ORIGIN AND CONSEQUENCES OF LONG-RANGE STRESS CORRELATIONS IN GLASSES

Anaël Lemaître

Navier

HOPPING BETWEEN INHERENT STATES

HOPPING BETWEEN INHERENT STATES

Thermal Conductivity and Specific Heat of Noncrystalline Solids*

R. C. Zeller[†] and R. O. Pohl

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14850 (Received 28 May 1971)

Excess of modes \leftrightarrow local defects?

Anderson et al (1972) Phillips (1972) Buchenau, Parshin, Schober,...

> Buchenau (1986) Malinovsky & Sokolov (1986)

Rayleigh scattering $\Gamma \sim k^{d+1}$?...

Marruzzo et al Sc. Rep. (2013) Baldi et al PRL (2010) 10¹³ IXS (1620 K) POT (300 K) 10¹² BUVS (300 K) С BUVS (300 K) BLS (300 K) Sound attenuation (Hz) 10 **10**¹¹ BLS (5 K) , (Ω) TJ (1 K) о 10¹⁰ 10⁻² ω 10⁹ ° Cr 10⁸ 10 10⁷ v⁴ ∇ 10⁶ 10¹² 10¹¹ 10¹⁰ Frequency (Hz)

... or non-Rayleigh scattering $\Gamma \sim -k^{d+1} \ln k$

Gelin et al Nature Mat. (2016)

INHERENT STATES ARE ELASTIC SOLIDS

The local IS stress field

$$\widehat{\sigma}_{\alpha\beta} \underline{k} = \sum_{i < j} f_{ij}^{\alpha} r_{ij}^{\beta} \frac{e^{-i\underline{k} \cdot \underline{r}_i} - e^{-i\underline{k} \cdot \underline{r}_j}}{i\underline{k} \cdot \underline{r}_{ij}} \qquad i\underline{k} \cdot \underline{\widehat{\sigma}}_{\underline{k}} = \sum_{i < j} = \sum_{i < j}$$

$$\underline{\underline{f}} \underline{\underline{k}} \cdot \underline{\underline{\hat{\sigma}}}_{\underline{k}} = \sum_{i < j} \underline{\underline{f}}_{ij} \left(e^{-\underline{\underline{k}} \cdot \underline{\underline{r}}_i} - e^{-\underline{\underline{k}} \cdot \underline{\underline{r}}_j} \right)$$
$$= \sum_i e^{-\underline{\underline{k}} \cdot \underline{\underline{r}}_i} \underline{\underline{f}}_i = 0$$

Pressure $\sigma_1 \equiv -\frac{1}{2}(\sigma_{xx} + \sigma_{yy})$

Normal 1

Shear

$$\sigma_3 \equiv \sigma_{xy}$$

REAL SPACE STRESS CORRELATIONS

 $C_{ab}(\underline{r}) \equiv \langle \sigma_a(\underline{r}_0) \sigma_b(\underline{r}_0 + \underline{r}) \rangle$

REAL SPACE STRESS CORRELATIONS

 $C_{ab}(\underline{r}) \equiv \langle \sigma_a(\underline{r}_0) \sigma_b(\underline{r}_0 + \underline{r}) \rangle$

Observations:

- anisotropy
- $1/r^d$ decay in 2D & 3D

Glass ~ elastic continuum + random sources

Problems:

- 1) the IS stress cannot be described via an elastic response problem
- 2) Henkes&Chakraborty: correlations near jamming / interpret via Edwards theory

Take:

- an ensemble of mechanically balanced states
- materially isotropic
- with normal stress fluctuations (to be specified)

Then:

- the stress autocorrelation presents isotropic and anisotropic terms
- its anisotropic part decays at long range as $1/r^d$

Applies both in 2D [AL, PRE, 96, 052101 (2017)] 3D [AL, JCP, 149, 104107 (2018)]

TENSORS AND ROTATIONS

A vector representation for stress

$$\mathfrak{g} \longrightarrow \mathfrak{g}' = \mathcal{D} \cdot \mathfrak{g} \qquad \text{Analogous to} \\
\text{Wigner-D matrix} \\
\mathfrak{g}(\underline{r}) \equiv \langle \mathfrak{g}(\underline{r}_0 + \underline{r}) \mathfrak{g}(\underline{r}_0) \rangle_c \longrightarrow \mathcal{D} \cdot \mathfrak{g}(\underline{r}) \cdot \mathcal{D}^T$$

