Colloquium du CERMICS

ParisTech

Recent progress to the theory of stochastic/pathwise solutions

Panagiotis Souganidis (The University of Chicago)
18 mai 2018

recent progress to the theory of stochastic/pathwise solutions

Panagiotis Souganidis

The University of Chicago

CERMICS, May 2018

- plan of the talk
- stochastic/pathwise viscosity solutions (a very brief review)
- domain of dependence and speed of propagation
- homogenization
- long time behavior a false proof
- intermittent regularizing effects
- behavior as $t \rightarrow \infty$ in the convex case
- behavior as $t \rightarrow \infty \quad$ work in progress and some open problems
- some proofs
- pathwise/stochastic viscosity solutions
$d u=H(D u, u, x) \cdot d \omega+F\left(D^{2} u, D u, u, x\right) d t$
ω continuous (Brownian or, more generally, rough path)
enough to be able to solve the (ode) $\quad d X=-D_{x} H(P, X) \cdot d \omega \quad d P=D_{p} H(P, X) \cdot d \omega$
$u \in \mathbb{R} \quad F$ degenerate elliptic
F and H may depend on t
if ω depends on x it must be regular KPZ is outside the scope of the theory
many applications pathwise control, phase transitions, stochastic selection principles, ...
- motion of interfaces
an interface Γ_{t} evolves with normal velocity $V_{n}=-$ mean curvature $+a(x) \cdot d B$

$$
\Gamma_{t}=\left\{x \in \mathbb{R}^{d}: u(x, t)=0\right\}
$$

u solves the level-set pde
$d u=\operatorname{tr}\left[\left(I-\frac{D u \otimes D u}{|D u|^{2}}\right) D^{2} u\right]+a(x)|D u| \cdot d B$

- phase field theory- asymptotics of reaction diffusion equations perturbed by additive noise
$u_{t}^{\varepsilon}-\Delta u^{\varepsilon}=\frac{1}{\varepsilon} W^{\prime}\left(u^{\varepsilon}\right)$

$u^{\varepsilon} \underset{\varepsilon \rightarrow 0}{\rightarrow} \pm 1$ inside and outside a front evolving with n.v. $V_{n}=-$ mean curvature

Kawasaki and Otha conjectured that, if the depths of the wells are perturbed randomly by $\varepsilon^{1 / 2} d B$, the resulting interface will evolve by $V_{n}=-$ mean curvature $+\alpha d B$
this is not true - the perturbation is too violent to preserve the stability properties of ± 1
but
if the wells are perturbed by a "mild approximation" \dot{B}^{ε} of B, then the interface evolves by
$V_{n}=-$ mean curvature $+\alpha d B$
Almgren, Yip (convex setting), Funaki (for $d=2$), Lions and S . general problem

- phase field theory- asymptotics of reaction diffusion equations perturbed by additive noise
$u_{t}^{\varepsilon}-\Delta u^{\varepsilon}=\frac{1}{\varepsilon} W^{\prime}\left(u^{\varepsilon}\right)$

$u^{\varepsilon} \underset{\varepsilon \rightarrow 0}{\rightarrow} \pm 1$ inside and outside a front evolving with n.v. $V_{n}=-$ mean curvature
$u_{t}^{\varepsilon}-\Delta u^{\varepsilon}=\frac{1}{\varepsilon}\left(W^{\prime}\left(u^{\varepsilon}\right)+\varepsilon^{1 / 2} c\right)$
$V_{n}=-$ mean curvature $+\alpha c$

Kawasaki and Otha conjectured that, if the depths of the wells are perturbed randomly by $\varepsilon^{1 / 2} d B$, the resulting interface will evolve by $V_{n}=-$ mean curvature $+\alpha d B$
this is not true - the perturbation is too violent to preserve the stability properties of ± 1
but
if the wells are perturbed by a "mild approximation" \dot{B}^{ε} of B, then the interface evolves by
$V_{n}=-$ mean curvature $+\alpha d B$

Almgren, Yip (convex setting), Funaki (for $d=2$), Lions and S . general problem

- phase field theory- asymptotics of reaction diffusion equations perturbed by additive noise
$u_{t}^{\varepsilon}-\Delta u^{\varepsilon}=\frac{1}{\varepsilon} W^{\prime}\left(u^{\varepsilon}\right)$

$u^{\varepsilon} \underset{\varepsilon \rightarrow 0}{\rightarrow} \pm 1$ inside and outside a front evolving with n.v. $V_{n}=-$ mean curvature
$u_{t}^{\varepsilon}-\Delta u^{\varepsilon}=\frac{1}{\varepsilon}\left(W^{\prime}\left(u^{\varepsilon}\right)+\varepsilon^{1 / 2} c\right)$
$V_{n}=-$ mean curvature $+\alpha c$

Kawasaki and Otha conjectured that, if the depths of the wells are perturbed randomly by $\varepsilon^{1 / 2} d B$, the resulting interface will evolve by $V_{n}=-$ mean curvature $+\alpha d B$
this is not true - the perturbation is too violent to preserve the stability properties of ± 1
but
If the wells are perturbed by a "mild approximation" \dot{B}^{ε} of B, then the interface evolves by
$V_{n}=-$ mean curvature $+\alpha d B$
Almgren, Yip (convex setting), Funaki (for $d=2$), Lions and S. general problem

- phase field theory- asymptotics of reaction diffusion equations perturbed by additive noise
$u_{t}^{\varepsilon}-\Delta u^{\varepsilon}=\frac{1}{\varepsilon} W^{\prime}\left(u^{\varepsilon}\right)$

$u^{\varepsilon} \underset{\varepsilon \rightarrow 0}{\rightarrow} \pm 1$ inside and outside a front evolving with n.v. $V_{n}=-$ mean curvature
$u_{t}^{\varepsilon}-\Delta u^{\varepsilon}=\frac{1}{\varepsilon}\left(W^{\prime}\left(u^{\varepsilon}\right)+\varepsilon^{1 / 2} c\right)$
$V_{n}=-$ mean curvature $+\alpha c$

Kawasaki and Otha conjectured that, if the depths of the wells are perturbed randomly by $\varepsilon^{1 / 2} d B$, the resulting interface will evolve by $V_{n}=-$ mean curvature $+\alpha d B$
this is not true - the perturbation is too violent to preserve the stability properties of ± 1
but
if the wells are perturbed by a "mild approximation" \dot{B}^{ε} of B, then the interface evolves by $V_{n}=-$ mean curvature $+\alpha d B$

