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1. The challenge of multiscale 
dynamical systems 

….the ultimate targets 



Multiscale functions 

Examples of multiscale 
Functions uε(x) 
	
	
	
	
	
	
	
Random, periodic and 
Localized multiscales 
	



Multiscale functions 

							Microscales globally 
          focus for us now 
	
	
	
	
	
	
								 Localized microscales 
 typically resolved by adaptive  
     meshing and stiff solvers 
	



Multiscale functions 

1.  In our analysis we will define the scales more explicitly, for 
example, by a scaling law. The function uε(x) = u(x,x/ε) for local and 
oscillatory 

2.  The scales are also naturally described by a scale-based transform 
of a function as, for example, Fourier series 

•  For clarity in the presentation we will often consider �two-scale� 
problems: a macro-scale in the range of O(1) and a micro-scale with 
wave-lengths O(ε) 
€ 

uε (x) = a0 + b j sin(2π jx) + a j cos(2π jx)
j=1

J

∑

u(x, y)→U(x), y→∞, u(x, y) periodic in y



Computational challenges 

•  Large amount of data (variables, unknowns, degrees of freedom, 
samples, …) are needed to describe a multiscale object of function. 
–  Nyquist – Shannnon sampling theorem: at least 2 data points per 

wavelength in each dimention (will return to this) 
•  Computing  with a large number of variable requre a large number of 

computer operations, flops 

# samples > (2 /ε)d

# flop =O((N(δ,ε) / ε)dr )

ε: smallest wavelength, domain O(1) 
N: unknowns / wavelength for given     

 accuracy δ, 
r : exponent for number of flops/unknown  



The Heterogeneous Multiscale Method (HMM)  

•  We will follow the framework of Heterogeneous Multiscale Methods 
(HMM) for designing numerical methods coupling models with 
different scales, [E, E. 2003] 

–  Design macro-scale scheme for the desired variables. The 
scheme efficient but may not be accurate enough 

–  Use micro-scale numerical simulations locally in time or space to 
supply missing accurate data in macro-scale model 

€ 

Macro : FH (UH ,D(uh )) = 0
Micro : fh (uh ,d(UH )) = 0
→ FH (UHMM ,DHMM (UHMM )) = 0



 

[Ariel, Caflisch, E, Eqt, Holst, Li, Ren, Runborg, Sharp, Sun, Tsai]. 

Applications 



Mathematical foundation for computational 
multiscale ODE methods 

1.  Information theory applied to multiscale functions 
–  Added information modifies sampling theorem 

2.  Analytical multiscale analysis 
–  Averaging, (homogenization)  



2. Information theory and averaging 

•  Nyquist-Shannon sampling theorem [Shannon 1948] from 
information theory 

•  A band limited signal can be stably reconstructed by equidistant 
samples if and only if the sampling rate is more than 2 points 
per shortest wavelength (frequency less than B) 

f (t) = f (tn )
sin(2Bt − n)
π (2Bt − n)n=−∞

∞

∑



Multiscale functions 

•  If more is known of the function or signal: can sampling rate be 
reduced? – [E., Frederick, 2014], [Frederick 2016] [E., Frederick 
2018] 

 
 
•  f (x,y), band limited in x and y, 1 – periodic in y 

fε (x) = f (x, x /ε) = f (x, y)



Multiscale functions 

•  If more is known of the function or signal: less sampling 

f (x, x /ε)?
f (x, y) periodic in y→ Fourier series representation

f = cj (x)exp(2π jx /ε),
j−−J

J

∑ ĉ j supported in (−M,M )

f̂ (ω) = 0, ω ∉ −M,M[ ]+ j /ε( )
j∈J
∪



Multiscale functions  

•  Nyquist rate fN = 2(M+J/ε), sufficient for stable reconstruction 
–  Necessary with uniform sampling 

•  Landau rate fL = 2JM, necessary for reconstruction – any 
sampling, [Landau 1967] 

•  [Nitzan et. al. 2016], stable reconstruction (frame) if spectrum 
supported on set of finite measure 

•  So far only Nyquist-Shannon with explicit sampling strategy 
  
  