A VECTOR REPRESENTATION FOR STRESS

$$D^{z}(\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos\phi & \sin\phi & 0 & 0 \\ 0 & 0 & -\sin\phi & \cos\phi & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos 2\phi & \sin 2\phi \\ 0 & 0 & 0 & 0 & -\sin 2\phi & \cos 2\phi \end{pmatrix}$$

A VECTOR REPRESENTATION FOR STRESS

 $\widetilde{\mathcal{T}}$

$$D^{y}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{3}{2}\cos^{2}\theta - \frac{1}{2} & 0 & -\frac{\sqrt{3}}{2}\sin 2\theta & 0 & \frac{\sqrt{3}}{2}\sin^{2}\theta \\ 0 & 0 & \cos\theta & 0 & -\sin\theta & 0 \\ 0 & \frac{\sqrt{3}}{2}\sin 2\theta & 0 & \cos 2\theta & 0 & -\frac{1}{2}\sin 2\theta \\ 0 & 0 & \sin\theta & 0 & \cos\theta & 0 \\ 0 & \frac{\sqrt{3}}{2}\sin^{2}\theta & 0 & \frac{1}{2}\sin 2\theta & 0 & \frac{1}{2}\cos^{2}\theta + \frac{1}{2} \end{pmatrix}$$

THE STRESS AUTOCORRELATION

Assume:

- translation invariance $C_{ab}(\underline{r}) = C_{ba}(-\underline{r})$
- spatial inversion symmetry $C_{ab}(\underline{r}) = C_{ab}(-\underline{r})$

 $C_{ab} = C_{ba}$

21 coefficients

THE STRESS AUTOCORRELATION

21 coefficients

MATERIAL ISOTROPY

 $\underset{\approx}{\overset{C}{\cong}}(\underline{r}) \equiv \langle \underline{\sigma}(\underline{r}_0 + \underline{r}) \, \underline{\sigma}(\underline{r}_0) \rangle_c$

must have the same functional form in all bases Take any $\underline{\underline{R}}$, and write the stress autocorrelation in $\mathfrak{B}\underline{\underline{R}}$

Case 1: Take any point
$$\underline{\underline{r}}$$

Define $\underline{\underline{R}} \equiv \underline{\underline{R}}^{\hat{\underline{r}}}$: $\mathfrak{B} \longrightarrow \{\underline{\underline{e}}_{\theta}, \underline{\underline{e}}_{\phi}, \underline{\underline{e}}_{r}\}$
 $\underline{\underline{r}} \longrightarrow (0, 0, 1)$

$$\underbrace{\tilde{C}}_{\widetilde{z}}(0,0,r) = \underbrace{\tilde{C}}_{\widetilde{z}}(r\underline{e}_z) = \mathcal{D}^{\underline{\hat{r}}} \cdot \underbrace{\tilde{C}}_{\widetilde{z}}(\underline{r}) \cdot \left(\mathcal{D}^{\underline{\hat{r}}}\right)^T \equiv \underbrace{\tilde{C}}_{\widetilde{z}}(\underline{r})$$

Case 2: Take $\underline{r} = r\underline{e}_z$ and $\underline{\underline{R}} \equiv \underline{\underline{R}}^z(\theta)$ $\overset{\circ}{\underset{\approx}{\mathbb{Z}}}(r) = \underbrace{\underline{C}}(r\underline{e}_z) = \mathcal{D}^z(\theta) \cdot \underbrace{\overset{\circ}{\underset{\approx}{\mathbb{Z}}}(r) \cdot \mathcal{D}^z(-\theta)$

MATERIAL ISOTROPY

Prop. 1:

Prop. 2:

$$\overset{\circ}{\underset{\approx}{\mathcal{E}}}(\underline{r}) = \overset{\circ}{\underset{\approx}{\mathcal{E}}}(r)$$

$$\underbrace{\widetilde{C}}_{\widetilde{Z}}(\underline{r}) = \left(\mathcal{D}^{\underline{\hat{r}}}\right)^T \cdot \underbrace{\widetilde{C}}_{\widetilde{Z}}(r) \cdot \mathcal{D}^{\underline{\hat{r}}}$$

$$\overset{\circ}{\underset{\approx}{\mathcal{E}}}(r) = \mathcal{D}^{z}(\theta) \cdot \overset{\circ}{\underset{\approx}{\mathcal{E}}}(r) \cdot \mathcal{D}^{z}(-\theta)$$

recalling

$$D^{z}(\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos\phi & \sin\phi & 0 & 0 \\ 0 & 0 & -\sin\phi & \cos\phi & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos 2\phi & \sin 2\phi \\ 0 & 0 & 0 & 0 & -\sin 2\phi & \cos 2\phi \end{pmatrix}$$

it implies that:

s that:

$$\overset{\circ}{\mathbb{E}}(\underline{r}) = \begin{pmatrix} \mathring{C}_1(r) & \mathring{C}_2(r) & 0 & 0 & 0 & 0 \\ \mathring{C}_2(r) & \mathring{C}_3(r) & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathring{C}_4(r) & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathring{C}_4(r) & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathring{C}_5(r) & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathring{C}_5(r) \end{pmatrix}$$

IN FOURIER SPACE

The stress autocorrelation
$$\widehat{\widehat{Q}}(\underline{k}) = \frac{1}{(2\pi)^3} \left\langle \widehat{\widehat{g}}(\underline{k}) \left(\widehat{\widehat{g}}(\underline{k}) \right)^* \right\rangle_c$$

Its radial form:
$$\hat{\widehat{C}}(\underline{k}) = \frac{1}{(2\pi)^3} \left\langle \widehat{\mathcal{G}}^{\hat{\underline{k}}}(\underline{k}) \left(\widehat{\mathcal{G}}^{\hat{\underline{k}}}(\underline{k}) \right)^* \right\rangle_c$$

are related by: $\widehat{\widehat{C}}(\underline{k}) = (\mathcal{D}^{\underline{\hat{k}}})^T \cdot \widehat{\widehat{\underline{C}}}(\underline{\hat{k}}) \cdot \mathcal{D}^{\underline{\hat{k}}}$

Prop 1:
$$\hat{\widehat{\underline{C}}}(\underline{k}) = \hat{\widehat{\underline{C}}}(k)$$

Prop 2:

$$\hat{\tilde{\xi}}(\underline{k}) = \begin{pmatrix} \hat{\tilde{C}}_1(k) & \hat{\tilde{C}}_2(k) & 0 & 0 & 0 & 0 \\ \hat{\tilde{C}}_2(k) & \hat{\tilde{C}}_3(k) & 0 & 0 & 0 & 0 \\ 0 & 0 & \hat{\tilde{C}}_4(k) & 0 & 0 & 0 \\ 0 & 0 & 0 & \hat{\tilde{C}}_4(k) & 0 & 0 \\ 0 & 0 & 0 & 0 & \hat{\tilde{C}}_5(k) & 0 \\ 0 & 0 & 0 & 0 & 0 & \hat{\tilde{C}}_5(k) \end{pmatrix}$$

MECHANICAL BALANCE

$$\begin{split} i\underline{k} \cdot \underline{\widehat{\sigma}} &= 0 \\ \Leftrightarrow \\ \forall k \neq 0 \\ \forall k \neq 0 \\ \forall \underline{k} \neq 0 \\ \forall \underline{k} \neq 0 \\ \forall \underline{k} \neq \underline{0} \\ \forall \underline{k} \neq \underline{0} \\ \end{split} \begin{cases} \widehat{\sigma}_{kk}^2 = 0 \\ \widehat{\sigma}_{k\varphi} = 0 \\ \widehat{\sigma}_{k\varphi}^{\underline{k}} = 0 \\ \widehat{\sigma}_{k\varphi}^{\underline{k}} = \frac{1}{\sqrt{2}} \, \widehat{\sigma}_{1}^{\underline{k}}(\underline{k}) \\ \widehat{\sigma}_{3}^{\underline{\hat{k}}}(\underline{k}) = \widehat{\sigma}_{4}^{\underline{\hat{k}}}(\underline{k}) = 0 \end{split}$$

$$\widehat{g} = \begin{pmatrix} -\frac{1}{\sqrt{3}} \left(\sigma_{\vartheta\vartheta} + \sigma_{\varphi\varphi} + \sigma_{kk} \right) \\ -\frac{1}{\sqrt{6}} \left(\sigma_{\vartheta\vartheta} + \sigma_{\varphi\varphi} - 2 \sigma_{kk} \right) \\ \sqrt{2} \sigma_{\varphi k} \\ \sqrt{2} \sigma_{\vartheta k} \\ \sqrt{2} \sigma_{\vartheta\varphi} \\ \frac{1}{\sqrt{2}} \left(\sigma_{\vartheta\vartheta} - \sigma_{\varphi\varphi} \right) \end{pmatrix}$$