Almgren, Yip (convex setting), Funaki (for $d=2$), Lions and S. general problem

- a stochastic selection principle work with A. Yip
" unstable configurations"

is there a stochastic mechanism that selects at the limit a unique interface?
$V_{n}=-$ mean curvature $+\varepsilon d B$
converges a.s. to the maximal solution of the motion without the noise

- a stochastic selection principle work with A. Yip
" unstable configurations"

$\xrightarrow{\longrightarrow}$

is there a stochastic mechanism that selects at the limit a unique interface?
$V_{n}=-$ mean curvature $+\varepsilon d B$
converges a.s. to the maximal solution of the motion without the noise

- pathwise stochastic control theory
B_{1}, B_{2} independent Bm with filtrations $\left(\mathcal{F}_{t}^{B_{1}}\right)_{t \geq 0},\left(\mathcal{F}_{t}^{B_{2}}\right)_{t \geq 0}$
\mathcal{A} the set of admissible $\left(\mathcal{F}_{t}^{B_{1}}-\right.$ progressively measurable controls) controls $\left(\pi_{t}\right)_{t \geq 0}$ with values in A
dynamics $\left\{\begin{array}{l}d X_{t}=b\left(X_{t}, \pi_{t}\right) d t+\sqrt{2} \sigma_{1}\left(X_{t}, \pi_{t}\right) d B_{1, t}+\sigma_{2}\left(X_{t}, \pi_{t}\right) \circ d B_{2, t} \quad(0 \leq s \leq T) \\ X_{s}=x\end{array}\right.$
payoff $\quad J(x, s ; \pi)=E_{x, s}\left[H\left(X_{T}\right) \mid \mathcal{F}_{T}^{B_{2}}\right]$
value function $u(x, s)=\operatorname{essinf}_{\pi \in \mathcal{A}} J(x, s ; \pi)$
pathwise Bellman equation

$$
\left\{\begin{array}{l}
d u+\inf _{\pi \in A}\left[\operatorname{tr}\left(\left(\sigma_{1} \sigma_{1}{ }^{\star}\right)(x, \pi) D^{2} u\right)+b(x, \pi) \cdot D u\right]+\sigma_{2}(x) D u \circ d B_{2}=0 \\
u(\cdot, T)=H
\end{array}\right.
$$

classical stochastic control problem
payoff $\bar{J}(x, s ; \pi)=E_{X, s}\left[H\left(X_{T}\right)\right.$
value function $\bar{\pi}(x, s)=\operatorname{cossinf}_{\pi \in \mathcal{A}^{J}(x, s ; \pi)}$
Bellman equation
$\left\{\begin{array}{l}\left.\bar{u}_{i}+\inf _{\pi \in A}\left[\Gamma_{i-i}\left(\sigma_{1} \sigma_{1}^{*}(x, \pi)+\sigma_{2} \sigma_{2}^{*}(x)\right] D^{2} \bar{u}\right]+\cdots+b(x, \pi) \cdot D \bar{u}\right]=0 \\ u(\cdot, T)=H\end{array}\right.$

- pathwise stochastic control theory
B_{1}, B_{2} independent Bm with filtrations $\left(\mathcal{F}_{t}^{B_{1}}\right)_{t \geq 0},\left(\mathcal{F}_{t}^{B_{2}}\right)_{t \geq 0}$
\mathcal{A} the set of admissible $\left(\mathcal{F}_{t}^{B_{1}}-\right.$ progressively measurable controls) controls $\left(\pi_{t}\right)_{t \geq 0}$ with values in A
dynamics $\left\{\begin{array}{l}d X_{t}=b\left(X_{t}, \pi_{t}\right) d t+\sqrt{2} \sigma_{1}\left(X_{t}, \pi_{t}\right) d B_{1, t}+\sigma_{2}\left(X_{t}, \pi_{t}\right) \circ d B_{2, t} \quad(0 \leq s \leq T) \\ X_{s}=x\end{array}\right.$
payoff $J(x, s ; \pi)=E_{x, s}\left[H\left(X_{T}\right) \mid \mathcal{F}_{T}^{B_{2}}\right]$
value function $u(x, s)=\operatorname{essinf}_{\pi \in \mathcal{A}} J(x, s ; \pi)$
pathwise Bellman equation

$$
\left\{\begin{array}{l}
d u+\inf _{\pi \in A}\left[\operatorname{tr}\left(\left(\sigma_{1} \sigma_{1}^{\star}\right)(x, \pi) D^{2} u\right)+b(x, \pi) \cdot D u\right]+\sigma_{2}(x) D u \circ d B_{2}=0 \\
u(\cdot, T)=H
\end{array}\right.
$$

classical stochastic control problem
payoff $\bar{J}(x, s ; \pi)=E_{x, s}\left[H\left(X_{T}\right)\right.$
value function $\bar{u}(x, s)=\operatorname{essinf}_{\pi \in \mathcal{A}} \bar{J}(x, s ; \pi)$
Bellman equation
$\left\{\begin{array}{l}\bar{u}_{t}+\inf _{\pi \in A}\left[\operatorname{tr}\left(\left[\sigma_{1} \sigma_{1}{ }^{\star}(x, \pi)+\sigma_{2} \sigma_{2}{ }^{\star}(x)\right] D^{2} \bar{u}\right]+\cdots+b(x, \pi) \cdot D \bar{u}\right]=0 \\ u(\cdot, T)=H\end{array}\right.$

- review of pathwise viscosity solutions

$$
d u=H(D u) \cdot d \omega \quad u(\cdot, 0)=u_{0}
$$

- "deterministic viscosity solutions" $\omega \in \mathrm{BV} \Rightarrow \exists$! solution $u \in C_{x, t}$ and comparison
$\left\|(u-v)_{ \pm}(\cdot, t)\right\| \leq\left\|\left(u_{0}-v_{0}\right)_{ \pm}\right\| \quad\|D u(\cdot, t)\| \leq\left\|D u_{0}\right\|$
in general shocks (discontinuities of $D u$) appear in finite time
- review of pathwise viscosity solutions
$d u=H(D u) \cdot d \omega \quad u(\cdot, 0)=u_{0}$
- "deterministic viscosity solutions" $\omega \in \mathrm{BV} \Rightarrow \exists$! solution $u \in C_{x, t}$ and comparison

$$
\left\|(u-v)_{ \pm}(\cdot, t)\right\| \leq\left\|\left(u_{0}-v_{0}\right)_{ \pm}\right\| \quad\|D u(\cdot, t)\| \leq\left\|D u_{0}\right\|
$$

in general shocks (discontinuities of $D u$) appear in finite time
is it possible to extend by density to $\omega \in C$? (Itô vs Stratonovich when ω is B motion)