Explicit multiscale sampling  

Theorem [E. Frederick, 2014]: A band limited f(x,x/ε) (f(x,y), 1-periodic 
in y) can be uniquely and stably reconstructed by samples f(z): 

 
 

  
f (z), z ∈ X, X = nΔx + kδx, n ∈ Z, k ∈ Z∩ 1, 2M[ ]{ }

N −1 ≤ Δx ≤1, 0 < δx < (2M +1)−1N −1

A f
L2 (R)

2
≤ Δx f (z)

z∈X
∑

2
≤ B f

L2 (R)

2

(2M +1)−1 sin(mπδx)
m=1

2M

∏
⎛

⎝
⎜

⎞

⎠
⎟

2

≤ A ≤ B



Explicit multiscale sampling  

Theorem [E. Frederick, 2014]: A band limited f(x,x/ε) (f(x,y), 1-periodic 
in y) can be uniquely and stably reconstructed by samples f(z): 

 
 

  



Remarks on proof 

•  Fourier series 

•  Shannon type sampling for uniform sets 

f (x, x /ε) = f (x, y) = cj (x)e
2πijy

j
∑ = cm (x)e

2πijNx

m
∑ ,

supp (ĉ j )⊂ −0.5, 0.5[ ]

Xk = Δx (kδx + Z )



Remarks on proof 

•  Fourier series 

•  Shannon type sampling for uniform sets 
•  Poisson summation and restricted Fourier transform 

•  Full matching          Vandermonde system, [Gauchi 1990] estimate 
basis for explicit stability inequality 

f (x, x /ε) = f (x, y) = cj (x)e
2πijy

j
∑ = cm (x)e

2πijNx

m
∑ ,

supp (ĉ j )⊂ −0.5, 0.5[ ]

Xk = Δx (kδx + Z )

fk (x) = cm (x)m=−M

M
∑ e2πimkδx



Remarks on extensions 

•  For dynamical systems: attraction to inertia manifold from: 

•  Theorem extends to clustering in higher dimensions 

u(x, x /ε) = u(x, y)→U(x), y→∞



Background in averaging theory 

•  Mathematical model reduction: find effective equation as limit of 
equations with wider range of scales 

 
•  Example of classical applied mathematics methods 

–  Averaging of dynamical systems (“eliminate” oscillations) 
–  Homogenization of elliptic operators (“eliminate” 

microstructure)  
–  WKB, Geometrical optics, singular perturbation analysis,..	

€ 

Fε (uε ) = 0

€ 

lim
ε→0

uε = u , F (u ) = 0



Averaging of oscillatory dynamical systems 

•  Typical applications: molecular dynamics, astrophysics 
•  Effective equation from averaging of ergodic process 
•  Find equation for averaged unknown u without the ε scale 
 

ʹxε = fε (xε )→
uέ = f (uε,vε )

vέ = ε
−1g(uε,vε )

⎧

⎨
⎪

⎩
⎪

ε→ 0,
uε → u

ʹu = f (u,v)∫ dµ
v

•  Integration with respect to invariant measure µ: 
“averaging over fast motion”. v – dynamics 
ergodic  

•  Rich theory – we will consider cases when above 
averring is true, in particular when  v-equation 
has ε-periodic solutions:  

vέ = ε
−1g(U,vε )

xε (t) = x(t, t /ε)
v



Example we will come back to 

du
dt
= v1

2, dv1
dt

= ε−1v2,
dv2
dt

= −ε−1v1

u(0) = 0, v1(0) = 0, v2 (0) =1
v1(t) = sin(t /ε), v2 (t) = cos(t /ε)

→
du
dt
= sin(t /ε)( )2 → 1− cos(2πs) / 2( )

0

1
∫ ds =1/ 2

⇒ u(t) = t / 2, u = u +O(ε)( )

v2	

v1	

u	

t	



3.	Heterogeneous	Mul1scale	Methods	
for	ODEs	

 

 
 
•  Effective 〈 f 〉 value for macro-scale solver from average of micro-

scale data, mimicking the analytic process, [E, E., 2003], [E,Tsai, 
2005]	  

 
 
 
•  The computational grid is  
     also based on analysis 
 
 
 

