A small dive into mathematical finance

PROBA team

November 4, 2022

Journées Scientifiques des Jeunes Chercheurs du CERMICS (JSJC)
Definition and genesis

- **Obvious definition**: the field of applied mathematics concerned with the modelling of financial markets.

- Why is it useful to model the **dynamics** of financial markets? There are essentially two applications:
 - Design of **portfolio allocations** and **investment strategies** with positive expected returns and limited risks.
 - Derivatives pricing and hedging.

- Two **key dates** in mathematical finance’s history:
 - **1900**: Louis Bachelier’s PhD thesis "Théorie de la spéculation" → first mathematical introduction of the Brownian motion and application to the evolution of stock prices: **mathematical finance is born!**
 - **1973**: pioneering paper of Fischer Black and Myron Scholes → first mathematical model to price and hedge so-called call and put options. **By 1975, almost all traders were using their model to price and hedge option portfolios.**
What are derivatives?

- **Derivatives** = financial product whose *future payment flows* depend on the value of an underlying asset: a stock, a basket of stocks, interest rates, a commodity, a FX rate, etc. Main types of derivatives:
 - **Futures/Forward contracts**: contract allowing to fix today the price of a future transaction over a given asset.
 - **Option contracts**: same as forward contract but the buyer of the contract can decide at the maturity whether he wants or not to perform the transaction.
 - **Swaps**: contract between two parties allowing to exchange a series of payments. Example: exchange fixed interest rate against variable interest rate.
What is the use of derivatives?

Some examples:

- EDF buys forward contracts on gas during the summer to secure the gas supply for the winter and to reduce the uncertainty about their annual energy bill.

- An international company selling stuff in dollars and paying its employees in euros can buy forward contracts or options on the USD/EUR FX rate to hedge itself against the future fluctuations of the FX rate.

- Many hedge funds bought sell options (puts) to bet on the decrease of GameStop’s stock price in January 2021 → speculative purpose.

- Listed companies can retain key employees by giving them stock options (calls) → allow them to make a profit if the company’s stock price increases.
Focus on option contracts

Option contracts can be bought on two types of market:

- **organized markets** = a centralized and regulated financial market which brings together buyers and sellers in a transparent way.
 - The price is determined by the supply-demand balance.
 - Almost only vanilla options (calls and puts) are traded.

- **over-the-counter (OTC) market** = decentralized market in which market participants trade directly between two parties, without the use of a central exchange or other third party.
 - The price is generally determined by the seller of the option.
 - All kinds of option contracts can be traded.

The main sellers of option contracts on the OTC market are **investment banks** → the question of the pricing and the hedging of option contracts is essential for them.

\[
\begin{align*}
t = 0 & \\
\text{Investment bank sells } 1\text{€ a call of strike } 100\text{€ and maturity 1 year on a stock quoted at } 100\text{€}
\end{align*}
\]

\[
\begin{align*}
t = 1 \text{ year} & \\
\text{The price of the stock is now } 110\text{€; the buyer of the call receives } 110 - 100 = 10\text{€. The bank has lost } 10 - 1 = 9 \text{€}
\end{align*}
\]
Arbitrage opportunity

A central notion in mathematical finance is the **absence of arbitrage opportunities**.

Definition (Arbitrage opportunity)

Investment strategy allowing to make a profit without taking any risk

Example : triangular arbitrage. Suppose :

- USD/EUR rate = 1
- USD/GBP rate = 1.1
- GBP/EUR rate = 0.8

If I have 100€, I can convert them into $100, then convert them into $100/1.1 \approx 90.91£ and finally convert them back to $(100/1.1)/0.8 \approx 113.64€. Assuming no transaction costs, I won 113.64€ – 100€ = 13.64€ without taking any risk → there is an arbitrage! More generally, if I have three currencies A, B and C, the following relation must be verified ($r_{X/Y}$ is the X/Y FX rate) :

\[
r_{A/B} = r_{A/C} \times r_{C/B}
\]

otherwise there is an arbitrage opportunity.

In mathematical finance, the price of a derivative is defined as **price that does not lead to an arbitrage opportunity**
The market is modelled by:

- a time horizon $T > 0$,
- a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with a right-continuous filtration $(\mathcal{F}_t)_{0 \leq t \leq T}$,
- $K+1$ assets traded continuously from time 0 to time T. Their prices are denoted by S_0^t, \ldots, S_K^t which are stochastic processes (semimartingales). The asset indexed by 0 is a bank account:

$$dS_0^t = r_t S_0^t \, dt$$

where r_t is the short-rate at time t (potentially stochastic).

Definition (Trading strategy)

A trading strategy is a $K+1$-dimensional process $\phi = (\phi_t)_{0 \leq t \leq T}$ satisfying some properties of measurability and regularity. The value of the associated portfolio is given by:

$$V_t(\phi) = \langle \phi_t, S_t \rangle = \sum_{k=0}^{K} \phi_t^k S_t^k$$
Definition (Self-financing trading strategy)

A trading strategy is self-financing if \(V_t(\phi) \geq 0 \) for all \(t \) almost surely and if there is no additional cash inflows or outflows after the initial time, i.e.

\[
dV_t = \sum_{k=0}^{K} \phi_t^k dS_t^k
\]

Definition (Arbitrage opportunity)

An arbitrage opportunity is a self-financing trading strategy \(\phi \) such that:

1. \(V_0(\phi) = 0 \)
2. \(P(V_T > 0) > 0 \)
Theorem (Harrison and Pliska (1983))

The market is free of arbitrage if and only if there exists a martingale measure, i.e. a probability measure \(Q \) that is equivalent to \(P \) and such that the discounted asset prices \((S_t^k/S_0^k)_{0 \leq t \leq T} \) are martingales. This martingale measure is often called the risk-neutral probability.