- $d u=u_{x} d B \quad$ ill posed

$$
\begin{aligned}
d u(x-B(t), t) & =\left(\frac{1}{2} u_{x x}(x-B(t), t)-u_{x x}(x-B(t), t)\right) d t \\
& =-\frac{1}{2} u_{x x}(x-B(t), t) d t
\end{aligned}
$$

- $H(p)=|p| \quad u_{0}(x)=|x|$ density in $\omega \Rightarrow$

$$
\left.u(x, t)=\max \left[(|x|+\omega(t))_{+}, \omega(t)-\min _{0 \leq s \leq t} \omega(s)\right)\right]
$$

"THEOREM" If H is the difference of two convex functions, then \exists ! solution with the same properties as in the classical case

- solutions are continuous in H and ω
- solutions to problems with regularized H and ω converge to the same limit
if $u_{\varepsilon, t}=H_{\varepsilon}\left(D u_{\varepsilon}\right) \dot{\omega}_{\varepsilon}$ with $H_{\varepsilon}, \omega_{\varepsilon}$ smooth approximations to H and ω, then $\left\|u_{\varepsilon}-u\right\| \underset{\varepsilon \rightarrow 0}{\rightarrow} 0$
- $\|u(\cdot, t)\|$ and $\operatorname{osc} u(\cdot, t)$ decrease in t
the contraction property
- $H(0)=0 \Rightarrow \max u(\cdot, t)$ and $\min u(\cdot, t)$ decrease in t formally $d[\max u(\cdot, t)] \leq 0$ and $d[\max u(\cdot, t)] \geq 0$
- domain of dependence and finite speed of propagation joint work with Gassiat and Gess
is there a domain of dependence for $\quad d u=H(D u, x) \cdot d \omega$?
$u_{1}(\cdot, 0)=u_{2}(\cdot, 0)$ in $B\left(0, R_{0}\right) \quad \Rightarrow \quad u_{1}(\cdot, t)=u_{2}(\cdot, t)$ in $B(0, R(t))$?
- a partial result
$H(p, x)=H_{1}(p)-H_{2}(p) \quad H_{1}, H_{2}$ convex
$u(\cdot, 0) \equiv A$ in $B(0, R) \quad \Rightarrow \quad u(\cdot, t) \equiv A$ in $B(0, R(t))$ $R(t):=R-L\left(\max _{s \in[0, T]} \omega(s)-\min _{s \in[0, T]} \omega(s)\right)$
- a negative result Gassiat $d u=\left(\left|u_{x}\right|-\left|u_{y}\right|\right) \cdot d \omega \quad u(x, y, 0)=|x-y|+\Theta(x, y) \quad \Theta \geq 1$ if $x, y \geq R$ $u(0,0, T) \geq 0 \quad$ if $\quad\|\omega\|_{\mathrm{TV}_{[0, T]}}>R$
- domain of dependence and finite speed of propagation joint work with Gassiat and Gess
is there a domain of dependence for $\quad d u=H(D u, x) \cdot d \omega$?
$u_{1}(\cdot, 0)=u_{2}(\cdot, 0)$ in $B\left(0, R_{0}\right) \quad \Rightarrow \quad u_{1}(\cdot, t)=u_{2}(\cdot, t)$ in $B(0, R(t)) ?$
- a partial result

$$
\begin{aligned}
& H(p, x)=H_{1}(p)-H_{2}(p) \quad \\
& H_{1}, H_{2} \text { convex } \\
& u(\cdot, 0) \equiv A \text { in } B(0, R) \Rightarrow \quad u(\cdot, t) \equiv A \text { in } B(0, R(t)) \\
& R(t):=R-L\left(\max _{s \in[0, T]} \omega(s)-\min _{s \in[0, T]} \omega(s)\right)
\end{aligned}
$$

- a negative result
- domain of dependence and finite speed of propagation joint work with Gassiat and Gess
is there a domain of dependence for $\quad d u=H(D u, x) \cdot d \omega$?
$u_{1}(\cdot, 0)=u_{2}(\cdot, 0)$ in $B\left(0, R_{0}\right) \quad \Rightarrow \quad u_{1}(\cdot, t)=u_{2}(\cdot, t)$ in $B(0, R(t))$?
- a partial result

$$
\begin{aligned}
& H(p, x)=H_{1}(p)-H_{2}(p) \quad H_{1}, H_{2} \text { convex } \\
& u(\cdot, 0) \equiv A \text { in } B(0, R) \quad \Rightarrow \quad u(\cdot, t) \equiv A \text { in } B(0, R(t))
\end{aligned}
$$

$$
R(t):=R-L\left(\max _{s \in[0, T]} \omega(s)-\min _{s \in[0, T]} \omega(s)\right)
$$

- a negative result

Gassiat

$$
\begin{aligned}
& d u=\left(\left|u_{x}\right|-\left|u_{y}\right|\right) \cdot d \omega \quad u(x, y, 0)=|x-y|+\Theta(x, y) \quad \Theta \geq 1 \text { if } x, y \geq R \\
& u(0,0, T) \geq 0 \quad \text { if } \quad\|\omega\|_{\mathrm{TV}_{[0, T]}}>R
\end{aligned}
$$

- finite speed of propagation

$$
\begin{aligned}
& d u=H(D u, x) \cdot d \omega \quad H \text { convex in } p \quad \omega \in C_{0}([0, T]) \\
& \rho_{H}(\xi, T):=\sup \left\{R \geq 0: u^{1}(\cdot, 0)=u^{2}(\cdot, 0) \text { in } B_{R}(0) \text { and } u^{1}(0, T) \neq u^{2}(0, T)\right\}
\end{aligned}
$$

skeleton $R_{0, T}(\omega)$

positive results

- $\rho_{H, T}(\omega) \leq L\left\|R_{0, T}(\omega)\right\|_{T V([0, T])}$
- B Brownian motion $\Rightarrow\left\|R_{0, T}(B)\right\|_{T V([0, T])}<\infty$ a.s.
$\Rightarrow H(p)=|p| \Rightarrow \rho_{H}(\xi, T) \geq\left\|R_{0, T}(\xi)\right\|_{T V([0, T])}$
- finite speed of propagation

$$
\begin{aligned}
& d u=H(D u, x) \cdot d \omega \quad H \text { convex in } p \quad \omega \in C_{0}([0, T]) \\
& \rho_{H}(\xi, T):=\sup \left\{R \geq 0: u^{1}(\cdot, 0)=u^{2}(\cdot, 0) \text { in } B_{R}(0) \text { and } u^{1}(0, T) \neq u^{2}(0, T)\right\}
\end{aligned}
$$