€ 

˙ x ε = fε (xε ,t)

f
j
≈ Kk f j+k

k
∑ , du

dt
= f (u,v)dµu (v)∫

f (t, t /ε), f (t,τ ) periodic in τ



Heterogeneous	Mul1scale	Methods	for	ODEs	

 

 
 
•  Three processes, course (upper line) and fine solver (lower line) and 

the coupling (average force) 
 
 

€ 

˙ x ε = fε (xε ,t)

f
j
≈ Kk f j+k

k
∑

xN+1 = FH (xN ), xN = x0 + NH, xn+1 = Fh (xn ), xn = x0 + nh

Convergence analysis contains 
the same three processes 



Averaging example: HMM – theory  

•  The HMM framework applies directly (harmonic oscillator + slow) 

 
•  The basic HMM method works well and can be proved to 

converge. Generalization to other equation possible 

du
dt
= v1

2, dv1
dt

= ε−1v2,
dv2
dt

= −ε−1v1,

f (xε (t)) = Kk f j+k
k
∑ , K ∈Cs, K(t,τ )τ l dτ

t−δ /2

t+δ /2
∫ =

1, l = 0
0, 0 < l ≤ q−1

⎧
⎨
⎪

⎩⎪

xε − xHMM =O(H pM +
h
ε

⎛

⎝
⎜
⎞

⎠
⎟
pm δ
H
+
ε
δ

⎛

⎝
⎜
⎞

⎠
⎟
s

+δ q )



Heterogeneous	Mul1scale	Methods	for	ODEs	

•  There are different variants, for example, symmetric integration for 
time reversible processes 

•  Convergence in case of inertia manifold attractors is possible 
 
 

f
j
≈ Kk f j+k

k
∑ , K symmetric



Kapitza pendulum 

If the pivot is forced to 
oscillate rapidly, slow stable 
oscillations around θ =0 are 
possible. 

€ 

l d
2θ
dt 2

= (g + ε−1 sin(2πε−1t))sin(θ)



HMM example 

•  This relaxation oscillator is a suitable example for numerical 
resolution of fast process [Dahlquist et al, 1981] 

•  Two-scale fast process 
•  Numerical multiscale 
     methods only possibility  
     challenging for exp. methods 
 

€ 

˙ x 1 = −1− x1 + 8x2
3

˙ x 2 =
1
ε
−x1 + x2 − x2

3( )
$ 
% 
& 

' & 



HMM phase locking 

•  3 scales O(ε), O(1), O(ε-1) 

€ 

˙ x 1 = −1− x1 + 8x2
3 + ελx3

˙ x 2 =
1
ε
−x1 + x2 − x2

3( )
˙ x 3 =ωx4

˙ x 4 = −ωx3

& 

' 

( 
( 

) 

( 
( 



Challenge: initial values for microscale 

•  Convergence lost if the “fast” equations not ergodic. (resonance) 
•  Error from re-initialization 

•  The basic HMM method will not converge, 〈f2〉 = 〈f3〉 = 0.  
•  The initialization of the micro-scale is not correct.  
•  The v-system is not ergodic. There is a �hidden� slow variable: r 

du
dt
= v1

2, dv1
dt

= ε−1v2 + v1,
dv2
dt

= −ε−1v1 + v2,

u(0) = 0, v1(0) = 0, v2 (0) =1
⇒ u = (et −1) / 2, v1 = e

t sin(t /ε), v2 = e
t cos(t /ε)

€ 

˙ r = v1
2 + v2

2 = r( )



Controlling �slow variables� for consistent 
re-initialization 

•  Related to the closure problem for effective equations. Problem 
for molecular dynamics 

 
(a)  Follow “slow variable” in established cases 
(b)  Find numerically (or analytically) explicit approximations of a 

complete set of the �slow variables� 
(c)  Compute averages of relevant moments and use as constraints. 

