lines of code differ from a standard (Benamou-B.) OT solver!
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Õfort.19Õ

Inviscid Burgers equation :! tu + ! x (u2/ 2) = 0, u = u(t, x), x " R/ Z, t $ 0.
Recovery of the solution at time T=0.1 by convex optimization.

Observe the formation of a Þrst vacuum zone as the Þrst shock has formed.
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Õfort.24Õ

Inviscid Burgers equation :! tu + ! x (u2/ 2) = 0, u = u(t, x), x " R/ Z, t $ 0.
Recovery of the solution at time T=0.16 by convex optimization.

Observe the formation of a second vacuum zone as the second shock has formed.
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Õfort.29Õ

Inviscid Burgers equation :! tu + ! x (u2/ 2) = 0, u = u(t, x), x " R/ Z, t $ 0.
Recovery of the solution at time T=0.225 by convex optimization.

Observe the extension of the two vacuum zones.
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Analogy with mountain climbing:
going from Everest to Lhotse without following the crest! (Credit to Th. Gallou‘t.)
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Merci de votre attention!

Pour plus de dŽtails, voir Y.B. ArXiv Oct. 2017.
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