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General Setting and Universality Questions

General Setting and Universality Questions

Nonlinear partial differential equations with Hamiltonian and reversible in time
structure appear in models of wave propagation in physics or geometry.

- In the 80s, basic properties of these equations were established, notably the
existence and stability of special solutions called solitons.

- In the 90s, tools from harmonic analysis led to a refined understanding of
properties of the corresponding linear equations and how to extend these
properties to nonlinear equations. In particular, the notion of criticality
appeared.

- The problem of understanding the asymptotic dynamics related to nonlinear

objects (or special solutions) remained. This question has attracted
considerable interest in the last fifteen years, and yet we are just beginning to
have a rough picture of the subject.
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General Setting and Universality Questions

In this talk, I will consider a few classical models:

- the mass critical Nonlinear Schrödinger Equation

(cNLS) i@t u + @2
xu + |u|4u = 0, u|t=0 = u0, (t , x) 2 [0,T )⇥ R,

- the mass critical Korteweg–de Vries Equation

(cKdV ) @t u + @x(@
2
xu + u

5) = 0,u|t=0 = u0, (t , x) 2 [0,T )⇥ R.

These equations are called focusing and are expected to have some truly
nonlinear behavior.

In the 80s/90s, local solutions in time were studied using Strichartz and
related estimates on the linear equation, and treating the nonlinear term in a
perturbative way (Ginibre/Velo, Kato, Kenig/Ponce/Vega, Bourgain,
Cazenave/Weissler...).

For (cNLS) and (cKdV), we have existence and uniqueness of a maximal
solution u(t) on [0,T ) in L2 and H1 = {f : f and rf 2 L2}.
- Either T = +1 (u(t) is global),
- or T < +1 (u(t) blows up in finite time). If u0 2 H1, limt!T |ru(t)|L2 = +1 .

FRANK MERLE (U. Cergy & IHÉS) Asymptotics for Critical Nonlinear Dispersive Equ. 2019 3 / 19



General Setting and Universality Questions

Further properties:

Conservation laws: for t 2 [0,T ),

M(u(t)) =

Z
|u|2(t , x)dx = M(u0),

if u0 2 H
1, E(u(t)) =

1
2

Z
|@xu|2(t , x)dx -

1
6

Z
|u|6(t , x)dx = E(u0).

Focusing is reflected in the - sign in the energy.

Symmetry:

- space/time translation, for (cNLS) phase and Galilean invariance,
- scaling invariance:
if u(t , x) is a solution of (cNLS), then for � > 0, u�(t , x) = �

1
2 u(�2t , �x) also

(and for (cKdV), u�(t , x) = �
1
2 u(�3t , �x)).

These transformations leave invariant the L2 norm of the solution, so that both
problems are called mass critical.
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General Setting and Universality Questions Classical examples

Classical examples of special solutions:

(i) Small data result:

smallness in the critical space implies global existence and scattering
(asymptotic linear behavior in time).

Specific for focusing problems:

(ii) Nonlinear objects such as:
- for (cKdV): traveling wave u(t , x) = Q(x - t),
- for (cNLS): periodic solution of the form u(t , x) = eitQ(x),
where Q 2 H1 solves Qxx - Q + Q5 = 0.

(iii) Self-similar solution:

(The typical example of blow-up solution for noncritical eq.) Up to some
time-dependent translation and phase:
- for (cKdV), u(t , x) = 1

(T-t)
1
6

F ( x

(T-t)
1
3
),

- for (cNLS), 1
(T-t)

1
4

F ( x

(T-t)
1
2
).
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General Setting and Universality Questions Challenges related to asymptotic behavior

From the criticality and the conservation laws, we will exclude such self-similar
blow-up (in a more general form). Nonexistence of self-similar blow-up is a
key feature of critical equations compared to noncritical ones and a challenge
deeply related to the nature of each equation. This is an essential step toward
classification results for the asymptotic behavior of solutions.

Surprisingly, all objects appearing in such classifications so far are simply the

ones presented in (i) (ii). Since the 70s, there has been a belief that:
for large global solutions of dispersive equations, the evolution asymptotically
decouples for large time into a sum of modulated solitons and a free radiation

term (the soliton resolution conjecture).
In PDE, this is known in only two situations: the integrable case (where
nonlinear eq. can be reduced to linear eq.) and the parabolic case (where
time irreversibility is natural).