Implicit type of technique (Compare, thermostats) 
 Example use variables u, r, θ in our model problem 

(d)    If possible separate fε in fast (ergodic) and slow remaining part    
   (all slow variables does not need to be identified)  

(e)    Compute phase plane maps for parareal simulations (✔) 



(a) “Established case”  
fluid – MD coupling, slip line 

•  No slip boundary condition for Naver-Stokes fails at slip line 



Slip line example 

•  No slip boundary condition for Naver-Stokes fails at slip line 



Slip line example 

•  Coupling: fluid and line 
velocity and shear 
stress 

•  Heat bath for MD 
•  Velocity, pressure     

slow outside of slip line 
– compare closure 
problem  



(b) Determine complete set of slow variables 

•  Goal is to find maximal set of slow observables or variables 

•  Using the micro solver, determine coefficient in an algebraic form of 
diffeomorphism Φ(x)=(ξ(x),..) orthogonal to trajectory, simple HMM 
then applies 

•  Typical ξ-variables 
–  Null space of principle ( ε-1) part of system Jacobian 
–  Amplitude of local oscillator 
–  Phase difference between oscillators 
–  u, (v1

2 +v2
2) in our model example 

€ 

ξ j (x){ } j=1

r
,

dξ j (x(t))
dt

≤ C, j =1,..r



Fermi-Pasta-Ulam problem, 
finding all “slow variables” 

•  1-D system with alternating stiff linear and soft nonlinear springs 

•  Numerical example 
 with 10 springs  

•  Only one �fast variable� 
•  Recall radius in expanding 
     spiral example 



(c) Compute averages of relevant moments 
and use as constraints  

•  By also tracking 〈 (v1)2 〉 in example above and reinitialize  
 such that the moment average is consistent, convergence can 
be achieved. Re-initialization implicitly defined 

•  Example: three body harmonic springs 



(d) Seamless HMM and FLAVORS	

•  FLow AVeraging integratORS (FLAVORS) [Tao, Owhadi, Marsden 
2010], compare, seamless HMM [E, Vanden-Eijnden 2009] 

•  We used later [E. Lee 2014] variable step sizes to avoid “just 
rescaling ε 

 

•  FLAVORS: Staggered or fractional step evolution 

€ 

dx
dt

= fε (x) = f (x) + ε−1g(x)



(e) Local micro-simulations         parareal 

•  Ultimate “solution” to re-initialization challenge: full domain fine 
solver  

•  For HMM: ideally extend microscale integration domain – efficiency 
from distributed computing 

•  Re-initialization challenge is replaced by course scale solver 
challenge 



4. Parareal: parallel integration in time 

•  Motivation: higher computer performance now essentially only from 
increases in distributed processing 

Processor speed parallelization 

Moore’s law 



Parallel computing 

•  Parareal: technique for parallel in time computations of dynamical 
systems. Parallel in space common  
–  Challenge in time: causality compare space 
–  Predictor corrector method for domain decomposition in time 
–  Initial application: dissipative systems, Early paper [Lions, 

Maday, Turinici 2001]  

1me	



Parareal  

•  Recall parareal: technique for parallel in time computations of 
dynamical systems.   
–  Challenge in time: causality 
–  Predictor corrector algorithm, compare parallel shooting 
–  Based on coarse solver (    ) and high resolution solver 

(                  ) 

time x0
0 = x0, xn

0 =CHxn−1
0

Coarse solver 



Parareal correction 

•  A framework for parallel in time algorithms 
–  Local simulations covering fully the sub-intervals 
–  Macroscale: C,  microscale: F 

 

For k =1,..,K
xn
k =CHxn−1

k +FH xn−1
k−1 −CHxn−1

k−1



Convergence 

•  Convergence based on: 
–  Dissipative process (short memory), [Lions, Maday, Turinici, 

2001] 
–  Accurate coarse global solver for all initial values and suitable 

initial value update procedures, [Gander, Hairer, 2007,2014] 
•  Hamiltonian systems require highly accurate global course integrator 
     [Gander, Petcu, 2007] 

•  Coarse numerical approximation: 
solver with larger step size or larger 
ε  – too many iterations – even 
blowup possible 

Correction	



Challenge: parareal for oscillatory systems 

•  Coarse solver needs to be quite accurate even for the “highest 
frequency”   

•  [Gander, Hairer, 2007]: accuracy requirement for “parareal 
convergence” 