CARTESIAN AND RADIAL, IN REAL AND FOURIER SPACES

$$C_{ab}(\underline{r}) \equiv \langle \sigma_{a}(\underline{r}_{0}) \sigma_{b}(\underline{r}_{0} + \underline{r}) \rangle_{c}$$

$$\overset{\circ}{\underbrace{C}}_{ab}(\underline{r}) \equiv \langle \sigma_{a}^{\hat{L}}(\underline{r}_{0}) \sigma_{b}^{\hat{L}}(\underline{r}_{0} + \underline{r}) \rangle_{c}$$

$$\overset{\circ}{\underbrace{C}}_{ab}(\underline{k}) \equiv \frac{1}{(2\pi)^{2}} \left\langle \widehat{\sigma}_{a\underline{k}} \left(\widehat{\sigma}_{b\underline{k}} \right)^{*} \right\rangle_{c}$$

$$\overset{\circ}{\underbrace{C}}_{ab}(\underline{k}) \equiv \frac{1}{(2\pi)^{2}} \left\langle \widehat{\sigma}_{a\underline{k}} \left(\widehat{\sigma}_{b\underline{k}} \right)^{*} \right\rangle_{c}$$

$$\overset{\circ}{\underbrace{C}}_{ab}(\underline{k}) \equiv \frac{1}{(2\pi)^{2}} \left\langle \widehat{\sigma}_{a\underline{k}}^{\hat{k}} \left(\widehat{\sigma}_{b\underline{k}}^{\hat{k}} \right)^{*} \right\rangle_{c}$$

AFTER A BIT OF ALGEBRA ...

$$\begin{cases} \mathring{C}_{1}(r) = \mathring{C}_{1}^{(0)} \\ \mathring{C}_{2}(r) = -\frac{\sqrt{2}}{2} \mathring{C}_{1}^{(2)} \\ \mathring{C}_{3}(r) = \frac{\mathring{C}_{1}^{(0)} + 4\mathring{C}_{5}^{(0)}}{10} - \frac{\mathring{C}_{1}^{(2)} - 4\mathring{C}_{5}^{(2)}}{7} + \frac{9\mathring{C}_{1}^{(4)} + 6\mathring{C}_{5}^{(4)}}{35} \\ \mathring{C}_{4}(r) = \frac{\mathring{C}_{1}^{(0)} + 4\mathring{C}_{5}^{(0)}}{10} - \frac{\mathring{C}_{1}^{(2)} - 4\mathring{C}_{5}^{(2)}}{14} - \frac{6\mathring{C}_{1}^{(4)} + 4\mathring{C}_{5}^{(4)}}{35} \\ \mathring{C}_{5}(r) = \frac{\mathring{C}_{1}^{(0)} + 4\mathring{C}_{5}^{(0)}}{10} + \frac{\mathring{C}_{1}^{(2)} - 4\mathring{C}_{5}^{(2)}}{7} + \frac{3\mathring{C}_{1}^{(4)} + 2\mathring{C}_{5}^{(4)}}{70} \\ \end{cases}$$
where $\mathring{C}^{(m)}(r) = (2\pi)^{-3/2} \int_{0}^{\infty} \mathrm{d}k \ k^{2} \mathring{\widehat{C}}(k) \ \frac{J_{m+\frac{1}{2}}(kr)}{\sqrt{kr}}$

or,
$$\mathring{C}^{(m)}(r) = (2\pi)^m r^m \mathcal{F}_{2m+3}^{-1} \left[\frac{\mathring{\widehat{C}}(\|\underline{k}\|)}{\|\underline{k}\|^m} \right]$$

since
$$f(r) = (2\pi)^{-d/2} \int_0^\infty dk \ \frac{k^{d/2}}{r^{d/2-1}} \widehat{f}(k) J_{\frac{d}{2}-1}(kr)$$

AFTER A BIT OF ALGEBRA ...