The problem has two parts: construction of examples and classification.
These questions are linked to understanding the nature of dispersion at
infinity in space and its coupling with the nonlinear dynamics.
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General Setting and Universality Questions Challenges related to asymptotic behavior

(A) Interaction of nonlinear/linear dynamics: Typically, these are dynamics
which are (up to modulation) asymptotic to a nonlinear object (asymptotic

stability or bubbling solution with a universal profile). In the examples, these
dynamics are degenerate and unstable (more degenerate directions than
those given by symmetries), and behavior of initial data at infinity is essential.
A formal understanding of these dynamics and rigorously establishing them
was a challenge that required new ideas related to nonlinear properties.
(B) Interaction of nonlinear objects/nonlinear dynamics: Interaction between
(spatially) decoupled nonlinear objects.
(C) General decomposition and interaction: General case of not prepared,
large data.
General challenge: find a nonintegrable dispersive situation with soliton

resolution.

Main type (A) problems:
- Understand blow-up behavior for mass critical NLS,

- Prove and understand blow-up for mass critical KdV.

Type (B),(C) problems will be mentioned briefly.
Strategy: see that deep knowledge of dispersion is related to a monotonicity

formula (decreasing quantity up to lower order terms) and gives irreversibility.
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The Nonlinear Schrödinger Equation History of the problem

The Nonlinear Schrödinger Equation

- From an obstructive identity related to a conformal invariance (70’s),

if E(u0) < 0 and u0 2 ⌃ = H
1 \ {xu0 2 L

2}, then T < +1 (blow-up),

(no information on how) and we have the explicit blow-up solution (T = 0)

S(t , x) =
1
|t |

1
2

Q

✓
x

|t |

◆
e

i
|x|2

4t
+ i

|t| with |S|L2 = |Q|L2 , |rS(t)|L2 ⇠
1
|t |
.

- Variational arguments yield that no blow-up occurs for |u0|L2 < |Q|L2 .
- The following initial result containing a rigidity notion for Hamiltonian
dynamics and notion of nondispersive solution was proved:

Theorem (Dynamical characterization of S and Q , Merle, 92)

Let u0 2 H1, |u0|L2 = |Q|L2 then:

- either u is equal to S or to Q(x)eit , up to the symmetries of the equation,

- or u is global, and scatters as t ! ±1 if u0 2 ⌃.
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The Nonlinear Schrödinger Equation Loglog blow-up and classification (the Merle/Raphaël theory

The next challenge was to understand the dynamics for u0 2 H1 such that

|Q|2
L2 < |u0|

2
L2 < |Q|2

L2 + ↵⇤ with 0 < ↵⇤ ⌧ 1. (1)

We now consider dynamics close to Q up to renormalization.

- A direct approach allowed Bourgain/Wang (Krieger/Schlag) to construct
unstable (Merle/Raphaël/Szeftel) blow-up solutions such that

u(t , x)- S(t , x) ! u
⇤ in H

1 as t ! 0.

- The generic/stable singularity formation was open for several decades. In
the 80s, formal/numerical works (Landman/Papanicolaou/Sulem/Sulem)
suggested a “loglog” correction of the self-similar rate:

|ru(t)|L2 ⇠

r
log | log(T - t)|

T - t
.

- Since the linearized problem around Q is very degenerate, the linear theory
does not give the formal picture. The idea was to consider, near Q, a
localization of self-similar blow-up profile (which barely fails to be in L2) Q̃b(t),
where b(t) 2 R and find irreversibility on b(t) from a monotonicity formula.
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The Nonlinear Schrödinger Equation Loglog blow-up and classification (the Merle/Raphaël theory

Theorem (L2 critical blow-up 02-05’s, Merle, Raphaël)
Assume (1).

(i) Sufficient condition for loglog blow-up: If E(u0) < 0, or E(u0) = 0 and

u 6= Q, then u blows up in finite time with the loglog speed

|ru(t)|L2 ⇠

s
log | log(T - t)|

2⇡(T - t)
as t ! T .

(ii) Stability of loglog blow-up: The set of initial data u0 such that u(t) blows up

in finite time with the loglog speed is open in H1.
(iii) Universality of bubble profile and classification of blow-up rate: If T < +1,

then there exist (�(t), x(t),�(t)) and u⇤ 2 L2 such that:

u(t , x)-
1

�(t)
1
2

Q

✓
x - x(t)

�(t)

◆
e

i�(t) ! u
⇤

in L
2,

with x(t) ! x(T ), �(t) ⇠ 1
|ru(t)|

L2
as t ! T , and |ru(t)|L2 satisfies either the

loglog speed or |ru(t)|L2 � 1
T-t

as t ! T .