skeleton $R_{0, T}(\omega)$

- positive results
- $\rho_{H, T}(\omega) \leq L\left\|R_{0, T}(\omega)\right\|_{T V([0, T])}$
- B Brownian motion $\Rightarrow\left\|R_{0, T}(B)\right\|_{T V([0, T])}<\infty$ a.s.
- $H(p)=|p| \Rightarrow \rho_{H}(\xi, T) \geq\left\|R_{0, T}(\xi)\right\|_{T V([0, T])}$
- finite speed of propagation

$$
\begin{aligned}
& d u=H(D u, x) \cdot d \omega \quad H \text { convex in } p \quad \omega \in C_{0}([0, T]) \\
& \rho_{H}(\xi, T):=\sup \left\{R \geq 0: u^{1}(\cdot, 0)=u^{2}(\cdot, 0) \text { in } B_{R}(0) \text { and } u^{1}(0, T) \neq u^{2}(0, T)\right\}
\end{aligned}
$$

skeleton $R_{0, T}(\omega)$

- positive results
- $\rho_{H, T}(\omega) \leq L\left\|R_{0, T}(\omega)\right\|_{T V([0, T])}$
- B Brownian motion $\Rightarrow\left\|R_{0, T}(B)\right\|_{T V([0, T])}<\infty$ a.s.
- $H(p)=|p| \Rightarrow \rho_{H}(\xi, T) \geq\left\|R_{0, T}(\xi)\right\|_{T V([0, T])}$
- finite speed of propagation

$$
\begin{aligned}
& d u=H(D u, x) \cdot d \omega \quad H \text { convex in } p \quad \omega \in C_{0}([0, T]) \\
& \rho_{H}(\xi, T):=\sup \left\{R \geq 0: u^{1}(\cdot, 0)=u^{2}(\cdot, 0) \text { in } B_{R}(0) \text { and } u^{1}(0, T) \neq u^{2}(0, T)\right\}
\end{aligned}
$$

