Colloquium du CERMICS

ParisTech

Progressive Decoupling of Linkages in Optimization with Elicitable Convexity

Terry Rockafellar (University of Washington, Seattle)

25 octobre 2018

Progressive Decoupling of Linkages in Optimization with Elicitable Convexity

Terry Rockafellar
University of Washington, Seattle

CERMICS

École de Ponts Paris Tech October 25, 2018

An Optimization Model for Promoting Decomposition

Problem

$$
\operatorname{minimize} \sum_{j=1}^{q} f_{j}\left(x_{j}\right)+g\left(\sum_{j=1}^{q} F_{j}\left(x_{j}\right)\right) \text { over }\left(x_{1}, \ldots, x_{q}\right) \in S
$$

Ingredients: for this presentation
mappings $F_{j}: \boldsymbol{R}^{n_{j}} \rightarrow \boldsymbol{R}^{m}$, just \mathcal{C}^{1} or \mathcal{C}^{2} for $j=1, \ldots, q$, functions $f_{j}: R^{n_{j}} \rightarrow(-\infty, \infty]$, just Isc for $j=1, \ldots, q$, function $g: R^{m} \rightarrow(-\infty, \infty]$, Isc, convex, pos. homogeneous subspace $S \subset R^{n}=R^{n_{1}} \times \cdots \times R^{n_{q}}$ with complement S^{\perp}

Challenge

solve this by a scheme which breaks computations down into subproblems in separate indices j that bypass the S constraint

Territory Covered by this Formulation

$$
\operatorname{minimize} \sum_{j=1}^{q} f_{j}\left(x_{j}\right)+g\left(\sum_{j=1}^{q} F_{j}\left(x_{j}\right)\right) \text { over }\left(x_{1}, \ldots, x_{q}\right) \in S
$$

Specializations of the coupling term:

- $g(u)=\delta_{K}(u)$ for a closed convex cone K for a constraint
- $g(u)=\|u\|=$ some norm for regularization term
pos. homogeneity of g can be dropped with some adjustments

Specializations of the coupling space:

- S gives application-dependent linear relations among the x_{j} 's
- $S=\left\{\left(x_{1}, \ldots, x_{q}\right) \mid x_{1}=\cdots=x_{q}\right\}$, for the splitting version
- S taken to be all of R^{n} (thereby "dropping out"), $S^{\perp}=\{0\}$

Specializatins to convex optimization:

- f_{j} convex and $F_{j}=A_{j}$ affine
- f_{j} and F_{j} convex and g nondecreasing among others

Reformulation to Liberate Underlying Separability

Expansion Lemma

$$
g\left(\sum_{j=1}^{q} F_{j}\left(x_{j}\right)\right) \leq \alpha \quad \Longleftrightarrow \quad \exists u_{j} \in R^{m} \text { for } j=1, \ldots, q
$$

$$
\text { such that } \sum_{j=1}^{q} u_{j}=0 \text { and } \sum_{j=1}^{q} g\left(F_{j}\left(x_{j}\right)+u_{j}\right) \leq \alpha
$$

Extended coupling space: now in $R^{n} \times\left[\left.R^{m}\right|^{q}\right.$

$$
\begin{aligned}
& \bar{S}=\left\{\left(x_{1}, \ldots, x_{q}, u_{1}, \ldots, u_{q}\right) \mid\left(x_{1}, \ldots, x_{q}\right) \in S, \sum_{j=1}^{q} u_{j}=0\right\} \\
& \bar{S}^{\perp}=\left\{\left(v_{1}, \ldots, v_{q}, y_{1}, \ldots, y_{q}\right) \mid\left(v_{1}, \ldots, v_{q}\right) \in S^{\perp}, y_{1}=\cdots=y_{q}\right\}
\end{aligned}
$$

Expanded problem (equivalent)

$$
\min \sum_{j=1}^{q}\left[f_{j}\left(x_{j}\right)+g\left(F_{j}\left(x_{j}\right)+u_{j}\right)\right] \text { over }\left(x_{1}, \ldots, x_{q}, u_{1}, \ldots, u_{q}\right) \in \bar{S}
$$

\longrightarrow separability achieved in the objective:

$$
\varphi\left(x_{1}, \ldots, x_{q}, u_{1}, \ldots, u_{q}\right)=\varphi_{1}\left(x_{1}, u_{1}\right)+\cdots+\varphi_{q}\left(x_{q}, u_{q}\right)
$$

Linkage Problems in Terms of Subgradients

Goal: \quad minimize some Isc function f over some subspace S to be applied later to minimizing φ on \bar{S} as above

First-order condition for local optimality

$$
\bar{w} \in S \text { and } \exists \bar{z} \in \partial f(\bar{w}) \text { such that } \bar{z} \in S^{\perp}
$$

