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o plan of the talk

> stochastic/pathwise viscosity solutions (a very brief review)
» domain of dependence and speed of propagation

> homogenization

> long time behavior  a false proof

> intermittent regularizing effects

> behavior as t — oo in the convex case

> behavior ast — oo work in progress and some open problems

> some proofs



e pathwise/stochastic viscosity solutions
du = H(Du,u,x) - dw + F(D?*u, Du, u, x)dt

w continuous (Brownian or, more generally, rough path)

enough to be able to solve the (ode) dX = —DyH(P,X) - dw dP = DpyH(P,X) - dw
u € R F degenerate elliptic
F and H may depend on ¢

if w dependson x itmustberegular  KPZis outside the scope of the theory

many applications pathwise control, phase transitions, stochastic selection principles, ...



e motion of interfaces
an interface I'; evolves with normal velocity V,, = —mean curvature + a(x) - dB

R
23

= {xeR:ulx,1) =0}

u solves the level-set pde

du = t[(I — %)Dzu] + a(x)|Dul| - dB



e phase field theory- asymptotics of reaction diffusion equations perturbed by additive noise
I/
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e phase field theory- asymptotics of reaction diffusion equations perturbed by additive noise
I/

1

e _ AUt = %W/(us)

u® — -1 inside and outside a front evolving with n.v. V,, = —mean curvature
e—0

uf — At = LW @) +¢'%)

V, = —mean curvature + ac
y b(z”‘)

Kawasaki and Otha conjectured that, if the depths of the wells are perturbed randomly by el/ de, the resulting interface will
evolve by V,, = —mean curvature + adB

this is not true — the perturbation is too violent to preserve the stability properties of +1

but

if the wells are perturbed by a “mild approximation” BE of B, then the interface evolves by

V, = —mean curvature + adB

Almgren, Yip (convex setting), Funaki ( for d = 2), Lions and S. general problem



e a stochastic selection principle work with A. Yip

“ unstable configurations”
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e a stochastic selection principle work with A. Yip

“ unstable configurations”

20 — o0&

L

T

is there a stochastic mechanism that selects at the limit a unique interface?
V, = —mean curvature + €dB

converges a.s. to the maximal solution of the motion without the noise

OO ~ )



e pathwise stochastic control theory
i ith filtrati By 5
By, By independent Bm with filtrations (F, ' ), >0, (F; “)i>0
A the set of admissible (]:,B] — progressively measurable controls) controls (77),>¢ with values in A

dX, = b(X,, m)dt + V201 (X;, 7 )dB s + 02(X;, ) 0dBy, (0<s<T)
dynamics
Xy =x
payoff J(x,sim) = E.[H(Xr)| F7?]
value function u(x,s) = essinfrec aJ(x,s; )
pathwise Bellman equation
du + infrep [tr((alal*)(x, m)D?u) + b(x, ) - Du] + o2(x)Duo dB, =0
u(-,T)y=H
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i ith filtrati By 5
By, By independent Bm with filtrations (F, ' ), >0, (F; “)i>0
A the set of admissible (]:,B] — progressively measurable controls) controls (77),>¢ with values in A

dX, = b(X,, m)dt + /201 (X,, 7)dB1,, + 02(X;, ) 0dBy, (0 < s <T)

dynamics
Xy =x

payoff J(x,s;7) = Ey[H(Xr) ‘]:;’2]

value function u(x,s) = essinfrec aJ(x,s; )

pathwise Bellman equation
du + infrep [tr((alal*)(x, m)D?u) + b(x, ) - Du] + o2(x)Duo dB, =0
u(-,T)y=H

classical stochastic control problem

payoff J(x,s; ) = Ex s[H(Xr)

value function  u(x, s) = essinf e 4J(x, s; )