See also G. Perelman.
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The Nonlinear Schrödinger Equation Other applications of this approach

The point of view of using monotonicity properties together with specific
localization of a self-similar profile, in problems of oscillatory integrals, has
been successfully used to give a formal analysis and a rigorous proof of a
blow-up regime in the following cases:

(i) The energy critical wave (Hillairet/Raphaël, Krieger/Schlag/Tataru),

(ii) The energy critical wave maps into the sphere S2 (Raphaël/Rodnianski ,

Rodnianski/Sterbenz, Krieger/Schlag/Tataru),

(iii) The energy critical Schrödinger maps into the sphere S2

(Merle/Raphaël/Rodnianski ),

(iv) The energy supercritical Heat, Wave, Schrödinger Equations

(Herrero/Velasquez, Merle/Matano, Merle/Raphaël/Rodnianski, Collot,

Collot/Merle/Raphael, Merle/Raphae/Szeftel )

Another range of applicability in the recent years.
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Generalized Korteweg–de Vries Equation Critical Martel/Merle theory

Generalized Korteweg–de Vries Equation

(cKdV) admits the same conservation laws and a similar scaling invariance as
(cNLS) but no conformal invariance or obstructive identity: the problem of
blow-up for (cKdV) is natural and challenging. For 0 < ↵⇤ ⌧ 1, consider

|u0|
2
L2 < |Q|2

L2 + ↵⇤. (2)

As an application of rigidity (Liouville type theorems), we have:

Theorem (Blow-up by rigidity, Martel, Merle 00’s)
(i) Negative energy gives blow-up: If E(u0) < 0, then the solution blows up

with T finite or infinite (|ru(t)|L2 ! 1 as t ! T).

(ii) Universality of bubbling: There are �(t) ⇠ 1
|ru(t)|

L2
, x(t) such that for A > 0,

u(t , x)-
1

�(t)
1
2

Q

✓
x - x(t)

�(t)

◆
! 0 in L

2
for {|x - x(t)| < A�(t)} as t ! T .
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Generalized Korteweg–de Vries Equation Critical Martel/Merle theory

Main point of the proof:
If not, we have a contradiction from energy constraints (E(u0) < 0) and the
exact asymptotic behavior of the solution (asymptotic stability of Q).

Let v(t) be a new solution such that for tn ! 1, up to scaling

u(tn + t , xn + x) ! v(t , x) locally in L
2.

Monotonicity properties on u(t) break the reversible character of the solution

v(t), showing that v(t) is a nondispersive solution (up to modulation has small

tails uniformly in time). We then get rigidity: v(t , x) = Q(x - t).
Since E(Q) = 0, the conservation of the energy gives a contradiction.

Recently, we understood all solutions as in (2) and their asymptotics:
For initial data with decay, near Q, we give a complete nonlinear finite

dimensional description of the dynamical picture (despite the high degeneracy
of Q).
This is the only such situation known. We expect that this picture is canonical.
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Generalized Korteweg–de Vries Equation Critical Martel/Merle/Raphaël theory

Consider the set of initial data for 0 < ↵0 ⌧ ↵⇤ ⌧ 1,

A = {u0 = Q + ✏0 with |✏0|H1 < ↵0 and
Z

x>0
x

10✏2
0 < 1} ⇢ T↵⇤

where T↵⇤ = {u 2 H1 with infc0>0, x02R |u - Qc0(.- x0)|L2 < ↵⇤}.

Theorem (Rigidity of the flow in A , Martel, Merle, Raphaël 12)
Let u0 2 A. Then one of the following scenarios occurs:

(Blow-up): The solution blows up in finite time T > 0 with the universal regime

|u(t)|H1 ⇠
`(u0)

T - t
as t ! T , with `(u0) > 0.

(Soliton): The solution is global and converges to Q (renormalized).

(Exit): The solution leaves the tube T↵⇤ at some time 0 < t⇤(u0) < +1.

The scenarios (Blow-up) and (Exit) are stable in A.
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Generalized Korteweg–de Vries Equation Critical Martel/Merle/Raphaël theory

(i) Universality in the blow-up rate is lost without decay of the initial data

(u0 62 A) and the H1 Martel/Merle theory is optimal for solutions without decay:

- Initial data with slowly decaying tails interacting with the solitary wave lead to
blow up solutions u(t) such that |@xu(t)|L2 ⇠ (T - t)-⌫ as t ! T , for ⌫ > 11

13 .