Regular subgradients: notation $\bar{z} \in \widehat{\partial} f(\bar{w})$

$$
f(w) \geq f(\bar{w})+\bar{z} \cdot(w-\bar{w})+o(\|w-\bar{w}\|)
$$

General subgradients: notation $\bar{z} \in \partial f(\bar{w})$

$$
\exists z^{\nu} \rightarrow \bar{z} \text { with } z^{\nu} \in \widehat{\partial} f\left(w^{\nu}\right), w^{\nu} \rightarrow \bar{w}, f\left(w^{\nu}\right) \rightarrow f(\bar{w})
$$

Convex case: general $=$ regular $=$ convex subgradients
Smooth case: general $=$ regular $=$ classical gradients
Linkage problem - for given f and S

$$
\text { find a pair }(\bar{w}, \bar{z}) \in[\operatorname{gph} \partial f] \cap\left[S \times S^{\perp}\right]
$$

Second-order Sufficiency via Virtual Convexity

Key observation: in terms of $e=$ "elicitation" parameter ≥ 0, $d_{S}(w)=$ distance of w from the subspace S minimizing f on $S \quad \longleftrightarrow$ minimizing $f_{e}=f+\frac{e}{2} d_{S}^{2}$ on S

First-order optimality is thereby unaffected:

$$
\bar{z} \in \partial f(\bar{w}) \Longleftrightarrow \bar{z} \in \partial f_{e}(\bar{w}) \quad \text { when } \bar{w} \in S \text { and } \bar{z} \in S^{\perp}
$$

Variational second-order sufficient condition: in addition, for e high enough, f_{e} is variationally convex at (\bar{w}, \bar{z}), meaning
$\exists \varepsilon>0$, open convex nbhd $W \times Z$ of (\bar{w}, \bar{z}), and Isc convex $h \leq f_{e}$ on W such that gph ∂h coincides in $W \times Z$ with

$$
\operatorname{gph} T_{e, \varepsilon}=\left\{(w, z) \in \operatorname{gph} \partial f_{e} \mid f_{e}(w) \leq f_{e}(\bar{w})+\varepsilon\right\}
$$

and, on that common set, furthermore $h(w)=f_{e}(w)$
Strong version: the function $h \leq f_{e}$ is strongly convex

Sufficiency in the Convex and Smooth Cases

Convex example

for convex f, the variational condition is superfluous

the first-order condition already guarantees global optimality
Smooth example: $f \in \mathcal{C}^{2}$ with gradient $\nabla f(\bar{w})$, hessian $\nabla^{2} f(\bar{w})$

- the first-order condition reduces to:
$\bar{w} \in S$, and the gradient $\bar{z}=\nabla f(\bar{w})$ is $\perp S$
- the second-order condition in strong form reduces to:
$\nabla^{2} f(\bar{w})$ is positive definite relative to S
\longrightarrow these are the standard sufficient conditions for a local min

Progressive Decoupling of Linkages (Rock. 2018)

$$
\text { for determining }(\bar{w}, \bar{z}) \in[\operatorname{gph} \partial f] \cap\left[S \times S^{\perp}\right]
$$

Algorithm with parameters $r>e \geq 0$, generating $\left\{\left(w^{k}, z^{k}\right)\right\}_{k=1}^{\infty}$

In iteration k, having $w^{k} \in S$ and $z^{k} \in S^{\perp}$, get

$$
\widehat{w}^{k}=(\text { local? }) \operatorname{argmin}_{w}\left\{f(w)-z^{k} \cdot w+\frac{r}{2}\left\|w-w^{k}\right\|^{2}\right\}
$$

Update by $\quad w^{k+1}=\operatorname{proj}_{S} \widehat{w}^{k}, \quad z^{k+1}=z^{k}-(r-e)\left[\widehat{w}^{k}-w^{k+1}\right]$

Convergence Theorem

Convex case: converges globally from any initial (w^{0}, z^{0})
General case: if (\bar{w}, \bar{z}) satisfies the sufficient condition at elicitation level e, then \exists nbhd $W \times Z$ of (\bar{w}, \bar{z}) such that, if $\left(w^{0}, z^{0}\right) \in W \times Z$, the generated sequence stays in $W \times Z$ with $\widehat{w}^{k}=$ unique local minimizer on W, and it converges to to some solution $(\widetilde{w}, \widetilde{z})$ such that $\widetilde{w} \in \operatorname{argmin}$ of f on $W \cap S$

Underpinnings of the Progressive Decoupling Algorithm

- exploits properties of max monotonicity of set-valued mappings
- derives from the proximal point algorithm of Rock. (1976)
- extends the partial inverse method of Spingarn (1983)
- extends the proximal point localization of Pennanen (2002)

Criterion for local max monotonicity — Rock. (2018)

