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An Optimization Model for Promoting Decomposition

Problem

minimize
Pq

j=1 fj(xj) + g
⇣Pq

j=1 Fj(xj)
⌘

over (x1, . . . , xq) 2 S

Ingredients: for this presentation

mappings Fj : IR
nj ! IRm

, just C1
or C2

for j = 1, . . . , q,

functions fj : IR
nj ! (�1,1], just lsc for j = 1, . . . , q,

function g : IRm ! (�1,1], lsc, convex, pos. homogeneous

subspace S ⇢ IRn
= IRn1 ⇥ · · ·⇥ IRnq with complement S?

Challenge

solve this by a scheme which breaks computations down into

subproblems in separate indices j that bypass the S constraint



Territory Covered by this Formulation

minimize
Pq

j=1 fj(xj) + g
⇣Pq

j=1 Fj(xj)
⌘

over (x1, . . . , xq) 2 S

Specializations of the coupling term:

• g(u) = �K (u) for a closed convex cone K for a constraint

• g(u) = ||u|| = some norm for regularization term

pos. homogeneity of g can be dropped with some adjustments

Specializations of the coupling space:

• S gives application-dependent linear relations among the xj ’s
• S =

�
(x1, . . . , xq)

�� x1 = · · · = xq
 
, for the splitting version

• S taken to be all of IRn
(thereby “dropping out”), S?

= {0}

Specializatins to convex optimization:

• fj convex and Fj = Aj a�ne

• fj and Fj convex and g nondecreasing among others



Reformulation to Liberate Underlying Separability

Expansion Lemma

g
�Pq

j=1 Fj(xj)
�
 ↵ () 9 uj 2 IRm

for j = 1, . . . , q

such that
Pq

j=1 uj = 0 and
Pq

j=1 g
�
Fj(xj) + uj

�
 ↵

Extended coupling space: now in IRn ⇥ [IRm|q

S =
�
(x1, . . . , xq, u1, . . . , uq)

�� (x1, . . . , xq) 2 S ,
Pq

j=1 uj = 0
 
,

S
?
=
�
(v1, . . . , vq, y1, . . . , yq)

�� (v1, . . . , vq) 2 S?, y1 = · · · = yq
 

Expanded problem (equivalent)

min
Pq

j=1

⇥
fj(xj)+ g(Fj(xj)+uj)

⇤
over (x1, . . . , xq, u1, . . . , uq) 2 S

�! separability achieved in the objective:

'(x1, . . . , xq, u1, . . . , uq) = '1(x1, u1) + · · ·+ 'q(xq, uq)



Linkage Problems in Terms of Subgradients

Goal: minimize some lsc function f over some subspace S
to be applied later to minimizing ' on S as above

First-order condition for local optimality

w̄ 2 S and 9 z̄ 2 @f (w̄) such that z̄ 2 S?

Regular subgradients: notation z̄ 2 b@f (w̄)

f (w) � f (w̄) + z̄·(w � w̄) + o(||w � w̄ ||)
General subgradients: notation z̄ 2 @f (w̄)

9 z⌫ ! z̄ with z⌫ 2 b@f (w⌫
), w⌫ ! w̄ , f (w⌫

)! f (w̄)

Convex case: general = regular = convex subgradients

Smooth case: general = regular = classical gradients

Linkage problem — for given f and S

find a pair (w̄ , z̄) 2 [gph @f ] \ [S ⇥ S?
]



Second-order Su�ciency via Virtual Convexity

Key observation: in terms of e = “elicitation” parameter � 0,

dS(w) = distance of w from the subspace S

minimizing f on S  ! minimizing fe = f + e
2d

2
S on S

First-order optimality is thereby una↵ected:

z̄ 2 @f (w̄) () z̄ 2 @fe(w̄) when w̄ 2 S and z̄ 2 S?

Variational second-order su�cient condition: in addition,

for e high enough, fe is variationally convex at (w̄ , z̄), meaning

9 " > 0, open convex nbhd W ⇥ Z of (w̄ , z̄), and lsc convex

h  fe on W such that gph @h coincides in W ⇥ Z with

gphTe," =
�
(w , z) 2 gph @fe

�� fe(w)  fe(w̄) + "
 

and, on that common set, furthermore h(w) = fe(w)

Strong version: the function h  fe is strongly convex



Su�ciency in the Convex and Smooth Cases

Convex example

for convex f , the variational condition is superfluous

the first-order condition already guarantees global optimality

Smooth example: f 2 C2
with gradient rf (w̄), hessian r2f (w̄)

• the first-order condition reduces to:

w̄ 2 S , and the gradient z̄ = rf (w̄) is ? S

• the second-order condition in strong form reduces to:

r2f (w̄) is positive definite relative to S

�! these are the standard su�cient conditions for a local min



Progressive Decoupling of Linkages (Rock. 2018)

for determining (w̄ , z̄) 2 [gph @f ] \ [S ⇥ S?
]

Algorithm with parameters r > e � 0, generating
�
(wk , zk)

 1
k=1

In iteration k , having wk 2 S and zk 2 S?
, get

bwk
= (local?) argminw

n
f (w)� zk · w +

r
2 ||w � wk ||2

o

Update by wk+1
= projS bwk , zk+1

= zk� (r � e)[bwk� wk+1
]

Convergence Theorem

Convex case: converges globally from any initial (w0, z0)