Bellman equation

U+ infrcq [lr([o’lo'] *(x, ) + 0'202*(X)]D2E} + -+ b(x,m)-Du] =0
u(-,T) =H



e review of pathwise viscosity solutions

du=H(Du) -dw u(-,0) = up

> “deterministic viscosity solutions” w € BV = 3! solution # € Cy ; and comparison
I =)+ GOl < N(wo —vo)£ll [1Du(, )]l < [[Duol]

in general shocks (discontinuities of Du) appear in finite time



e review of pathwise viscosity solutions

du=H(Du) -dw u(-,0) = up

> “deterministic viscosity solutions” w € BV = 3! solution # € Cy ; and comparison
I =)+ GOl < N(wo —vo)£ll [1Du(, )]l < [[Duol]

in general shocks (discontinuities of Du) appear in finite time
is it possible to extend by density to w € C? (It6 vs Stratonovich when w is B motion)

> du = u,dB ill posed

du(x — B(t), 1) 1uxx(x — B(1),1) — ux(x — B(1), t)) dt

Itd’s formula:and equation ( 2
1

= —Euxx(x — B(t), r)dt

> H(p) = |p| uo(x) = |x| densityinw =

o) = mae (5 + 0) .0 ~ gmin (5|



“THEOREM” If H is the difference of two convex functions, then 3! solution with the same
properties as in the classical case

» solutions are continuous in H and w

» solutions to problems with regularized H and w converge to the same limit

if ue; = He(Duc)we with He,w. smooth approximations to H and w, then |lus — ul| —>00
£—

> |lu(-,1)|| and oscu(-,r) decrease int

the contraction property

» H(0) =0 = maxu(-,t) and minu(-,7) decrease in ¢

formally d[maxu(-,7)] <0 and dimaxu(-,1)] >0



e domain of dependence and finite speed of propagation  joint work with Gassiat and Gess
is there a domain of dependence for  du = H(Du, x) - dw ?

ui(+,0) = up(-,0) in B(0,Ry) = u(-,1) = ua(+, 1) in B(0,R(¢))?
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e domain of dependence and finite speed of propagation  joint work with Gassiat and Gess
is there a domain of dependence for  du = H(Du, x) - dw ?

u1(~,0) :uz(',o) inB(O,Ro) = u1(~,t) :u2(~,t) inB(O,R(l‘))?

> apartial result
H(p,x) = H\(p) — H2(p) Hi, H> convex
u(-,0) =AinB(0,R) = u(-,1) =AinB(0,R(1))
R(t) := R — L(max,c[o,r) w(s) — minsepo,rj w(s))
> anegative result Gassiat
du= (] = luy]) - dw  u(x,,0) =x—y|+O(x,y) ©O=1lifx,y>R

u(0,0,7) 20 if |wlirv,, > R



e finite speed of propagation
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skeleton Ry r(w)
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e finite speed of propagation

du = H(Du,x) -dw Hconvexinp w € Cy([0,T])

pr(€,T) = sup {R >0: ul(-,0) = u?(-,0) in Bg(0) and u'(0,T) # u(0, T)}

skeleton Ry r(w)

e positive results

> pu,r(w) < LI[Ro7(w)ll7v(o,m)

> B Brownian motion = |[Ro,7(B)|7v([o,r)) < o0 as.

> Hp) =Ip| = pu(&,T) = Ro,r(E)ll7v(0,m)
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e homogenization Ben Seeger
€ 14 X pE 1 - 1 € 1 1 - 1
> uf = H(Du®, -)B H convex coercive periodic B — B in distribution
u® —u

there exists H convex st -
dii = H(D7) o dB

> u; + H(Du,x) = f(x)w w piecewise constant with slope +1
t t
ut = u({, -) we(r) = ¢'/2w(~) — B Brownian motion
€€ €
uf +H(Du,7) = (D)t
€ €
o U —u
there exists H st . BUT
W+ H(Di) =0

