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for some smooth pair (E,Q) : W $ R™¢ (with W open convex and E, called "entropy",
strictly convex), which implies ! ((E(U)) + "a (Q(U)) = 0, for all smooth solutions U.

A famous example: the equations of an isothermal gas (Euler, 1755)
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Typically, these systems are locally well-posed, with generic formation of shock waves.
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Ofort. 10§ +

Inviscid Burgers equation!:;u + ! ,(u?/2) = 0,u = u(t,x),x" R/Z,t$ 0.
Formation of two shock waves. (Vertical axis® [0, 1/ 4], horizontal axisx " T.)
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A variational approach to the Cauchy problem

Given Upon T9 = RY9/79 and T > 0, we minimize the
entropy among all weak solutions U of the Cauchy pb:
|

inf E(U), U= U(t,x)"W# R" subjectto
U [o0,T]o%Td
! !

1LAaU + ! AGF(U)+  A(0,34&Ug= 0
[0,T]%Td Td
for all smooth A = A(t,x) ! R™ with A(T,§= 0.

The problem is not trivial since there may be many weak solutions starting from Ug

which are not entropy-preserving (by "convex integration” " la De Lellis-SzZkelyhidi).
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The resulting saddle-point problem
!

inf sup E(U)&!{AdU &! AaF(U)
U A [O,T]%Td|

&  A(0,3 au,
Td

where A = A(t,x) ! R™is smooth with A(T,§ = 0. Here Uy is the initial condition and
T the bnal time.

N.B. The supremum in A exactly encodes that U is a weak solution with initial condition

Uo, all test functions A acting like Lagrange multipliers.

Yann Brenier (CNRS) Cauchy by convex optimization CERMICS, 5 Mars 2018 5/16



Reversing inbmum and supremum...



Reversing inbmum and supremum...

leads to a concave maximization problem in A, namely
| [

sup inf E(U)&!'{AaU &! AaF(U) & A(0, 3 aJg
A YU [oT]%rd Td



Reversing inbmum and supremum...

leads to a concave maximization problem in A, namely
| [

sup inf E(U)&!'{AaU &! AaF(U) & A(0, 3 aJg
A YU [oT]%rd Td
! !
= sup &K(1{A T A& A(0,§ aUg
A [0,T]%Td Td

K(E,B)= sup EaVv+BaF(V)&E(V), (E,B)! R™" R™¢Y,

viw® - RM



Reversing inbmum and supremum...

leads to a concave maximization problem in A, namely
| [

sup inf E(U)&!'{AaU &! AaF(U) & A(0, 3 aJg
A YU [oT]%rd Td
! !
= sup &K(1{A T A& A(0,§ aUg
A [0,T]%Td Td

K(E,B)= sup EaVv+BaF(V)&E(V), (E,B)! R™" R™¢Y,
Rm

VIw"

Notice that K is automatically convex.
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Here is the paradox!

How a convex optimization problem could be
compatible with a well-posed evolution problem?

For instance, if K were just a square, we would get
! !

sup &NAPP &N A&  A(0,d aU
A [0,T]%Td Td

which would correspond to an ill-posed equation for A:
1ZA+" A= 0.

Answer: in our construction, K is convex degenerate!
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A consistency result

Theorem: If U is a smooth solution to the Cauchy
problem and T is not too large (*), then U can be
recovered from the concave maximization problem
which admits A(t,x) = (t & T)E{(U(t, x)) as solution.

(*) more precisely if, #t,x,V | W , EOV) & (T & t)FOV) &" (EXU(t, x))) > 0, which
requires, in particular, EOW) & TFOW) 4" (E¥(Ug(x))) > 0.

...But what about shocks and large T ???
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Let us look at the simple Burgers equation!

Then, the maximization problem in A simply reads
! !

sup & (1A & A(O ju
A g 2(1& LA "

with A= A(t,x) " R subjectto A(T,§= 0, ' A) 1.

Introducing” = 1& 'yA( 0,q=!{A! R, this problem is equivalent to
z 2

q—& quo, (" ( 0,q) subjectta " +!yq=0, "(T,§= 1}.

& inf{
OT#T 2"

i.e. the "ballistic" version (" la Ghoussoub) of the optimal transport problem with

quadratic cost (" la Benamou-B.), and, as well, an elementary "mean-beld game".
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Inviscid Burgers equation!:;u + ! ,(u?/2) = 0,u = u(t,x),x" R/Z,t$ 0.
Formation of two shock waves. (Vertical axis® [0, 1/ 4], horizontal axisx " T.)
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Numerics: 2 lines of code differ from a standard (Benamou-B.) OT solver!
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Inviscid Burgers equation!:;u + ! ,(u?/2) = 0,u = u(t,x),x" R/Z,t$ 0.
Recovery of the solution at time T=0.1 by convex optimization.
Observe the formation of a brst vacuum zone as the brst shock has formed.
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Inviscid Burgers equation!:;u + ! ,(u?/2) = 0,u = u(t,x),x" R/Z,t$ 0.
Recovery of the solution at time T=0.16 by convex optimization.
Observe the formation of a second vacuum zone as the second shock has forn
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Inviscid Burgers equation!:;u + ! ,(u?/2) = 0,u = u(t,x),x" R/Z,t$ 0.
Recovery of the solution at time T=0.225 by convex optimization.
Observe the extension of the two vacuum zones.
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Analogy with mountain climbing:

going from Everest to Lhotse without following the crest! (Credit to Th. Gallou't.,
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Pour plus de dZtails, voir Y.B. ArXiv Oct. 2017.
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