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• plan of the talk

I stochastic/pathwise viscosity solutions (a very brief review)

I domain of dependence and speed of propagation

I homogenization

I long time behavior a false proof

I intermittent regularizing effects

I behavior as t ! 1 in the convex case

I behavior as t ! 1 work in progress and some open problems

I some proofs



• pathwise/stochastic viscosity solutions

du = H(Du, u, x) · d! + F(D2
u,Du, u, x)dt

! continuous (Brownian or, more generally, rough path)

enough to be able to solve the (ode) dX = �DxH(P, X) · d! dP = DpH(P, X) · d!

u 2 R F degenerate elliptic

F and H may depend on t

if ! depends on x it must be regular KPZ is outside the scope of the theory

many applications pathwise control, phase transitions, stochastic selection principles, . . .



• motion of interfaces

an interface �t evolves with normal velocity Vn = �mean curvature + a(x) · dB

��

�t = {x 2 Rd : u(x, t) = 0}

u solves the level-set pde

du = tr[(I � Du ⌦ Du

|Du|2
)D

2
u] + a(x)|Du| · dB



• phase field theory- asymptotics of reaction diffusion equations perturbed by additive noise
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"!0
±1 inside and outside a front evolving with n.v. Vn = �mean curvature

u
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0(u
") + "1/2

c)

Vn = �mean curvature + ↵c

Kawasaki and Otha conjectured that, if the depths of the wells are perturbed randomly by "1/2
dB, the resulting interface will

evolve by Vn = �mean curvature + ↵dB

this is not true — the perturbation is too violent to preserve the stability properties of ±1

but

if the wells are perturbed by a “mild approximation” Ḃ
" of B, then the interface evolves by

Vn = �mean curvature + ↵dB

Almgren, Yip (convex setting), Funaki ( for d = 2), Lions and S. general problem
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• a stochastic selection principle work with A. Yip

“ unstable configurations”

is there a stochastic mechanism that selects at the limit a unique interface?

Vn = �mean curvature + "dB

converges a.s. to the maximal solution of the motion without the noise
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• pathwise stochastic control theory

B1, B2 independent Bm with filtrations (FB1
t

)t�0, (F
B2
t

)t�0

A the set of admissible (FB1
t

� progressively measurable controls) controls (⇡t)t�0 with values in A

dynamics

(
dXt = b(Xt,⇡t)dt +

p
2�1(Xt,⇡t)dB1,t + �2(Xt,⇡t) � dB2,t (0  s  T)

Xs = x

payoff J(x, s;⇡) = Ex,s[H(XT)|F
B2
T

]

value function u(x, s) = essinf⇡2AJ(x, s;⇡)

pathwise Bellman equation
8
<

:
du + inf⇡2A

h
tr((�1�1

?)(x,⇡)D
2
u) + b(x,⇡) · Du

i
+ �2(x)Du � dB2 = 0

u(·, T) = H

classical stochastic control problem

payoff J(x, s;⇡) = Ex,s[H(XT )

value function u(x, s) = essinf⇡2AJ(x, s;⇡)

Bellman equation
8
<

:
ut + inf⇡2A

h
tr([�1�1

?(x,⇡) + �2�2
?(x)]D2

u

i
+ · · · + b(x,⇡) · Du] = 0

u(·, T) = H
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• review of pathwise viscosity solutions

du = H(Du) · d! u(·, 0) = u0

I “deterministic viscosity solutions” ! 2 BV ) 9! solution u 2 Cx,t and comparison

k(u � v)±(·, t)k  k(u0 � v0)±k kDu(·, t)k  kDu0k

in general shocks (discontinuities of Du) appear in finite time

is it possible to extend by density to ! 2 C? (Itô vs Stratonovich when ! is B motion)

I du = uxdB ill posed

du(x � B(t), t) =
Itô’s formula and equation

✓
1
2

uxx(x � B(t), t)� uxx(x � B(t), t)

◆
dt

= �
1
2

uxx(x � B(t), t)dt

I H(p) = |p| u0(x) = |x| density in ! )

u(x, t) = max


(|x|+ !(t))+,!(t)� min

0st

!(s))

�
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“THEOREM” If H is the difference of two convex functions, then 9! solution with the same
properties as in the classical case

I solutions are continuous in H and !

I solutions to problems with regularized H and ! converge to the same limit

if u",t = H"(Du")!̇" with H",!" smooth approximations to H and !, then ku" � uk !
"!0

0

I ku(·, t)k and oscu(·, t) decrease in t

the contraction property

I H(0) = 0 ) max u(·, t) and min u(·, t) decrease in t

formally d[max u(·, t)]  0 and d[max u(·, t)] � 0



• domain of dependence and finite speed of propagation joint work with Gassiat and Gess

is there a domain of dependence for du = H(Du, x) · d! ?

u1(·, 0) = u2(·, 0) in B(0,R0) ) u1(·, t) = u2(·, t) in B(0,R(t))?