H does not come from the periodic homogenization

t . . .
e'/2w(=) creates a stationary ergodic environment
€

> uf + |Duf| = eV/2f(2 Yo
E

1 . . R
limue (1) =1 Ti= Tli}ngo?inf{fozf(Y(s))B(s) Y] < 1}



e long time behavior

H continuous, uo continuous and “periodic” in x
du=H(Du) -dw u(-,0) =ug w continuous and w(0) =0

H(0) =0 = constants are solutions

u(-,1) I u®> with ¥ constant in x and depending only on uy and w ?
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du=H(Du) -dw u(-,0) =ug w continuous and w(0) =0

H(0) =0 = constants are solutions
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e long time behavior

H continuous, uo continuous and “periodic” in x
du=H(Du) -dw u(-,0) =ug w continuous and w(0) =0

H(0) =0 = constants are solutions

u(-,1) I u®> with ¥ constant in x and depending only on uy and w ?
— 00

> Hp)=v-p veRd

u(x, 1) = up(x + vw(r)) - constant
— 2 ¢
» H(p) = |p|* «(r) >0 and w(r) T &
s 1 2 :
e, ) = intlu(s) + gLyl = 5P) > intuo

“nonlinearity” and monotonicity of w = limit

what happens if w oscillates ?



e t — oo afalse proof!

d =1 w = Brownian motion uq periodic

_ _ 1y 2
du=H dB=H - dB+ 5H dt
u (ux) (?) () o 2 (1)t

d(fol udx) = (f()l H(uy)dx)dB fol B (ux)uxe = 0

M, = fol u(x,1)dx is a bounded martingale =

1
M; = Moo and Jo7 (Jy H(uy)dx)?dt < oo as.
if H(z) > 0 for z# 0, then u(x,7,w) e M~ as.
o0

argument incorrect due to shocks!



e t — oo afalse proof!

d =1 w = Brownian motion uq periodic

_ _ 1y 2
du=H dB=H - dB+ 5H dt
u (ux) (?) () o 2 (1)t

d(fol udx) = (f()l H(uy)dx)dB fol B (ux)uxe = 0

M, = fol u(x,1)dx is a bounded martingale =

1
M; = Moo and Jo7 (Jy H(uy)dx)?dt < oo as.
if H(z) > 0 for z# 0, then u(x,7,w) e M~ as.
o0

argument incorrect due to shocks!

what if H is more regular, for example, convex?



e intermittent regularity

Theorem: for H convex and all continuous w,

_ cly 277\1/2 D2, . (D2EN/2 cly
FOENTTTO < (D*H)'/2(Du) - D*u - (D*H)'/?(Du) < () — w0

2p\1/2 D2y (DXH)1/2
> |(D°H)/*(Du)- D u- (D°H)'/*(Du)| < ¢ max( maxw(s) — w(r)’ w(tf) — min w(s))
0<s<t 0<s<t
> Gassiat and Gess studied the case H(p) = |p|? using the explicit Lax-Oleinik formula

» the result as one sided bound is new even in the classical case (w monotone)

v

D?*H >0 and mi t = u(-,1) € CHI(R?
>0 an Oréljgtw(s)<w()<onslga§w(s) u(-,1) € (RY)



e the long time behavior in the convex case
H convex H(0)=0 DH(p)-p>0 p#0
Theorem: forall w st Jf, — oo such that

either w(t,) — rgnxlélrnw(s) — 00 or Oréifgnw(s) —w(ty) — 00

u(-»1) tjoo too

» true for Brownian motion

> what is the law of #u?  nontrivial — only partial results available



e the long time behavior in the convex case
H convex H(0)=0 DH(p)-p>0 p#0
Theorem: forall w st Jf, — oo such that

either w(t,) — Orgnslélrnw(s) — 00 or Oréifgnw(s) —w(ty) — 00

u(-»1) tjoo too

» true for Brownian motion

> what is the law of #u?  nontrivial — only partial results available
idea of proof:
(D*H)/2(Dv) - D*v - (D*H)"/?>(Dv) <0 = divDH(Dv) = tD*H(Dv)D*v < 0
0= [, u[D*H(Dv)D*]dx <0 = divDH(Dv) = D*H(Dv)D*v = 0

fQDH(Dv)-szo = Dv=0

=
multiply by v and integrate over Q assumption on H

periodicity



e asymptotic behavior (r — co) work in progress and open problems

> H not convex or concave? x-dependent problems?