(ii) The long-time dynamics in the (Exit) regime (Martel, Merle, Raphaël):

- We have existence and uniqueness of a minimal blow-up solution S̃(t)
(|S̃|L2 = |Q|L2 ) which is the surprising generalization of the S(t) dynamics for
(cNLS).

- This unstable solution S̃(t) is the universal attractor in L2 of all solutions in
the (Exit) regime (see also Krieger/Nakanishi/Schlag for Klein-Gordon eq).
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Example for type (B) problem Subcritical large data examples, 2-solitons

Example for type (B) problem

We now consider the quartic KdV eq. (no blow-up and nonintegrable)

@t u + @x(@
2
xu + u

4) = 0, (t , x) 2 [0,T )⇥ R,

and interaction between two solutions of the form Qc(.- ct).

Theorem (Martel/Merle/Tsai, Martel (i), Martel/Merle (ii) 10s)
Let 0 < c1 < c2.

(i) 2-solitons at t = +1: There exists a unique solution Uc1,c2(t) such that

lim
t!+1

��Uc1,c2(t)- [Qc1(.- c1t) + Qc2(.- c2t)]
��
H1 = 0.

(ii) behavior at t = -1: For a � > 0, if
c1
c2

< � or
3
4 < c1

c2
< 1, then Uc1,c2(t) is

not a 2-soliton as t ! -1 and ”has a dispersive part”.

Thus, collisions are inelastic. In the integrable case, we again recover a
2-soliton as t ! -1 using the explicit formula (elastic collision).
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Example for type (C) problem Large Data Results: The Case of the Energy Critical Wave Equation

Example for type (C) problem

Consider the focusing energy critical Nonlinear Wave eq. in 3 dimensions with
radial data:

(ecNLW ) @2
t u = �u + u

5, (u|t=0,@t u|t=0) = (u0,u1), (t , x) 2 [0,T )⇥ R3.

- (ecNLW) has properties similar to those of (cNLS) in L2, in the energy space:
(u(t),@t u(t)) 2 Ḣ1 ⇥ L2 where Ḣ1 = {f : rf 2 L2}. There is a unique solution
u(t) on [0,T ) in Ḣ1 ⇥ L2 and the scaling of the eq. leaves invariant the
Ḣ1 ⇥ L2-norm so that the problem is energy critical.
- Nonlinear objects such as W 2 Ḣ1 solution of �W + W 5 = 0 (explicit in the
radial case) and using Lorentz invariance, Wc(x - ct) where |c| < 1.
- A theory has been developed in the critical space related to the notion of
nondispersive solution by Kenig, Merle and by Duyckaerts, Kenig, Merle to
understand the dynamics. We now have the full soliton resolution in the radial

situation (partial resolution in the nonradial case) for large data (which gives
the first result in the nonintegrable case):
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Example for type (C) problem The large data case following Duyckaerts/Kenig/Jia/Merle

Theorem (Radial soliton resolution, Duyckaerts, Kenig, Merle)
Assume that the solution is global. Then, there exist a solution vlin of the linear

wave eq., an integer J � 0, ◆j 2 {±1}, and �1(t) ⌧ �2(t) ⌧ . . . ⌧ �J(t) ⌧ t as

t ! +1 such that

�����(u(t),@t u(t))-

0

@vlin(t) +
JX

j=1

◆j

�
1/2
j

(t)
W

✓
x

�j(t)

◆
,@t vlin(t)

1

A
�����
Ḣ1⇥L2

�!
t!+1

0.

Theorem (Partial soliton resolution, Duyckaerts, Kenig, Jia, Merle)
Assume that the solution is global. Then, there exist a solution vlin of the linear

wave eq., J � 0, solitary wave Qci
, �i(t), xi(t) and tn ! +1 such that

�����(u(tn),@t u(tn))-

0

@vlin(tn) +
JX

j=1

1
�

1/2
j

(tn)
Qci

✓
x - xi(tn)

�j(tn)

◆
, ...

1

A
�����
Ḣ1⇥L2

�!
n!+1

0.

DKM u non dispersif () u ⌘ wl(x - lt) .
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Conclusion

Conclusion

We have illustrated universality for some canonical problems. One can see a
unity in these problems without apparent links a priori:
- similarities in the results,
- similarities in the approaches (monotonicity formulas, few parameters
related to special solutions with nonlinear interactions where cancellations
play a basic role, etc.).

Nevertheless, the proofs use the specifics of each equation.

Finally, we observe that there are many wide open directions of research
related to these approaches...
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