I a partial result

H(p, x) = H1(p)� H2(p) H1,H2 convex

u(·, 0) ⌘ A in B(0,R) ) u(·, t) ⌘ A in B(0,R(t))

R(t) := R � L(maxs2[0,T] !(s)�mins2[0,T] !(s))

I a negative result Gassiat

du = (|ux|� |uy|) · d! u(x, y, 0) = |x � y|+⇥(x, y) ⇥ � 1 if x, y � R

u(0, 0, T) � 0 if k!kTV[0,T]
> R
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• finite speed of propagation

du = H(Du, x) · d! H convex in p ! 2 C0([0, T])

⇢H(⇠, T) := sup
n

R � 0 : u
1(·, 0) = u

2(·, 0) in BR(0) and u
1(0, T) 6= u

2(0, T)
o

skeleton R0,T(!)

• positive results

I ⇢H,T(!)  L kR0,T(!)kTV([0,T])

I B Brownian motion ) kR0,T(B)kTV([0,T]) < 1 a.s.

I H(p) = |p| ) ⇢H(⇠, T) � kR0,T(⇠)kTV([0,T])
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• homogenization Ben Seeger

I u
"
t
= H(Du

",
x

"
)Ḃ"

H convex coercive periodic B
" ! B in distribution

there exists H convex st

8
<

:
u
" ! u

du = H(Du) � dB

I ut + H(Du, x) = f (x)!̇ ! piecewise constant with slope ±1

u
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"
) !"(t) = "1/2!(

t

"
) ! B Brownian motion

u
"
t
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"
) = "1/2

f (
x
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)!̇"

there exists H st

8
<

:
u
" ! u

ut + H(Du) = 0
BUT

H does not come from the periodic homogenization

"1/2!(
t

"
) creates a stationary ergodic environment

I u
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t
+ |Du

"| = "1/2
f (

x
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)!̇"

lim
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u
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0 f (Y(s))Ḃ(s) : |Ẏ|  1
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• long time behavior

du = H(Du) · d! u(·, 0) = u0

8
>>><

>>>:

H continuous, u0 continuous and “periodic” in x

! continuous and !(0) = 0

H(0) = 0 ) constants are solutions

u(·, t) !
t!1

u
1 with u

1 constant in x and depending only on u0 and ! ?

I H(p) = v · p v 2 Rd

u(x, t) = u0(x + v!(t)) 9 constant

I H(p) = |p|2 !̇(t) � 0 and !(t) !
t!1

1

u(x, t) = inf
y
[u0(y) +

1
4!(t) |x � y|2] ! inf u0

“nonlinearity” and monotonicity of ! ) limit

what happens if ! oscillates ?
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• t ! 1 a false proof!

d = 1 ! = Brownian motion u0 periodic

du = H(ux) �
(S)

dB = H(ux) ·
(I)

dB + 1
2 H

0(ux)2
uxxdt

d(
R 1

0 udx) = (
R 1

0 H(ux)dx)dB
R 1

0 �(ux)uxx = 0

Mt =
R 1

0 u(x, t)dx is a bounded martingale )

Mt !
t!1

M1 and
R1

0 (
R 1

0 H(ux)dx)2
dt < 1 a.s.

if H(z) > 0 for z 6= 0, then u(x, t,!) !
t!1

M1 a.s.

argument incorrect due to shocks!

what if H is more regular, for example, convex?
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• intermittent regularity

Theorem: for H convex and all continuous !,

� c Id

!(t)� min
0st

!(s)
 (D2

H)1/2(Du) · D
2
u · (D2

H)1/2(Du)  c Id

max
0st

!(s)� !(t)

I |(D2
H)1/2(Du) ·D2

u ·(D2
H)1/2(Du)|  c max( 1

max
0st

!(s)� !(t)
, 1
!(t)� min

0st

!(s)
)

I Gassiat and Gess studied the case H(p) = |p|2 using the explicit Lax-Oleinik formula

I the result as one sided bound is new even in the classical case (! monotone)

I D
2
H > 0 and min

0st

!(s) < !(t) < max
0st

!(s) ) u(·, t) 2 C
1,1(Rd)



• the long time behavior in the convex case

H convex H(0) = 0 DH(p) · p > 0 p 6= 0

Theorem: for all ! st 9tn ! 1 such that

either !(tn)� min
0stn

!(s) !
n

1 or max
0stn

!(s)� !(tn) !
n

1

u(·, t) !
t!1

u1

I true for Brownian motion

I what is the law of u1? nontrivial — only partial results available

idea of proof:

(D2
H)1/2(Dv) · D

2
v · (D2

H)1/2(Dv)  0 ) divDH(Dv) = trD2
H(Dv)D2

v  0 )
periodicity

0 =
R

Q
tr[D2

H(Dv)D2
v]dx  0 ) divDH(Dv) = D

2
H(Dv)D2

v = 0

)
multiply by v and integrate over Q

R
Q

DH(Dv) · Dv = 0 )
assumption on H

Dv = 0
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• asymptotic behavior (t ! 1) work in progress and open problems

I H not convex or concave? x-dependent problems?