We will show Continuity in k=0

- does not exclude a singularity in $\widehat{C}_1(k)$ or $\widehat{C}_5(k)$
- yet, for all $m \neq 0$, $1/k^m$ leading singularity (under the inverse transform)

 $\mathring{C}^{(m)} \sim 1/r^3$ at long range

SOTROPIC TENSORS

Definition: an isotropic tensor = a tensor invariant under all rotations in the case of rank four tensors, it means:

$$\underset{\approx}{\underline{C}} = \mathcal{D} \cdot \underset{\approx}{\underline{C}} \cdot \mathcal{D}^T$$

Schur:

$$\widetilde{\xi} = \begin{pmatrix} C_0 & 0 & 0 & 0 & 0 & 0 \\ 0 & C'_0 & 0 & 0 & 0 & 0 \\ 0 & 0 & C'_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & C'_0 & 0 & 0 \\ 0 & 0 & 0 & 0 & C'_0 & 0 \\ 0 & 0 & 0 & 0 & 0 & C'_0 \end{pmatrix}$$

Take any $\underbrace{C}{\widetilde{C}}(\underline{r})$

Define its isotropic part Iso $\begin{bmatrix} C \\ \widetilde{\omega} \end{bmatrix}$ as the isotropic tensor with:

$$C_0 \equiv C_{11}$$
$$C'_0 \equiv \frac{1}{5} \left(\text{Tr} \left[\underbrace{c}_{\approx} \right] - C_{11} \right)$$

In an infinite medium, the window-averaged stress:

Its fluctuation matrix: $J_{ab}(R) = \langle \overline{\sigma}_a(\underline{r}; R) \overline{\sigma}_b(\underline{r}; R) \rangle_c$

Check that $\underbrace{J}_{\approx}(R) = \frac{1}{\Omega_R^2} \int_{r_1 < R} d^3 \underline{r}_1 \int_{r_2 < R} d^3 \underline{r}_2 \underset{\approx}{\subseteq} (\underline{r}_2 - \underline{r}_1)$ is an isotropic tensor

In an infinite medium, the window-averaged stress:

Its fluctuation matrix: $J_{ab}(R) = \langle \overline{\sigma}_a(\underline{r}; R) \overline{\sigma}_b(\underline{r}; R) \rangle_c$

Check that $\underbrace{J}_{\approx}(R) = \frac{1}{\Omega_R^2} \int_{r_1 < R} d^3 \underline{r}_1 \int_{r_2 < R} d^3 \underline{r}_2 \underset{\approx}{\subseteq} (\underline{r}_2 - \underline{r}_1)$ is an isotropic tensor

Normal fluctuations means that:

 $\Omega_R \mathcal{J}(R) \longrightarrow$ finite when $R \to \infty$

In an infinite medium, the window-averaged stress:

Its fluctuation matrix: $J_{ab}(R) = \langle \overline{\sigma}_a(\underline{r}; R) \overline{\sigma}_b(\underline{r}; R) \rangle_c$

Check that $\underbrace{J}_{\approx}(R) = \frac{1}{\Omega_R^2} \int_{r_1 < R} d^3 \underline{r}_1 \int_{r_2 < R} d^3 \underline{r}_2 \underset{\approx}{\subseteq} (\underline{r}_2 - \underline{r}_1)$ is an isotropic tensor

Hence:
$$\underbrace{\widetilde{J}}(R) = \operatorname{Iso}_{\widetilde{\widetilde{Z}}}(R)$$

$$= \frac{1}{\Omega_R^2} \int_{r_1 < R} d^3 \underline{r}_1 \int_{r_2 < R} d^3 \underline{r}_2 \operatorname{Iso}\left[\underline{\widetilde{C}}\right] \left(\|\underline{r}_2 - \underline{r}_1\| \right)$$

$$= \frac{1}{\Omega_R} \int \frac{d^3 \underline{k}}{(2\pi)^3} \widehat{\alpha}(\underline{k}; R) \operatorname{Iso}\left[\widehat{\widetilde{C}}\right](\underline{k})$$

Where $\hat{\alpha}$ (the scaled intersection volume function) is real-valued, positive, and

$$\widehat{\alpha} \to (2\pi)^3 \, \delta^3(\underline{k}) \text{ when } R \to \infty$$