du =X

i=1

v

Hi(Du;) - w; w; “independent”
(i)g = —d)] =w du = (H] — Hz)(Du)w

H =H,=H w=w +w du = H(Du)(w) + w»)
> systematic approach to ergodicity (Lions course 2015) when w Brownian

du = H(Du) o dB
> { max,u(x,t,w) independentof t as = u=c(w)??

min, u(x, r,w) independent of ¢ a.s



e the proof of the estimate
» divide (0, c0) into intervals where w is either positive or negative
> in each such interval u(x, ) = v(x,w(t)) where v solves a v, = =H(Dv)
> enough to propagate an (appropriate) upper and lower bound for v on each such interval
> result follows by iteration

> important step is to establish an actual decay on each interval



e sketch of the proof in a special case

2
w=|Duf* in RYx (0,00) u(-0) =uo u(x,r) = sup () — L)

yERI !
“(D?u); = 2DuD(Du) + 2|Dul?” ey = 2ttt + 2(14)?
> equation preserves concavity D*up <0 = D%u(-,1) <0.
> equation preserves semiconvexity D*ug > —Cl; = Dzu(-7 t) > —Cl,

> equation regularizes D?u(-,t) > =4
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e sketch of the proof in a special case

2
w = |Duf? in BY x (0,00) u(-,0) =y u(x,1) = sup fuo(y) — Z7 2]

yERI !
“(D*u); = 2DuD(D*u) + 2|D*u|*” e = 2ttty + 2(uee)’
> equation preserves concavity D*up <0 = D%u(-,1) <0.
> equation preserves semiconvexity D*ug > —Cl; = Dzu(-7 t) > —Cl,
> equation regularizes D?u(-,t) > 72%

not good enough !! for the iteration we need to improve last two

Theorem:  D?ug > —CI; = D?u(-,t) > ,le



u = H(Du) in R x (0,T) u(-,0) =up F(p) = (D*H(p))"/?
> claim 1 G symmetric matrix

G(Dug)D*upG(Dug) > —Coly = G(Du(-,1))D?*u(-,1)G(Du(-,1)) > —Coly

> claim2 G = Fandany uy =

G(Du(-,0))D*u(-,1)G(Du(-, 1)) > _gld

> claim3 G = F and Cj for uy =

G(Du(-,1))D*u(-, )G(Du(-, 1)) > _#Ocozld



o ulx,i) = sup [uo(y) = iH* (T = w() — 1 (*F)
yeR?

* + hny — _ +hn—vy
u(x £ hn, 1) = sup [MO(Y) —H (w)] > ug(5) — tH* (F=A=Y)
yERA

1
= <Du(x,0mn>> —— <DH (S ) >

n=FOH*(X72))¢ = claim?2



o u(,n) = sup [uo(x —y) = H*($)] = wolx = 5) — tH*(})
yERI

u(x £ hn,t) = supd [uo(le: hn—y) — tH*(%)] >up(x £ hn—y) — lH*(%)
yeR

= < Dzu(x7 f)777 n>>< DZM()T], n>

n=GDu){ = claiml



o u(x,) = sup  [ug(y) — tH*(3)] = uo(y) — tH* (%)
y,2ERA: yz=x

u(x+ hn,t) = sup [uo(y =+ 6hn) — tH*(w)} >
v,2ER:y4z=x+hn
_ zx (1 —0)h
(5 ) — or= (2200,

1
= < Dzu(x7 t)77777 >2 - |:92C0 + (1 - 6)2;:| <mnn>

minimize over & and 7 = F(Du(x,1))§{ = claim3