The variational sufficiency condition \Longrightarrow the mapping
$T_{e, \varepsilon}$ having its graph $=\left\{(w, z) \in \operatorname{gph} \partial f_{e} \mid f_{e}(w) \leq f_{e}(\bar{w})+\varepsilon\right\}$
is locally max monotone around (\bar{w}, \bar{z}), and moreover is equivalent to that when \bar{z} is a regular subgradient of f at \bar{w}
$\Longrightarrow \quad$ the proximal point algorithm can operate locally as long as the initial $\left(w^{0}, z^{0}\right)$ is near enough to (\bar{w}, \bar{z})

Application to the Expanded Programming Model

$$
\operatorname{minimize} \varphi\left(x_{1}, \ldots, x_{q}, u_{1}, \ldots, u_{q}\right)=\sum_{j=1}^{q} \varphi_{j}\left(x_{j}, u_{j}\right) \text { over } \bar{S}
$$

$$
\begin{aligned}
& \quad \text { where } \varphi_{j}\left(x_{j}, u_{j}\right)=f_{j}\left(x_{j}\right)+g\left(F_{j}\left(x_{j}\right)+u_{j}\right) \\
& \bar{S}=\left\{\left(x_{1}, \ldots, x_{q}, u_{1}, \ldots, u_{q}\right) \mid\left(x_{1}, \ldots, x_{q}\right) \in S, \sum_{j=1}^{q} u_{j}=0\right\} \\
& \bar{S}^{\perp}=\left\{\left(v_{1}, \ldots, v_{q}, y_{1}, \ldots, y_{q}\right) \mid\left(v_{1}, \ldots, v_{q}\right) \in S^{\perp}, y_{1}=\cdots=y_{q}\right\}
\end{aligned}
$$

Algorithm elements in this specialization:

$w^{k}=\left(x_{1}^{k}, \ldots, x_{q}^{k}, u_{1}^{k}, \ldots, u_{q}^{k}\right)$ for $\left(x_{1}^{k}, \ldots, x_{q}^{k}\right) \in S, \sum_{j=1}^{q} u_{j}^{k}=0$, $z^{k}=\left(v_{1}^{k}, \ldots, v_{q}^{k}, y^{k}, \ldots, y^{k}\right)$ for $\left(v_{1}^{k}, \ldots, v_{q}^{k}\right) \in S^{\perp}$

Decomposition property from liberated separability

The step in which the algorithm determines \widehat{w}^{k} breakes down for $j=1 \ldots, q$ to calculating: $\left(\widehat{x}_{j}^{k}, \widehat{u}_{j}^{k}\right)=$ (local?)argmin of $\varphi_{j}^{k}\left(x_{j}, u_{j}\right)=\varphi_{j}\left(x_{j}, u_{j}\right)-\left(v_{j}^{k}, y^{k}\right) \cdot\left(x_{j}, u_{j}\right)+\frac{r}{2}\left\|\left(x_{j}, u_{j}\right)-\left(x_{j}^{k}, u_{j}^{k}\right)\right\|^{2}$

Resulting Procedure - Full Form

Algorithm (with parameters $r>e \geq 0$)

In iteration k, having $\left(x_{1}^{k}, \ldots, x_{q}^{k}\right) \in S$ and $\left(v_{1}^{k}, \ldots, v_{q}^{k}\right) \in S^{\perp}$ along with y^{k} and $\left(u_{1}^{k}, \ldots, u_{q}^{k}\right)$ such that $\sum_{j=1}^{q} u_{j}^{k}=0$, determine $\left(\hat{x}_{j}^{k}, \hat{u}_{j}^{k}\right)$ for $j=1, \ldots, q$ as the (local?) minimizer of $f_{j}\left(x_{j}\right)+g\left(F_{j}\left(x_{j}\right)+u_{j}\right)-v_{j}^{k} \cdot x_{j}-y^{k} \cdot u_{j}+\frac{r}{2}\left\|x_{j}-x_{j}^{k}\right\|^{2}+\frac{r}{2}\left\|u_{j}-u_{j}^{k}\right\|^{2}$
Then let $\widehat{u}^{k}=\frac{1}{q} \sum_{j=1}^{q} \widehat{u}_{j}^{k}$ and update by

$$
\begin{gathered}
\left(x_{1}^{k+1}, \ldots, x_{q}^{k+1}\right)=\operatorname{proj}_{S}\left(\widehat{x}_{j}^{k}, \ldots, \widehat{x}_{j}^{k}\right), \quad u_{j}^{k+1}=u_{j}^{k}-\widehat{u}^{k} \\
v_{j}^{k+1}=v_{j}^{k}-(r-e)\left[\hat{x}_{j}^{k}-x_{j}^{k+1}\right], \quad y^{k+1}=y^{k}-(r-e) \widehat{u}^{k}
\end{gathered}
$$