In an infinite medium, the window-averaged stress:

Its fluctuation matrix: $J_{ab}(R) = \langle \overline{\sigma}_a(\underline{r}; R) \overline{\sigma}_b(\underline{r}; R) \rangle_c$

Check that $\underbrace{J}_{\approx}(R) = \frac{1}{\Omega_R^2} \int_{r_1 < R} d^3 \underline{r}_1 \int_{r_2 < R} d^3 \underline{r}_2 \underset{\approx}{\subseteq} (\underline{r}_2 - \underline{r}_1)$ is an isotropic tensor

Hence:
$$\underbrace{\mathcal{J}}(R) = \operatorname{Iso}_{\widetilde{\mathcal{Z}}}(R)$$

$$= \frac{1}{\Omega_R^2} \int_{r_1 < R} d^3 \underline{r}_1 \int_{r_2 < R} d^3 \underline{r}_2 \operatorname{Iso}\left[\underline{\mathcal{C}}\right] \left(\|\underline{r}_2 - \underline{r}_1\| \right)$$

$$= \frac{1}{\Omega_R} \int \frac{d^3 \underline{k}}{(2\pi)^3} \widehat{\alpha}(\underline{k}; R) \operatorname{Iso}\left[\underline{\widehat{\mathcal{C}}}\right](\underline{k}) \quad \text{continuous at } \mathbf{k} = 0$$

Where $\hat{\alpha}$ (the scaled intersection volume function) is real-valued, positive, and

$$\widehat{\alpha} \to (2\pi)^3 \, \delta^3(\underline{k}) \text{ when } R \to \infty$$

$\overline{\underline{\sigma}}(\underline{r};R) = \frac{1}{\Omega_R} \int_{\ \underline{r}' - \underline{r}\ < R} \mathrm{d}^2 \underline{r}$	$z' \underline{\sigma}(\underline{r}')$	
$\langle \overline{\sigma}_a(\underline{r}; R) \overline{\sigma}_b(\underline{r}; R) \rangle_c$		
$\underline{r}_1 \int d^3 \underline{r}_2 \overset{\circ}{\approx} (\underline{r}_2 - \underline{r}_1)$		

In an infinite medium, the window-averaged stress:

Its fluctuation matrix: $J_{ab}(R) = \langle \overline{\sigma}_a(\underline{r}; R) \overline{\sigma}_b(\underline{r}; R) \rangle_c$

Check that
$$\underbrace{J}_{\approx}(R) = \frac{1}{\Omega_R^2} \int_{r_1 < R} d^3 \underline{r}_1 \int_{r_2 < R} d^3 \underline{r}_2 \underset{\approx}{\subseteq} (\underline{r}_2 - \underline{r}_1)$$
 is an isotropic tensor

Normal fluctuations means that:

$$\Omega_R \underset{\widetilde{K}}{J}(R) \longrightarrow \text{Iso } \widehat{\underline{C}}(\underline{0}) = \begin{pmatrix} \widehat{C}_0(0) & 0 & 0 & 0 & 0 & 0 \\ 0 & \widehat{C}'_0(0) & 0 & 0 & 0 & 0 \\ 0 & 0 & \widehat{C}'_0(0) & 0 & 0 & 0 \\ 0 & 0 & 0 & \widehat{C}'_0(0) & 0 & 0 \\ 0 & 0 & 0 & 0 & \widehat{C}'_0(0) & 0 \\ 0 & 0 & 0 & 0 & 0 & \widehat{C}'_0(0) \end{pmatrix}$$

$$\widehat{C}_0(k) = \overset{\circ}{\widehat{C}}_1(k) \qquad \qquad \widehat{C}'_0(k) = \frac{1}{10} \overset{\circ}{\widehat{C}}_1(k) + \frac{2}{5} \overset{\circ}{\widehat{C}}_5(k)$$

NUMERICAL DATA

NUMERICAL DATA

Proven:

Material isotropy Mechanical balance Normality of local fluctuations

Long-range correlations ~ elastic Green functions

2D [AL, PRE, 96, 052101 (2017)] 3D [AL, JCP, 149, 104107 (2018)]

Observed:

Normal fluctuations, local and macroscopic, (fully expected)

Ergodicity breaking

Associated with correlation background (homogeneous term) in real-space Impacts the value of stress fluctuations