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The Optimal Transport problem

Monge Problem

® Introduced in 1781 by Monge in his work ” Théorie des déblais et des
remblais”, the problem was concerned with transferring mass from one
location to another in such a way as to minimize a given cost c.

® After normalization by the total mass, Monge was looking for transport maps
T : R4 — R measurable such that the image T#p of u by T is equal to v :

(MP) := T::I“iqglﬁf;:u /Rd c(z, T(z))p(dx).
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The Optimal Transport problem

Kantorovich Problem

® After World War II, Kantorovich proposed a relaxation by considering
probability couplings (or plans) on the product space

® Given two probability measures p, v € P(Rd) and a measurable mapping
c:RExRY = R:

(KP) := inf / c(z,y) m(dz, dy)
m€ll(p,v) Jrd xRd

where II(u, v) denotes the set of couplings between p and v, that is

(p,v) = {7 € Pp(R? x RY) | n(dz, R?) = p(dz) and n(R?, dy) = v(dy)}.
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1Image by Gabriel Peyré and Marco Cuturi. Computational Optimal Transport.
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The Martingale Optimal Transport problem

Let TIM (1, v) be the set of martingale coupling between u and v,

M (p,v) = {M(d:ﬁydy) = p(dz)m(z,dy) € Il(p,v) | p(dz)-a.e., /Rd ym(z,dy) = x} .

where (m(z,dy)).er is the disintegration of any M € II(u,v) with respect to the
initial distribution p, and it is also called transition probability or Markov kernel.

More specifically, for S7, ~ p and St, ~ v, the martingale constraint is equivalent
to
E [STQ‘STI] =5m

The Martingale Optimal Transport (MOT) problem states as:

MOT(u,v,c) = inf / c(z,y) M(dz,dy)
melIM (p,v) JRd x R4
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The existence of MOT

Strassen Theorem, 1965
Let u,v € P(R%) be with finite first moment, then

OM(p,v) #0 < Vf:R? = R convex, /]Rd f(z) p(dz) < /]Rd f(y) v(dy)

<~ p<caV

® Introduced by Beiglbock, Henry-Labordére and Penkner [1] in a discrete time
setting in 2013

® Introduced by Galichon, Henry-Labordére and Touzi [2] in 2014 in a
continuous time setting

® Many contributions since : Acciaio, Alfonsi, Backhoff-Veraguas, Bayraktar,
Beiglbock, Briickerhoff, Corbetta, Cox, De March, Galichon, Ghoussoub, Guo,
Guyon, Henry-Labordére, Hobson, Huesmann, Juillet, Kim, Lim, Neufeld,
Nutz, Obléj, Pages, Pammer, Sester, Siorpaes, Stebegg, Tan, Touzi,...
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The numerical representation of MOT

® When p and v are finitely supported, the MOT problem becomes a linear
programming problem. Although it’s still linear, the martingale constraint is
non-local which explains why it is not so easy to handle.

® Let us consider the approximation of the probability measures p and v by
probability measures with finite supports such that

I J
pur = szﬁzi and vy = qu'tsyj,
i=1 i=1

then the approximation of the MOT problem becomes:

I J
min Z Z M; jc(zi, yj)

i=1j=1
I J J

st Mi; >0 > M;j=gqj, > Mj=pi and Y _ M;jy; = piz;.
i=1 j=1 i=1
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Notation and definition

Definition (Wasserstein distance)

Let p € [1,00), for u,v € P,(R?) and u # v, the Wasserstein distance with
index p is defined as

1/p
Wy (p,v) = ( inf / |l — y|P w(dz, dy))
R4 xR4

well(p,v)

For all p > 1, p,v € Pp(R?) such that pu <c, v, we define

1/p
ﬂp(#u V) = sup / |$_y‘pM(d‘T:dy) )
MelM (u,v) JRE xR

and

MelM (u,v)

1/p
Mp(u,m:( nt |mpr<dx,dy)> .
R4 xR4
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Financial application

Consider a financial market with

trading is only allowed in two future time points, 0 < T < Ts;
we can dynamically trade the stock whose future values will be S, and St,;

Let ¢(St,, ST,) be the payoff of the exotic option, where St ~ p and
ST, ~ v, the robust bounds are provided by

MOT(u,v,c) < Ele(STy, S1,)] £ —MOT(p, v, —c).
Let us consider an simple setting such that ¢(St,, St,) = S, — S1,, then
My (p,v) < Ele(Sty, S1)] < M (p, v).

In practice, p and v are extrapolated from the noisy market data, it makes no
sense to solve the MOT problem if the stability does not hold
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Martingale Wasserstein inequality

When d = 1, a martingale Wasserstein inequality was obtained by Jourdain and Margheriti[3]:

Proposition

|

For all p > 1, there exists C, < oo, such that for all u,v € P(R) satisfying p <o v and
Jr 1y|Pv(dy) < oo,

M, (1, ) < CoWy (i, v)a b~ ().

The central moment o, (v) of order p of v € P (RY) is defined by

1/p
opw) = inf, (fg1w=clvian) ™.

Extend to higher dimensions such that d € N*,

Proposition

For any p > 2 and g > 1, there exists some finite constant C, 4 such that for all u,v € P, (Rd’)
with p <cz v,
AP
M (o) < CoraWalit gy () (1)
q

Forany 1< p<2 pu,veEP g (Rd)
qg—1

My (pyv) < Ma(p,v) < [2Wo(p, v)o (2)
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