I du = ⌃K

i=1Hi(Dui) · !̇i !i “independent”

!̇2 = �!̇1 = !̇ du = (H1 � H2)(Du)!̇

H1 = H2 = H !̇ = !̇1 + !̇2 du = H(Du)(!1 + !2)

I systematic approach to ergodicity (Lions course 2015) when ! Brownian

I

8
>>><

>>>:

du = H(Du) � dB

maxx u(x, t,!) independent of t a.s

minx u(x, t,!) independent of t a.s

) u ⌘ c(!) ??



• the proof of the estimate

I divide (0,1) into intervals where !̇ is either positive or negative

I in each such interval u(x, t) = v(x,!(t)) where v solves a vt = ±H(Dv)

I enough to propagate an (appropriate) upper and lower bound for v on each such interval

I result follows by iteration

I important step is to establish an actual decay on each interval



• sketch of the proof in a special case

ut = |Du|2 in Rd ⇥ (0,1) u(·, 0) = u0 u(x, t) = sup
y2Rd

[u0(y)�
|x � y|2

4t
]

“(D2
u)t = 2DuD(D2

u) + 2|D2
u|2” uxx,t = 2uxuxxx + 2(uxx)

2

I equation preserves concavity D
2
u0  0 ) D

2
u(·, t)  0.

I equation preserves semiconvexity D
2
u0 � �CId ) D

2
u(·, t) � �CId

I equation regularizes D
2
u(·, t) � � 2Id

t

not good enough !! for the iteration we need to improve last two

Theorem: D
2
u0 � �CId ) D

2
u(·, t) � � 2C

1 + Ct
Id
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ut = H(Du) in Rd ⇥ (0, T) u(·, 0) = u0 F(p) = (D
2
H(p))1/2

I claim 1 G symmetric matrix

G(Du0)D
2
u0G(Du0) � �C0Id ) G(Du(·, t))D2

u(·, t)G(Du(·, t)) � �C0Id

I claim 2 G = F and any u0 )

G(Du(·, t))D2
u(·, t)G(Du(·, t)) � �

C

t
Id

I claim 3 G = F and C0 for u0 )

G(Du(·, t))D2
u(·, t)G(Du(·, t)) � �

C0

1 + C0t
Id



• u(x, t) = sup
y2Rd

h
u0(y)� tH

?( x � y

t
)
i
= u0(ȳ)� tH

?( x � ȳ

t
)

u(x ± h⌘, t) = sup
y2Rd

h
u0(y)� tH

?( x ± h⌘ � y

t
)
i
� u0(ȳ)� tH

?( x ± h⌘ � ȳ

t
)

) < D
2
u(x, t)⌘, ⌘ >� �

1
t
< D

2
H

?( x � y

t
)⌘, ⌘ >

⌘ = F(DH
?( x � y

t
))⇠ ) claim 2



• u(x, t) = sup
y2Rd

h
u0(x � y)� tH

?( y

t
)
i
= u0(x � ȳ)� tH

?( ȳ

t
)

u(x ± h⌘, t) = sup
y2Rd

h
u0(x ± h⌘ � y)� tH

?( y

t
)
i
� u0(x ± h⌘ � ȳ)� tH

?( ȳ

t
)

) < D
2
u(x, t)⌘, ⌘ >�< D

2
u0⌘, ⌘ >

⌘ = G(Du)⇠ ) claim 1



• u(x, t) = sup
y,z2Rd : y+z=x

⇥
u0(y)� tH

?( z
t
)
⇤
= u0(ȳ)� tH

?( z̄
t
)

u(x ± h⌘, t) = sup
y,z2Rd :y+z=x±h⌘


u0(y ± ✓h⌘)� tH

?(
z ± (1 � ✓)h⌘

t
)

�
�

u0(ȳ ± ✓h⌘)� tH
?(

z̄ ± (1 � ✓)h⌘
t

)

) < D
2
u(x, t)⌘, ⌘ >� �


✓2

C0 + (1 � ✓)2 1
t

�
< ⌘, ⌘ >

minimize over ✓ and ⌘ = F(Du(x, t))⇠ ) claim 3


