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École Nationale des Ponts et Chaussées

2CEREMADE
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The Optimal Transport problem

Monge Problem

• Introduced in 1781 by Monge in his work ”Théorie des déblais et des
remblais”, the problem was concerned with transferring mass from one
location to another in such a way as to minimize a given cost c.

• After normalization by the total mass, Monge was looking for transport maps
T : Rd → Rd measurable such that the image T#µ of µ by T is equal to ν :

(MP) := inf
T :T#µ=ν

∫
Rd

c(x, T (x))µ(dx).
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The Optimal Transport problem

Kantorovich Problem

• After World War II, Kantorovich proposed a relaxation by considering
probability couplings (or plans) on the product space

• Given two probability measures µ, ν ∈ P(Rd) and a measurable mapping
c : Rd × Rd → R:

(KP) := inf
π∈Π(µ,ν)

∫
Rd×Rd

c(x, y)π(dx, dy)

where Π(µ, ν) denotes the set of couplings between µ and ν, that is

Π(µ, ν) = {π ∈ Pρ(Rd × Rd) | π(dx,Rd) = µ(dx) and π(Rd, dy) = ν(dy)}.

1

1Image by Gabriel Peyré and Marco Cuturi. Computational Optimal Transport.
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The Martingale Optimal Transport problem

Let ΠM (µ, ν) be the set of martingale coupling between µ and ν,

ΠM (µ, ν) =

{
M(dx, dy) = µ(dx)m(x, dy) ∈ Π(µ, ν) | µ(dx)-a.e.,

∫
Rd

ym(x, dy) = x

}
,

where (m(x, dy))x∈R is the disintegration of any M ∈ Π(µ, ν) with respect to the
initial distribution µ, and it is also called transition probability or Markov kernel.

More specifically, for ST1
∼ µ and ST2

∼ ν, the martingale constraint is equivalent
to

E
[
ST2

|ST1

]
= ST1

The Martingale Optimal Transport (MOT) problem states as:

MOT(µ, ν, c) = inf
π∈ΠM (µ,ν)

∫
Rd×Rd

c(x, y)M(dx, dy)
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The existence of MOT

Strassen Theorem, 1965 [4]
Let µ, ν ∈ P(Rd) be with finite first moment, then

ΠM (µ, ν) ̸= ∅ ⇐⇒ ∀f : Rd → R convex,

∫
Rd

f(x)µ(dx) ≤
∫
Rd

f(y) ν(dy)

⇐⇒ µ ≤cx ν

• Introduced by Beiglböck, Henry-Labordère and Penkner [1] in a discrete time
setting in 2013

• Introduced by Galichon, Henry-Labordère and Touzi [2] in 2014 in a
continuous time setting

• Many contributions since : Acciaio, Alfonsi, Backhoff-Veraguas, Bayraktar,
Beiglböck, Brückerhoff, Corbetta, Cox, De March, Galichon, Ghoussoub, Guo,
Guyon, Henry-Labordère, Hobson, Huesmann, Juillet, Kim, Lim, Neufeld,
Nutz, Oblój, Pagès, Pammer, Sester, Siorpaes, Stebegg, Tan, Touzi,...
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The numerical representation of MOT

• When µ and ν are finitely supported, the MOT problem becomes a linear
programming problem. Although it’s still linear, the martingale constraint is
non-local which explains why it is not so easy to handle.

• Let us consider the approximation of the probability measures µ and ν by
probability measures with finite supports such that

µI =
I∑

i=1

piδxi and νJ =
J∑

j=1

qjδyj ,

then the approximation of the MOT problem becomes:

min
I∑

i=1

J∑
j=1

Mi,jc(xi, yj)

s.t. Mi,j ≥ 0

I∑
i=1

Mi,j = qj ,

J∑
j=1

Mi,j = pi, and

J∑
j=1

Mi,jyj = pixi.
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Notation and definition

Definition (Wasserstein distance)

Let ρ ∈ [1,∞), for µ, ν ∈ Pρ(Rd) and µ ̸= ν, the Wasserstein distance with
index ρ is defined as

Wρ(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
Rd×Rd

|x− y|ρ π(dx, dy)

)1/ρ

Notation
For all ρ ≥ 1, µ, ν ∈ Pρ(Rd) such that µ ≤cx ν, we define

Mρ(µ, ν) =

(
sup

M∈ΠM (µ,ν)

∫
Rd×Rd

|x− y|ρ M(dx, dy)

)1/ρ

,

and

Mρ(µ, ν) =

(
inf

M∈ΠM (µ,ν)

∫
Rd×Rd

|x− y|ρ M(dx, dy)

)1/ρ

.

7 / 10



Financial application

Consider a financial market with

• trading is only allowed in two future time points, 0 < T1 < T2;

• we can dynamically trade the stock whose future values will be ST1 and ST2 ;

• Let c(ST1
, ST2

) be the payoff of the exotic option, where ST1
∼ µ and

ST2 ∼ ν, the robust bounds are provided by

MOT(µ, ν, c) ≤ E[c(ST1
, ST2

)] ≤ −MOT(µ, ν,−c).

• Let us consider an simple setting such that c(ST1 , ST2 ) = ST2 − ST1 , then

M1(µ, ν) ≤ E[c(ST1
, ST2

)] ≤ M1(µ, ν).

• In practice, µ and ν are extrapolated from the noisy market data, it makes no
sense to solve the MOT problem if the stability does not hold
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Martingale Wasserstein inequality

When d = 1, a martingale Wasserstein inequality was obtained by Jourdain and Margheriti[3]:

Proposition
For all ρ ≥ 1, there exists Cρ < ∞, such that for all µ, ν ∈ P(R) satisfying µ ≤cx ν and∫
R |y|ρν(dy) < ∞,

Mρ(µ, ν) ≤ CρWρ(µ, ν)σ
ρ−1
ρ (ν).

The central moment σρ(ν) of order ρ of ν ∈ Pρ(Rd) is defined by

σρ(ν) = inf
c∈Rd

(∫
Rd

|y − c|ρ ν(dy)

)1/ρ
.

Extend to higher dimensions such that d ∈ N∗,

Proposition
For any ρ ≥ 2 and q ≥ 1, there exists some finite constant Cρ,q such that for all µ, ν ∈ Pρ(Rd)
with µ ≤cx ν,

Mρ
ρ(µ, ν) ≤ Cρ,qWq(µ, ν)σ

ρ−1
q(ρ−1)
q−1

(ν) (1)

For any 1 ≤ ρ ≤ 2, µ, ν ∈ P q
q−1

(Rd)

Mρ(µ, ν) ≤ M2(µ, ν) ≤
√

2Wq(µ, ν)σ q
q−1

(ν) (2)
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