General case: if (w̄ , z̄) satisfies the su�cient condition at

elicitation level e, then 9 nbhd W ⇥ Z of (w̄ , z̄) such that,

if (w0, z0) 2W ⇥ Z , the generated sequence stays in W ⇥ Z
with bwk

= unique local minimizer on W , and it converges to

to some solution (ew , ez) such that ew 2 argmin of f on W \ S



Underpinnings of the Progressive Decoupling Algorithm

• exploits properties of max monotonicity of set-valued mappings

• derives from the proximal point algorithm of Rock. (1976)

• extends the partial inverse method of Spingarn (1983)

• extends the proximal point localization of Pennanen (2002)

Criterion for local max monotonicity — Rock. (2018)

The variational su�ciency condition =) the mapping

Te," having its graph =
�
(w , z) 2 gph @fe

�� fe(w)  fe(w̄) + "
 

is locally max monotone around (w̄ , z̄), and moreover is

equivalent to that when z̄ is a regular subgradient of f at w̄

=) the proximal point algorithm can operate locally

as long as the initial (w0, z0) is near enough to (w̄ , z̄)



Application to the Expanded Programming Model

minimize '(x1, . . . , xq, u1, . . . , uq) =
Pq

j=1 'j(xj , uj) over S

where 'j(xj , uj) = fj(xj) + g
�
Fj(xj) + uj

�

S =
�
(x1, . . . , xq, u1, . . . , uq)

�� (x1, . . . , xq) 2 S ,
Pq

j=1 uj = 0
 
,

S
?
=
�
(v1, . . . , vq, y1, . . . , yq)

�� (v1, . . . , vq) 2 S?, y1 = · · · = yq
 

Algorithm elements in this specialization:

wk
= (xk1 , . . . , x

k
q , u

k
1 , . . . , u

k
q ) for (x

k
1 , . . . , x

k
q ) 2 S ,

Pq
j=1 u

k
j = 0,

zk = (vk1 , . . . , v
k
q , y

k , . . . , yk) for (vk1 , . . . , v
k
q ) 2 S?

Decomposition property from liberated separability

The step in which the algorithm determines bwk
breakes down

for j = 1. . . . , q to calculating: (bxkj , bukj ) = (local?)argmin of

'k
j (xj , uj) = 'j(xj , uj)� (vkj , y

k
)·(xj , uj) + r

2 ||(xj , uj)� (xkj , u
k
j )||2



Resulting Procedure — Full Form

Algorithm (with parameters r > e � 0)

In iteration k , having (xk1 , . . . , x
k
q ) 2 S and (vk1 , . . . , v

k
q ) 2 S?

along with yk and (uk1 , . . . , u
k
q ) such that

Pq
j=1 u

k
j = 0,

determine (bxkj , bukj ) for j = 1, . . . , q as the (local?) minimizer of

fj(xj)+ g(Fj(xj)+ uj)� vkj ·xj � yk ·uj + r
2 ||xj � xkj ||2+

r
2 ||uj � ukj ||2

Then let buk =
1
q

Pq
j=1 bukj and update by

(xk+1
1 , . . . , xk+1

q ) = projS(bx
k
j , . . . , bxkj ), uk+1

j = ukj � buk

vk+1
j = vkj � (r � e)[bxkj � xk+1

j ], yk+1
= yk � (r � e)buk

Convergence: global in the convex case, and moreover local in

the nonconvex case as long as the algorithm starts near enough

to a solution where the second-order variational su�ciency

condition is satisfied at level e of the elicitation parameter



Bringing in Augmented Lagrangians

Consider auxiliary subproblems:

minimize fj(xj)+g(F k
j (xj)) in xj where F k

j (xj) = Fj(xj)+ ukj

Dualization: g is lsc convex pos.homog., so its conjugate is

g⇤
= �Y (indicator) for some closed convex set Y ⇢ IRm

Examples: g = �K for cone K yields Y = polar cone K ⇤

g = || · ||p yields Y = unit ball for dual norm || · ||q

Lagrangians: Lkj (xj , y) = fj(xj) + y ·F k
j (xj)� �Y (y)

Augmented Lagrangians (with parameter r > 0):

Lkj ,r (xj , y) = fj(xj) + y ·F k
j (xj) +

r
2 ||F

k
j (xj)||2 �

1
2r d

2
Y

�
y + rF k

j (xj)
�

= fj(xj) + minuj

�
g(Fj(xj) + uj)� y ·uj + r

2 ||uj � ukj ||2
 

Observation: this min arises in the algorithm for y = yk

�! and then bukj , the argmin, equals �ryLkj ,r (xj , yk)



Resulting Procedure with Augmented Lagrangians

Decomposition algorithm in condensed form

From (xk1 , . . . , x
k
q ) 2 S , (vk1 , . . . , v

k
q ) 2 S?

,
Pq

j=1 u
k
j = 0, yk , get

bxkj = (local) argminxj

n
Lkj ,r (xj , y

k
)� vkj ·xj +

r
2 ||xj � xkj ||2

o

and update by (xk+1
1 , . . . , xk+1

q ) = projS(bx
k
1 , . . . , bxkq ),

vk+1
j = vkj � (r � e)[bxkj � xk+1

j ], bukj = �ryLkj ,r (x
k+1
j , yk),

buk =
1
q

Pq
j=1 bukj , uk+1

j = ukj � buk , yk+1
= yk � (r � e)buk

Note: a convenient formula for the gradient is often available

Connection with the new second-order local optimality criterion

The variational su�ciency condition holds for a solution with

elements x̄j , v̄j , ūj , ȳ , with respect to an elicitation level e if

and only if there are neighborhoods Xj ⇥ Yj of (x̄j , ȳ) such that

the iterations have Lkj ,r (xj , y) convex-concave on Xj ⇥ Yj
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