skeleton $R_{0, T}(\omega)$

- positive results
- $\rho_{H, T}(\omega) \leq L\left\|R_{0, T}(\omega)\right\|_{T V([0, T])}$
- B Brownian motion $\Rightarrow\left\|R_{0, T}(B)\right\|_{T V([0, T])}<\infty$ a.s.
- $H(p)=|p| \Rightarrow \rho_{H}(\xi, T) \geq\left\|R_{0, T}(\xi)\right\|_{T V([0, T])}$
- homogenization
- $u_{t}^{\varepsilon}=H\left(D u^{\varepsilon}, \frac{x}{\varepsilon}\right) \dot{B}^{\varepsilon} \quad H$ convex coercive periodic $\quad B^{\varepsilon} \rightarrow B$ in distribution
there exists \bar{H} convex st $\left\{\begin{array}{l}u^{\varepsilon} \rightarrow \bar{u} \\ d \bar{u}=\bar{H}(D \bar{u}) \circ d B\end{array}\right.$
- $u_{t}+H(D u, x)=f(x) \dot{\omega} \quad \omega$ piecewise constant with slope ± 1 $u^{\varepsilon}=u^{x}\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right) \quad \omega^{\varepsilon}(t)=\varepsilon^{1 / 2} \omega\left(\frac{t}{\varepsilon}\right) \rightarrow B$ Brownian motion $u_{t}^{\varepsilon}+H\left(D u^{\varepsilon}, \frac{x}{\varepsilon}\right)=\varepsilon^{1 / 2} f\left(\frac{x}{\varepsilon}\right) \dot{\omega}^{\varepsilon}$
there exists \bar{H} st $\left\{\begin{array}{l}u^{\varepsilon} \rightarrow \bar{\pi} \\ \bar{u}_{t}+\bar{H}(D \bar{u})=0\end{array}\right.$ BUT
\bar{H} does not come from the periodic homogenization $\varepsilon^{1 / 2} \omega\left(\frac{t}{\varepsilon}\right)$ creates a stationary ergodic environment $u_{t}^{\varepsilon}+\left|D u^{\varepsilon}\right|=\varepsilon^{1 / 2} f\left(\frac{x}{\varepsilon}\right) \dot{\omega}^{\varepsilon}$
$\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(x, t)=\bar{c} t$
$\bar{c}:=\lim _{T \rightarrow \infty} \frac{1}{T} \inf \left\{\int_{0}^{T} f(Y(s)) \dot{B}(s):|\dot{Y}| \leq 1\right\}$
- homogenization
- $u_{t}^{\varepsilon}=H\left(D u^{\varepsilon}, \frac{x}{\varepsilon}\right) \dot{B}^{\varepsilon} \quad H$ convex coercive periodic $\quad B^{\varepsilon} \rightarrow B$ in distribution
there exists \bar{H} convex st $\left\{\begin{array}{l}u^{\varepsilon} \rightarrow \bar{u} \\ d \bar{u}=\bar{H}(D \bar{u}) \circ d B\end{array}\right.$
- $u_{t}+H(D u, x)=f(x) \dot{\omega} \quad \omega$ piecewise constant with slope ± 1
$u^{\varepsilon}=u^{\prime}\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right) \quad \omega^{=}(t)=\varepsilon^{1 / 2} \omega\left(\frac{t}{\varepsilon}\right) \rightarrow B$ Brownian motion
$u_{t}^{\varepsilon}+H\left(D u^{\varepsilon}, \frac{x}{\varepsilon}\right)=\varepsilon^{1 / 2} f\left(\frac{x}{\varepsilon}\right) \dot{\omega}^{\varepsilon}$
there exists \bar{H} st $\left\{\begin{array}{l}u^{\varepsilon} \rightarrow \bar{u} \\ \bar{u}_{t}+\bar{H}(D \bar{u})=0\end{array}\right.$ BUT
\bar{H} does not come from the periodic homogenization
$\varepsilon^{1 / 2} \omega\left(\frac{t}{\varepsilon}\right)$ creates a stationary ergodic environment
$u_{t}^{\varepsilon}+\left|D u^{\varepsilon}\right|=\varepsilon^{1 / 2} f\left(\frac{x}{\varepsilon}\right) \dot{\omega}^{\varepsilon}$
$\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(x, t)=\bar{c} t$
$\bar{c}:=\lim _{T \rightarrow \infty} \frac{1}{T} \inf \left\{\int_{0}^{T} f(Y(s)) \dot{B}(s):|\dot{Y}| \leq 1\right\}$
- homogenization
- $u_{t}^{\varepsilon}=H\left(D u^{\varepsilon}, \frac{x}{\varepsilon}\right) \dot{B}^{\varepsilon} \quad H$ convex coercive periodic $\quad B^{\varepsilon} \rightarrow B$ in distribution
there exists \bar{H} convex st $\left\{\begin{array}{l}u^{\varepsilon} \rightarrow \bar{u} \\ d \bar{u}=\bar{H}(D \bar{u}) \circ d B\end{array}\right.$
- $u_{t}+H(D u, x)=f(x) \dot{\omega} \quad \omega$ piecewise constant with slope ± 1
$u^{\varepsilon}=u\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right) \quad \omega^{\varepsilon}(t)=\varepsilon^{1 / 2} \omega\left(\frac{t}{\varepsilon}\right) \rightarrow B \quad$ Brownian motion $u_{t}^{\varepsilon}+H\left(D u^{\varepsilon}, \frac{x}{\varepsilon}\right)=\varepsilon^{1 / 2} f\left(\frac{x}{\varepsilon}\right) \dot{\omega}^{\varepsilon}$
there exists \bar{H} st $\left\{\begin{array}{l}u^{\varepsilon} \rightarrow \bar{u} \\ \bar{u}_{t}+\bar{H}(D \bar{u})=0\end{array}\right.$
\bar{H} does not come from the periodic homogenization
$\varepsilon^{1 / 2} \omega\left(\frac{t}{\varepsilon}\right)$ creates a stationary ergodic environment
- homogenization
- $u_{t}^{\varepsilon}=H\left(D u^{\varepsilon}, \frac{x}{\varepsilon}\right) \dot{B}^{\varepsilon} \quad H$ convex coercive periodic $\quad B^{\varepsilon} \rightarrow B$ in distribution
there exists \bar{H} convex st $\left\{\begin{array}{l}u^{\varepsilon} \rightarrow \bar{u} \\ d \bar{u}=\bar{H}(D \bar{u}) \circ d B\end{array}\right.$
- $u_{t}+H(D u, x)=f(x) \dot{\omega} \quad \omega$ piecewise constant with slope ± 1
$u^{\varepsilon}=u\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right) \quad \omega^{\varepsilon}(t)=\varepsilon^{1 / 2} \omega\left(\frac{t}{\varepsilon}\right) \rightarrow B \quad$ Brownian motion
$u_{t}^{\varepsilon}+H\left(D u^{\varepsilon}, \frac{x}{\varepsilon}\right)=\varepsilon^{1 / 2} f\left(\frac{x}{\varepsilon}\right) \dot{\omega}^{\varepsilon}$
there exists \bar{H} st $\left\{\begin{array}{l}u^{\varepsilon} \rightarrow \bar{u} \\ \bar{u}_{t}+\bar{H}(D \bar{u})=0\end{array} \quad\right.$ BUT
\bar{H} does not come from the periodic homogenization $\varepsilon^{1 / 2} \omega\left(\frac{t}{\varepsilon}\right)$ creates a stationary ergodic environment
- homogenization
- $u_{t}^{\varepsilon}=H\left(D u^{\varepsilon}, \frac{x}{\varepsilon}\right) \dot{B}^{\varepsilon} \quad H$ convex coercive periodic $\quad B^{\varepsilon} \rightarrow B$ in distribution
there exists \bar{H} convex st $\left\{\begin{array}{l}u^{\varepsilon} \rightarrow \bar{u} \\ d \bar{u}=\bar{H}(D \bar{u}) \circ d B\end{array}\right.$
- $u_{t}+H(D u, x)=f(x) \dot{\omega} \quad \omega$ piecewise constant with slope ± 1
$u^{\varepsilon}=u\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right) \quad \omega^{\varepsilon}(t)=\varepsilon^{1 / 2} \omega\left(\frac{t}{\varepsilon}\right) \rightarrow B \quad$ Brownian motion
$u_{t}^{\varepsilon}+H\left(D u^{\varepsilon}, \frac{x}{\varepsilon}\right)=\varepsilon^{1 / 2} f\left(\frac{x}{\varepsilon}\right) \dot{\omega}^{\varepsilon}$
there exists \bar{H} st $\left\{\begin{array}{l}u^{\varepsilon} \rightarrow \bar{u} \\ \bar{u}_{t}+\bar{H}(D \bar{u})=0\end{array} \quad\right.$ BUT
\bar{H} does not come from the periodic homogenization
$\varepsilon^{1 / 2} \omega\left(\frac{t}{\varepsilon}\right)$ creates a stationary ergodic environment
- $u_{t}^{\varepsilon}+\left|D u^{\varepsilon}\right|=\varepsilon^{1 / 2} f\left(\frac{x}{\varepsilon}\right) \dot{\omega}^{\varepsilon}$
- $u_{t}^{\varepsilon}=H\left(D u^{\varepsilon}, \frac{x}{\varepsilon}\right) \dot{B}^{\varepsilon} \quad H$ convex coercive periodic $\quad B^{\varepsilon} \rightarrow B$ in distribution
there exists \bar{H} convex st $\left\{\begin{array}{l}u^{\varepsilon} \rightarrow \bar{u} \\ d \bar{u}=\bar{H}(D \bar{u}) \circ d B\end{array}\right.$
- $u_{t}+H(D u, x)=f(x) \dot{\omega} \quad \omega$ piecewise constant with slope ± 1
$u^{\varepsilon}=u\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right) \quad \omega^{\varepsilon}(t)=\varepsilon^{1 / 2} \omega\left(\frac{t}{\varepsilon}\right) \rightarrow B \quad$ Brownian motion
$u_{t}^{\varepsilon}+H\left(D u^{\varepsilon}, \frac{x}{\varepsilon}\right)=\varepsilon^{1 / 2} f\left(\frac{x}{\varepsilon}\right) \dot{\omega}^{\varepsilon}$
there exists \bar{H} st $\left\{\begin{array}{l}u^{\varepsilon} \rightarrow \bar{u} \\ \bar{u}_{t}+\bar{H}(D \bar{u})=0\end{array} \quad\right.$ BUT
\bar{H} does not come from the periodic homogenization $\varepsilon^{1 / 2} \omega\left(\frac{t}{\varepsilon}\right)$ creates a stationary ergodic environment
$-u_{t}^{\varepsilon}+\left|D u^{\varepsilon}\right|=\varepsilon^{1 / 2} f\left(\frac{x}{\varepsilon}\right) \dot{\omega}^{\varepsilon}$

$$
\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(x, t)=\bar{c} t \quad \bar{c}:=\lim _{T \rightarrow \infty} \frac{1}{T} \inf \left\{\int_{0}^{T} f(Y(s)) \dot{B}(s):|\dot{Y}| \leq 1\right\}
$$