•  Problem for natural coarse integrators: changing ε of h 
•  In MD already FH has low accuracy 
•  Motivation to consider phase plane map as coarse solver 
•  Compare “milestoning” 

FH x −CHx = c(x)H
p+1, CHx −CHy ≤ (1+ cH ) x − y

→ x(tn )− xn
k ≤

ctn
k+1

(k +1)!
H p(k+1)



5. Milestoning 

•  Milestoning: a domain decomposition technique for multiscale 
Molecular Dynamics (MD) simulations 
–  Challenge: extend molecular dynamics simulations to much 

larger time than what is possible in direct simulations (example 
protein folding) 

–  Early paper [Elber, Faradjian, 2004] 

Projected 
phase plane 



Milestoning: domain decomposition	

•  The phase space of a Hamiltonian system or a stochastic differential 
equation is decomposed into domains separated by milestones 

•  Phase space high dimensional – milestones low dimensional (1 to 3) 
•  Choice of milestones important 



6. Phase plane map based parareal 
integration  

•  Coarse global integrator for autonomous systems 
•  Determine map x(t) to x(t+Δt) for number of x – values in parallel 

t+Δt	

t	

dxε
dt

= fε (xε ), t < t < t +Δt,

xε (t) = x
0

⎧

⎨
⎪

⎩
⎪

x :R+ → Rd( )



Phase plane map 

•  Coarse global integrator for autonomous systems 
•  Determine map x(t) to x(t+Δt) for number of x – values in parallel 
•  Use these x – values with interpolation as course global integrator 

t+Δt	

t	

Compute in parallel several  
snapshots defining the map 

Goal: reduce phase error 



Phase plane map 

•  Coarse global integrator for autonomous systems 
•  Determine map x(t) to x(t+Δt) for number of x – values in parallel 
•  Use these x – values with interpolation as course global integrator 

t+Δt	

t	

Highly oscillatory solutions 
do not reduce regularity of map 

(no ε dependence) 



Phase plane map 

•  Coarse global integrator for autonomous systems 
•  Determine map x(t) to x(t+Δt) for number of x – values in parallel 
•  Use these x – values with interpolation as course global integrator 

t+Δt	

t	

Coarse global integrator: 
very good phase accuracy 

 
dxε
dt

= (iε−1)xε, t < t < t +Δt, xε (t) = x
0

dxε
dt

=O(ε−1), ∂xε (t +Δt)
∂x0

= ei/ε =O(1)



Phase plane map 

•  Coarse global integrator for autonomous systems 
•  Determine map x(t) to x(t+Δt) for number of x – values in parallel 
•  Use these x – values with interpolation as course global integrator 

t+Δt	

t	

Works very well in parareal setting  
for our spiral problem 

Linear problem: # int. pts. = d+1 



Expanding spiral 

•  2 DOF only 3 parallel fine scale simulation defines this linear phase 
plane map “exactly”. Linear system with d DOF requires d+1 
simulations 

•  For very high dimensions, neural networks are alternatives 



MD: Lennard-Jones potential 

•  2 DOF, 2 atoms 
•  Piecewise linear interpolation near orbit 

V = c1r
−12 − c2r

−6



MD: Lennard-Jones potential 

•  12 DOF, target molecule with 3 atoms 
•  Initial condition closer to minimal potential 
•  Piecewise linear interpolation near orbit 
•  400 H-intervals 

RK4	PP-map	

4 parareal iterations vs 34 
for 10-3 accuracy 



Localized	mul1scales	

•  Gravita1onal	N-body	problem	of	“near	miss”	
•  Convergence	in	one	parareal	itera1on	

mi!!xi =
gmiM j

x j − xi
2

j=1

N

∑
(x j − xi )
x j − xi



7. Conclusions 

•  HMM – ODE based on information theory and averaging 
•  Simulations require decomposition into slow and fast (ergodic) 

variables 

x	

t	

•  Oscillatory and transient cases 
•  Paraeal parallel-in-time simulation using 

phase plane maps for coarse solver is a 
promising alternative 

•  For more realistic degrees of freedom: 
sparse grids, higher order interpolation, 
symplectic integrators … 