Convergence: global in the convex case, and moreover local in the nonconvex case as long as the algorithm starts near enough to a solution where the second-order variational sufficiency condition is satisfied at level e of the elicitation parameter

Bringing in Augmented Lagrangians

Consider auxiliary subproblems:
minimize $f_{j}\left(x_{j}\right)+g\left(F_{j}^{k}\left(x_{j}\right)\right)$ in x_{j} where $F_{j}^{k}\left(x_{j}\right)=F_{j}\left(x_{j}\right)+u_{j}^{k}$
Dualization: g is Isc convex pos.homog., so its conjugate is $g^{*}=\delta_{Y}$ (indicator) for some closed convex set $Y \subset R^{m}$
Examples: $\quad g=\delta_{K}$ for cone K yields $Y=$ polar cone K^{*}

$$
g=\|\cdot\|_{p} \text { yields } Y=\text { unit ball for dual norm }\|\cdot\|_{q}
$$

Lagrangians: $\quad L_{j}^{k}\left(x_{j}, y\right)=f_{j}\left(x_{j}\right)+y \cdot F_{j}^{k}\left(x_{j}\right)-\delta_{Y}(y)$
Augmented Lagrangians (with parameter $r>0$):

$$
\begin{aligned}
L_{j, r}^{k}\left(x_{j}, y\right) & =f_{j}\left(x_{j}\right)+y \cdot F_{j}^{k}\left(x_{j}\right)+\frac{r}{2}\left\|F_{j}^{k}\left(x_{j}\right)\right\|^{2}-\frac{1}{2 r} d_{Y}^{2}\left(y+r F_{j}^{k}\left(x_{j}\right)\right) \\
& =f_{j}\left(x_{j}\right)+\min _{u_{j}}\left\{g\left(F_{j}\left(x_{j}\right)+u_{j}\right)-y \cdot u_{j}+\frac{r}{2}\left\|u_{j}-u_{j}^{k}\right\|^{2}\right\}
\end{aligned}
$$

Observation: this min arises in the algorithm for $y=y^{k}$ \longrightarrow and then \hat{u}_{j}^{k}, the argmin, equals $-\nabla_{y} L_{j, r}^{k}\left(x_{j}, y^{k}\right)$

Resulting Procedure with Augmented Lagrangians

Decomposition algorithm in condensed form

From $\left(x_{1}^{k}, \ldots, x_{q}^{k}\right) \in S,\left(v_{1}^{k}, \ldots, v_{q}^{k}\right) \in S^{\perp}, \sum_{j=1}^{q} u_{j}^{k}=0, y^{k}$, get

$$
\widehat{x}_{j}^{k}=(\text { local }) \operatorname{argmin}_{x_{j}}\left\{L_{j, r}^{k}\left(x_{j}, y^{k}\right)-v_{j}^{k} \cdot x_{j}+\frac{r}{2}\left\|x_{j}-x_{j}^{k}\right\|^{2}\right\}
$$

and update by $\left(x_{1}^{k+1}, \ldots, x_{q}^{k+1}\right)=\operatorname{proj}_{S}\left(\widehat{x}_{1}^{k}, \ldots, \widehat{x}_{q}^{k}\right)$,

$$
\begin{aligned}
& v_{j}^{k+1}=v_{j}^{k}-(r-e)\left[\widehat{x}_{j}^{k}-x_{j}^{k+1}\right], \quad \widehat{u}_{j}^{k}=-\nabla_{y} L_{j, r}^{k}\left(x_{j}^{k+1}, y^{k}\right), \\
& \widehat{u}^{k}=\frac{1}{q} \sum_{j=1}^{q} \widehat{u}_{j}^{k}, \quad u_{j}^{k+1}=u_{j}^{k}-\widehat{u}^{k}, \quad y^{k+1}=y^{k}-(r-e) \widehat{u}^{k}
\end{aligned}
$$

Note: a convenient formula for the gradient is often available

Connection with the new second-order local optimality criterion

The variational sufficiency condition holds for a solution with elements $\bar{x}_{j}, \bar{v}_{j}, \bar{u}_{j}, \bar{y}$, with respect to an elicitation level e if and only if there are neighborhoods $X_{j} \times Y_{j}$ of $\left(\bar{x}_{j}, \bar{y}\right)$ such that the iterations have $L_{j, r}^{k}\left(x_{j}, y\right)$ convex-concave on $X_{j} \times Y_{j}$

References

[1] R.T. Rockafellar (2018) "Progressive decoupling of linkages in optimization and variational inequalities with elicitable convexity or monotonicity," accepted for publication.
[2] R.T. Rockafellar (2018) "Variational convexity and local monotonicity of subgradient mappings," accepted for publication.
[3] R.T. Rockafellar (2018) "Variational second-order sufficiency, generalized augmented Lagrangians and local duality in optimization," soon to be available.
downloads: sites.math.washington.edu/~rtr/mypage.html