- long time behavior

$$
d u=H(D u) \cdot d \omega \quad u(\cdot, 0)=u_{0} \quad\left\{\begin{array}{l}
H \text { continuous, } u_{0} \text { continuous and "periodic" in } x \\
\omega \text { continuous and } \omega(0)=0 \\
H(0)=0 \quad \Rightarrow \text { constants are solutions }
\end{array}\right.
$$

$$
u(\cdot, t) \underset{t \rightarrow \infty}{\rightarrow} u^{\infty} \text { with } u^{\infty} \text { constant in } x \text { and depending only on } u_{0} \text { and } \omega \text { ? }
$$

- $H(p)=v \cdot p \quad v \in \mathbb{R}^{d}$

$$
u(x, t)=u_{0}(x+v \omega(t)) \nRightarrow \text { constant }
$$

- $H(p)=|p|^{2} \quad \dot{\omega}(t) \geq 0$ and $\omega(t) \underset{t \rightarrow \infty}{\rightarrow} \infty$

$$
u(x, t)=\inf _{y}\left[u_{0}(y)+\frac{1}{4 \omega(t)}|x-y|^{2}\right] \rightarrow \inf u_{0}
$$

"nonlinearity" and monotonicity of $\omega \Rightarrow$ limit
what hannens if ω oscillates?

- long time behavior
$d u=H(D u) \cdot d \omega \quad u(\cdot, 0)=u_{0} \quad\left\{\begin{array}{l}H \text { continuous, } u_{0} \text { continuous and "periodic" in } x \\ \omega \text { continuous and } \omega(0)=0 \\ H(0)=0 \Rightarrow \text { constants are solutions }\end{array}\right.$
$u(\cdot, t) \underset{t \rightarrow \infty}{\rightarrow} u^{\infty}$ with u^{∞} constant in x and depending only on u_{0} and ω ?
- $H(p)=v \cdot p \quad v \in \mathbb{R}^{d}$

$$
u(x, t)=u_{0}(x+v \omega(t)) \nrightarrow \text { constant }
$$

- $H(p)=|p|^{2} \quad \dot{\omega}(t) \geq 0$ and $\omega(t) \underset{t \rightarrow \infty}{\rightarrow} \infty$

$$
u(x, t)=\inf _{y}\left[u_{0}(y)+\frac{1}{4 \omega(t)}|x-y|^{2}\right] \rightarrow \inf u_{0}
$$

"nonlinearity" and monotonicity of $\omega \Rightarrow$ limit

- long time behavior
$d u=H(D u) \cdot d \omega \quad u(\cdot, 0)=u_{0} \quad\left\{\begin{array}{l}H \text { continuous, } u_{0} \text { continuous and "periodic" in } x \\ \omega \text { continuous and } \omega(0)=0 \\ H(0)=0 \Rightarrow \text { constants are solutions }\end{array}\right.$
$u(\cdot, t) \underset{t \rightarrow \infty}{\rightarrow} u^{\infty}$ with u^{∞} constant in x and depending only on u_{0} and ω ?
- $H(p)=v \cdot p \quad v \in \mathbb{R}^{d}$

$$
u(x, t)=u_{0}(x+v \omega(t)) \nrightarrow \text { constant }
$$

- $H(p)=|p|^{2} \quad \dot{\omega}(t) \geq 0$ and $\omega(t) \underset{t \rightarrow \infty}{\rightarrow} \infty$

$$
u(x, t)=\inf _{y}\left[u_{0}(y)+\frac{1}{4 \omega(t)}|x-y|^{2}\right] \rightarrow \inf u_{0}
$$

"nonlinearity" and monotonicity of $\omega \Rightarrow$ limit
what happens if ω oscillates?

- $t \rightarrow \infty$ a false proof!
$d=1 \quad \omega=$ Brownian motion $\quad u_{0}$ periodic
$d u=H\left(u_{x}\right) \underset{(S)}{\circ} d B=H\left(u_{x}\right) \underset{(I)}{._{1}} d B+\frac{1}{2} H^{\prime}\left(u_{x}\right)^{2} u_{x x} d t$
$d\left(\int_{0}^{1} u d x\right)=\left(\int_{0}^{1} H\left(u_{x}\right) d x\right) d B \quad \int_{0}^{1} \phi\left(u_{x}\right) u_{x x}=0$
$M_{t}=\int_{0}^{1} u(x, t) d x$ is a bounded martingale \Rightarrow

$$
M_{t} \underset{t \rightarrow \infty}{\rightarrow} M_{\infty} \text { and } \int_{0}^{\infty}\left(\int_{0}^{1} H\left(u_{x}\right) d x\right)^{2} d t<\infty \text { a.s. }
$$

if $H(z)>0$ for $z \neq 0$, then $u(x, t, \omega) \underset{t \rightarrow \infty}{\rightarrow} M_{\infty}$ a.s.
argument incorrect due to shocks!
what if H is more regular, for example, convex?

- $t \rightarrow \infty \quad$ a false proof!
$d=1 \quad \omega=$ Brownian motion $\quad u_{0}$ periodic
$d u=H\left(u_{x}\right) \underset{(S)}{\circ} d B=H\left(u_{x}\right) \underset{(I)}{.} d B+\frac{1}{2} H^{\prime}\left(u_{x}\right)^{2} u_{x x} d t$
$d\left(\int_{0}^{1} u d x\right)=\left(\int_{0}^{1} H\left(u_{x}\right) d x\right) d B \quad \int_{0}^{1} \phi\left(u_{x}\right) u_{x x}=0$
$M_{t}=\int_{0}^{1} u(x, t) d x$ is a bounded martingale \Rightarrow

$$
M_{t} \underset{t \rightarrow \infty}{\rightarrow} M_{\infty} \text { and } \int_{0}^{\infty}\left(\int_{0}^{1} H\left(u_{x}\right) d x\right)^{2} d t<\infty \text { a.s. }
$$

if $H(z)>0$ for $z \neq 0$, then $u(x, t, \omega) \underset{t \rightarrow \infty}{\rightarrow} M_{\infty}$ a.s.
argument incorrect due to shocks!
what if H is more regular, for example, convex?