Definition (Replicable option)

An option is replicable if its payoff \(H \) is a square-integrable and positive random variable and if there exists a self-financing \(\phi \) such that \(V_T(\phi) = H \) a.s.

Proposition

If the market is free of arbitrage and if an option payoff \(H \) is replicable, then the unique price at time \(t \) of the option is given by:

\[
\pi(t, S_t) := V_t(\phi) = \mathbb{E}^Q \left[\frac{S^0_t}{S^0_T} H \mid \mathcal{F}_t \right]
\]

where \(\phi \) is the replicating strategy.
The last proposition provides both a way to **price** and **hedge** an option contract:

- the price corresponds to the **initial value** $V_0(\phi)$ of the replicating portfolio
- the hedge corresponds the **self-financing strategy** ϕ

This proposition also raises two questions:

1. How to compute the expectation $\mathbb{E}^Q \left[\frac{S_t^0}{S_T^0} H \mid \mathcal{F}_t \right]$?
2. How to compute the **self-financing strategy** ϕ?

The most widespread approach to answer these questions is to make an assumption about the dynamics of the asset prices $(S_t)_{0 \leq t \leq T} \rightarrow$ Example (Black-Scholes):

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

where $(W_t)_{t \geq 0}$ is a Brownian motion. The expectation is then computed using a **closed-form formula** if possible or using **Monte-Carlo simulations**. The hedge is generally obtained as the derivative of the option price with respect to the underlying asset price ($\partial_S \pi(t, S_t)$).
A word about mathematical finance in the insurance industry

• Solvency II (SII) is the current regulatory framework for insurance and reinsurance companies in Europe that came into force in 2016.
• It introduces two major innovations in the actuarial landscape: **Market-Consistent** valuation of the balance-sheet and **Risk-based capital requirements**.
• To understand these notions, we present below the simplified balance sheet of an insurer:

```
<table>
<thead>
<tr>
<th>ASSETS</th>
<th>LIABILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial assets (bonds, stocks, real estate, ...)</td>
<td>Basic Own Funds</td>
</tr>
<tr>
<td>Cash</td>
<td>Risk Margin</td>
</tr>
<tr>
<td></td>
<td>Best Estimate</td>
</tr>
</tbody>
</table>
```
The balance sheet valuation

- **Valuation of assets**: easy!
- **Valuation of liabilities**: that is where the problems begin...
- The **Best Estimate** is the expected value of all future discounted cash-flows of the insurer:

\[
BEL = \mathbb{E}^Q \left[\sum_{t=1}^{T} e^{-\int_0^t r_s ds} F_t \right]
\]

where \(Q \) is the risk-neutral probability. The use of this probability measure is imposed by the regulation: this is the so-called **market-consistent** valuation.

Note that the cash-flows \(F_t \) of the insurer typically include:
- contracts exits,
- payment of the minimum guaranteed rate with profit-sharing participation,
- payment of pensions and insurance claims,
- collect of premia from clients.

In practice, there is **no closed-form formula**!

- The **Risk Margin** is a margin added to the Best Estimate to take into account the fact that most of the insurance liabilities are not replicable → theoretically we could not use the risk-neutral probability \(Q \).
- The **Basic Own Funds** \(BOF \) are then computed as the difference the value of the assets \(A \) minus the Best Estimate \(BE \) and the Risk Margin \(RM \):

\[
BOF = A - BE - RM.
\]

If \(BOF < 0 \), the company is **bankrupt**!
Solvency Capital Requirement

- At this stage, we have only described how to value the balance sheet at \(t = 0 \) but it does not say anything about the risk of future insolvency! Indeed, the assets and liabilities are going to change in the future and as a consequence it is possible that the BOF become negative.

- This leads us to the second major innovation of Solvency II: the Solvency Capital Requirement (SCR). The SCR is the minimum value of BOF needed to keep the risk of bankruptcy on a year horizon below 0.5%. Mathematically, it is defined as the solution of:

\[
\mathbb{P}(BOF_1 = A_1 - BE_1 - RM_1 < 0 \mid BOF_0 = SCR) = 0.5%.
\]

where \(\mathbb{P} \) is the real-world probability. In practice, the SCR is approximated by the 99.5% Value-at-Risk of the insurer portfolio loss at a one-year risk horizon:

\[
SCR = Var_{99.5\%}\left(BOF_0 - e^{-\int_0^1 r_s ds} BOF_1\right).
\]

- Hence, estimating the SCR is very challenging because of:
 - the interactions between the assets and the liabilities
 - the necessity to project the assets and liabilities using the real-world probability and to price them using the risk-neutral probability with no-closed form formula.

Tankov, P. Mathématiques financières. Cours du master M2MO.