- intermittent regularity

Theorem: for H convex and all continuous ω,

$$
-\frac{c I_{d}}{\omega(t)-\min _{0 \leq s \leq t} \omega(s)} \leq\left(D^{2} H\right)^{1 / 2}(D u) \cdot D^{2} u \cdot\left(D^{2} H\right)^{1 / 2}(D u) \leq \frac{c I_{d}}{\max _{0 \leq s \leq t} \omega(s)-\omega(t)}
$$

- $\left|\left(D^{2} H\right)^{1 / 2}(D u) \cdot D^{2} u \cdot\left(D^{2} H\right)^{1 / 2}(D u)\right| \leq c \max \left(\frac{1}{\max _{0 \leq s \leq t} \omega(s)-\omega(t)}, \frac{1}{\omega(t)-\min _{0 \leq s \leq t} \omega(s)}\right)$
- Gassiat and Gess studied the case $H(p)=|p|^{2}$ using the explicit Lax-Oleinik formula
- the result as one sided bound is new even in the classical case (ω monotone)
- $D^{2} H>0$ and $\min _{0 \leq s \leq t} \omega(s)<\omega(t)<\max _{0 \leq s \leq t} \omega(s) \Rightarrow u(\cdot, t) \in C^{1,1}\left(\mathbb{R}^{d}\right)$
- the long time behavior in the convex case
H convex $\quad H(0)=0 \quad D H(p) \cdot p>0 \quad p \neq 0$

Theorem: for all ω st $\exists t_{n} \rightarrow \infty$ such that
either $\omega\left(t_{n}\right)-\min _{0 \leq s \leq t_{n}} \omega(s) \underset{n}{\rightarrow} \infty$ or $\max _{0 \leq s \leq t_{n}} \omega(s)-\omega\left(t_{n}\right) \underset{n}{\rightarrow} \infty$ $u(\cdot, t) \underset{t \rightarrow \infty}{\rightarrow} u_{\infty}$

- true for Brownian motion
- what is the law of u_{∞} ? nontrivial - only partial results available

idea of proof:

\square
$0=\int_{Q} \operatorname{tr}\left[D^{2} H(D v) D^{2} v\right] d x \leq 0 \Rightarrow \operatorname{div} D H(D v)=D^{2} H(D v) D^{2} v=0$

- the long time behavior in the convex case
H convex $\quad H(0)=0 \quad D H(p) \cdot p>0 \quad p \neq 0$

Theorem: for all ω st $\exists t_{n} \rightarrow \infty$ such that
either $\omega\left(t_{n}\right)-\min _{0 \leq s \leq t_{n}} \omega(s) \underset{n}{\rightarrow} \infty$ or $\max _{0 \leq s \leq t_{n}} \omega(s)-\omega\left(t_{n}\right) \rightarrow \infty$

$$
u(\cdot, t) \underset{t \rightarrow \infty}{\rightarrow} u_{\infty}
$$

- true for Brownian motion
- what is the law of u_{∞} ? nontrivial - only partial results available
idea of proof:
$\left(D^{2} H\right)^{1 / 2}(D v) \cdot D^{2} v \cdot\left(D^{2} H\right)^{1 / 2}(D v) \leq 0 \Rightarrow \operatorname{div} D H(D v)=\operatorname{tr} D^{2} H(D v) D^{2} v \leq 0 \underset{\text { periodicity }}{\Rightarrow}$
$0=\int_{Q} \operatorname{tr}\left[D^{2} H(D v) D^{2} v\right] d x \leq 0 \Rightarrow \operatorname{div} D H(D v)=D^{2} H(D v) D^{2} v=0$
multiply by v and integrate over $Q \quad \int_{Q} D H(D v) \cdot D v=0 \underset{\text { assumption on } H}{\Rightarrow} D v=0$
- asymptotic behavior $(t \rightarrow \infty)$ work in progress and open problems
- H not convex or concave? x-dependent problems?
- $d u=\Sigma_{i=1}^{K} H_{i}\left(D u_{i}\right) \cdot \dot{\omega}_{i} \quad \omega_{i} \quad$ "independent"

$$
\begin{array}{lc}
\dot{\omega}_{2}=-\dot{\omega}_{1}=\dot{\omega} & d u=\left(H_{1}-H_{2}\right)(D u) \dot{\omega} \\
H_{1}=H_{2}=H & \dot{\omega}=\dot{\omega}_{1}+\dot{\omega}_{2} \quad d u=H(D u)\left(\omega_{1}+\omega_{2}\right)
\end{array}
$$

- systematic approach to ergodicity (Lions course 2015) when ω Brownian
$\Rightarrow\left\{\begin{array}{l}d u=H(D u) \circ d B \\ \max _{x} u(x, t, \omega) \text { independent of } t \text { a.s } \Rightarrow u \equiv c(\omega) ? ? \\ \min _{x} u(x, t, \omega) \text { independent of } t \text { a.s }\end{array}\right.$
- the proof of the estimate
- divide $(0, \infty)$ into intervals where $\dot{\omega}$ is either positive or negative
- in each such interval $u(x, t)=v(x, \omega(t))$ where v solves a $v_{t}= \pm H(D v)$
- enough to propagate an (appropriate) upper and lower bound for v on each such interval
- result follows by iteration
- important step is to establish an actual decay on each interval
- sketch of the proof in a special case

$$
\begin{aligned}
& u_{t}=|D u|^{2} \text { in } \mathbb{R}^{d} \times(0, \infty) \quad u(\cdot, 0)=u_{0} \quad u(x, t)=\sup _{y \in \mathbb{R}^{d}}\left[u_{0}(y)-\frac{|x-y|^{2}}{4 t}\right] \\
& "\left(D^{2} u\right)_{t}=2 D u D\left(D^{2} u\right)+2\left|D^{2} u\right|^{2} ", \quad u_{x x, t}=2 u_{x} u_{x x x}+2\left(u_{x x}\right)^{2}
\end{aligned}
$$

- equation preserves concavity $\quad D^{2} u_{0} \leq 0 \Rightarrow D^{2} u(\cdot, t) \leq 0$.
- equation preserves semiconvexity $D^{2} u_{0} \geq-C I_{d} \Rightarrow D^{2} u(\cdot, t) \geq-C I_{d}$
- equation regularizes $\quad D^{2} u(\cdot, t) \geq-\frac{2 I_{d}}{t}$
not good enough !! for the iteration we need to improve last two

Theorem:

- sketch of the proof in a special case

$$
\begin{aligned}
& u_{t}=|D u|^{2} \text { in } \mathbb{R}^{d} \times(0, \infty) \quad u(\cdot, 0)=u_{0} \quad u(x, t)=\sup _{y \in \mathbb{R}^{d}}\left[u_{0}(y)-\frac{|x-y|^{2}}{4 t}\right] \\
& "\left(D^{2} u\right)_{t}=2 D u D\left(D^{2} u\right)+2\left|D^{2} u\right|^{2} ", \quad u_{x x, t}=2 u_{x} u_{x x x}+2\left(u_{x x}\right)^{2}
\end{aligned}
$$

- equation preserves concavity $\quad D^{2} u_{0} \leq 0 \Rightarrow D^{2} u(\cdot, t) \leq 0$.
- equation preserves semiconvexity $\quad D^{2} u_{0} \geq-C I_{d} \Rightarrow D^{2} u(\cdot, t) \geq-C I_{d}$
- equation regularizes $\quad D^{2} u(\cdot, t) \geq-\frac{2 I_{d}}{t}$
not good enough !! for the iteration we need to improve last two

Theorem: $\quad D^{2} u_{0} \geq-C I_{d} \Rightarrow D^{2} u(\cdot, t) \geq-\frac{2 C}{1+C t} I_{d}$

- sketch of the proof in a special case
$u_{t}=|D u|^{2} \quad$ in $\mathbb{R}^{d} \times(0, \infty) \quad u(\cdot, 0)=u_{0} \quad u(x, t)=\sup _{y \in \mathbb{R}^{d}}\left[u_{0}(y)-\frac{|x-y|^{2}}{4 t}\right]$
$"\left(D^{2} u\right)_{t}=2 D u D\left(D^{2} u\right)+2\left|D^{2} u\right|^{2} " \quad u_{x x, t}=2 u_{x} u_{x x x}+2\left(u_{x x}\right)^{2}$
- equation preserves concavity $\quad D^{2} u_{0} \leq 0 \Rightarrow D^{2} u(\cdot, t) \leq 0$.
- equation preserves semiconvexity $\quad D^{2} u_{0} \geq-C I_{d} \Rightarrow D^{2} u(\cdot, t) \geq-C I_{d}$
- equation regularizes $\quad D^{2} u(\cdot, t) \geq-\frac{2 I_{d}}{t}$
not good enough !! for the iteration we need to improve last two
Theorem: $\quad D^{2} u_{0} \geq-C I_{d} \Rightarrow D^{2} u(\cdot, t) \geq-\frac{2 C}{1+C t} I_{d}$

$$
u_{t}=H(D u) \text { in } \mathbb{R}^{d} \times(0, T) \quad u(\cdot, 0)=u_{0} \quad F(p)=\left(D^{2} H(p)\right)^{1 / 2}
$$

- claim $1 \quad G$ symmetric matrix

$$
G\left(D u_{0}\right) D^{2} u_{0} G\left(D u_{0}\right) \geq-C_{0} I_{d} \Rightarrow G(D u(\cdot, t)) D^{2} u(\cdot, t) G(D u(\cdot, t)) \geq-C_{0} I_{d}
$$

- claim $2 \quad G=F$ and any $u_{0} \Rightarrow$

$$
G(D u(\cdot, t)) D^{2} u(\cdot, t) G(D u(\cdot, t)) \geq-\frac{C}{t} I_{d}
$$

- claim $3 G=F$ and C_{0} for $u_{0} \Rightarrow$

$$
G(D u(\cdot, t)) D^{2} u(\cdot, t) G(D u(\cdot, t)) \geq-\frac{C_{0}}{1+C_{0} t} I_{d}
$$

- $u(x, t)=\sup _{y \in \mathbb{R}^{d}}\left[u_{0}(y)-t H^{\star}\left(\frac{x-y}{t}\right)\right]=u_{0}(\bar{y})-t H^{\star}\left(\frac{x-\bar{y}}{t}\right)$

$$
\begin{aligned}
& u(x \pm h \eta, t)=\sup _{y \in \mathbb{R}^{d}}\left[u_{0}(y)-t H^{\star}\left(\frac{x \pm h \eta-y}{t}\right)\right] \geq u_{0}(\bar{y})-t H^{\star}\left(\frac{x \pm h \eta-\bar{y}}{t}\right) \\
& \left.\quad \Rightarrow\left\langle D^{2} u(x, t) \eta, \eta\right\rangle \geq-\frac{1}{t}<D^{2} H^{\star}\left(\frac{x-y}{t}\right) \eta, \eta\right\rangle \\
& \eta=F\left(D H^{\star}\left(\frac{x-y}{t}\right)\right) \xi \Rightarrow \text { claim 2 }
\end{aligned}
$$

- $u(x, t)=\sup _{y \in \mathbb{R}^{d}}\left[u_{0}(x-y)-t H^{\star}\left(\frac{y}{t}\right)\right]=u_{0}(x-\bar{y})-t H^{\star}\left(\frac{\bar{y}}{t}\right)$

$$
\begin{aligned}
& u(x \pm h \eta, t)=\sup _{y \in \mathbb{R}^{d}}\left[u_{0}(x \pm h \eta-y)-t H^{\star}\left(\frac{y}{t}\right)\right] \geq u_{0}(x \pm h \eta-\bar{y})-t H^{\star}\left(\frac{\bar{y}}{t}\right) \\
& \quad \Rightarrow<D^{2} u(x, t) \eta, \eta>\geq<D^{2} u_{0} \eta, \eta>
\end{aligned}
$$

$\eta=G(D u) \xi \Rightarrow$ claim 1

- $u(x, t)=\sup _{y, z \in \mathbb{R}^{d}: y+z=x}\left[u_{0}(y)-t H^{\star}\left(\frac{z}{t}\right)\right]=u_{0}(\bar{y})-t H^{\star}\left(\frac{\overline{\bar{z}}}{t}\right)$

$$
\begin{aligned}
& u(x \pm h \eta, t)=\sup _{y, z \in \mathbb{R}^{d}: y+z=x \pm h \eta}\left[u_{0}(y \pm \theta h \eta)-t H^{\star}\left(\frac{z \pm(1-\theta) h \eta}{t}\right)\right] \geq \\
& u_{0}(\bar{y} \pm \theta h \eta)-t H^{\star}\left(\frac{\bar{z} \pm(1-\theta) h \eta}{t}\right) \\
& \quad \Rightarrow<D^{2} u(x, t) \eta, \eta>\geq-\left[\theta^{2} C_{0}+(1-\theta)^{2} \frac{1}{t}\right]<\eta, \eta>
\end{aligned}
$$

minimize over $\theta \quad$ and $\quad \eta=F(D u(x, t)) \xi \quad \Rightarrow \quad$ claim 3

