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A concrete example

A concrete
[ETTI
Entropy

Gibbs principle

Stochastic
control

References

From “Modern Times”, Charlie Chaplin, 1936, 13" minute.

= The Tramp works.
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Let us model The Tramp's work

Three possible states:
A concrete

[ETTI
Condition

Entropy
Gibbs principle

Stochastic
control

References
The Tramp is on time. The Tramp takes a break.

The Tramp is late.
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A concrete
[ETTI

Condition

Entropy
Gibbs principle

Stochastic
control

References

Random disturbance

Deterministic evolution:

Tramp,,; = F(t, Tramp,).

— It is sufficient to know Tramp,_.

Louis-Pierre Chaintron
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Random disturbance

A concrete Deterministic evolution:
[ETTI

Conditioning
onditionin, Trampt+1 _ F(t, Trampt)‘
Entropy

i fficien .
Gibbs principle — It is sufficient to know Tramp,_,

Stochastic But...
control

References

= F does not account for interaction.
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Probabilistic model

A concrete Let us a consider a prior distribution
[ETTI

Conditioning v e P({On time, |ate, break}),
Entropy

: - for instance

Gibbs principle

Stochastic v(on time) = v(late) = v(break) = 1.
control

References
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Probabilistic model

A concrete Let us a consider a prior distribution
[ETTI

Conditioning v € P({on time, late, break}),
Entropy

: - for instance

Gibbs principle

Stochastic v(on time) = v(late) = v(break) = 1.
control

References This is not accurate...

...because The Tramp is never on time!
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Adding information

A concrete

example L
Conditioning

Conditioning

Entropy . —
- Von-time -— V(~|Tramp7éon tlme) =7 1]]-{Tramp;uéon time} V

Gibbs principle

: “ Vo time Matches observation: vgp time(0n time) = 0.
Stochastic

control < s this choice of Vg, time Optimal?...

References
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A concrete
example

Conditioning

Entropy
Gibbs principle

Stochastic
control

References

Adding information

Conditioning
Von-time -— V(~|Tramp7éon time) = Z_l]]-{Tramp;éon time} V

“ Vo time Matches observation: vgp time(0n time) = 0.

< Is this choice of Vg, time Optimal?...

...Yes, it is!

Vontime = argmin  H(ulv),
neP
1(on time)=0

where H(plv) > 0 and H(p|v) < = .

= Natural distance w.r.t. conditioning.
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A concrete
example

Conditio

Entropy
Gibbs principle

Stochastic
control

References

Relative entropy

Given v € P(RY), the relative entropy is

H(ulv) = ‘]E log du if p <L,
+oo otherwise.

Given A C R with v(A) > 0,

argmin H(p|v) = Z M pcv =: vac
HEP(E)
w(A)=0
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Relative entropy

A concrete

Given v € P(RY), the relative entropy is

example

Conditioning
. du .
Entropy H(/I,‘V) - ‘]E |0g Ed/t if % <<-l/,
: - +00 otherwise.
Gibbs principle
Stochasti
e Given A C RY with 1(A) > 0,

Referen
eferences argmin H(p|v) = Z*l]lAcI/ =! Vpc
neP(E)

n(A)=0

Proof.

H(plv) + i(A) = H(vaelv) + v(A) + H(ilvac ).
——

>0
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Adding statistical information

A concrete Deflnlng 1
example ¢(Tramp) = ]]'{Tramp:cm time} = 2

cont ; we now measure that
Entropy

E ¢ (Tramp) < 0.

Gibbs principle
< How can we correct p to account for this?

Stochastic
control

References
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A concrete
example

Conditioning

Entropy
Gibbs principle

Stochastic
control

References

Adding statistical information

Defining
w(Tramp) = ]]-{Tramp:on time} — 4_127
we now measure that

E ¢ (Tramp) < 0.

< How can we correct p to account for this?

A natural candidate is

argmin H(u|v),
neP
(1,4)<0
= [¢dpu.
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A concrete
example

Gibbs principle
Large deviations
Statistical physics
Path space

Stochastic
control

References

Gibbs variational principle

Theorem (Gibbs variational principle)

Given v in P(RY) and v : RY — R continuous, bounded from
below,

inf  H(ulv)
1€ P(RY)
(up) <0

is realised by a unique measure 1 for some 5 € R, where

o (x) = Z=1e BY(),

B

< Single linear constraint [SZ91; DZ96].

< Lagrange multiplier G.
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Proof of the Gibbs principle in R?

A concrete P rOOf

example

Gibbs principle The Gibbs free energy
L

hysics G(B):= inf H + ),
physics (B) P (ulv) + B, ¥)

Path space

Stochastic is uniquely realised by ;1 = 13, because >0

control

H(ulv) + B{u, ) = H(puglv) + Blus, ¥) + H(pls),

hence G(3) = — log Z.

References
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Proof of the Gibbs principle in R?

A concrete P rOOf

example

Gibbs principle The Gibbs free energy

G(B) = inf H(ul) + Bl v,

Path space

Stochastic is uniquely realised by ;1 = 13, because >0

control —_——
H(plv) + B{u v) = H(uplv) + Blug, ) + Hlpulps),

hence G(3) = — log Z3. Moreover,

inf H(uly) = inf sup H(ulv) + B(u, )

References

1€ P(RY) nE€PRY) >0
() <0 () <0
> sup G(9),
BER

and  — (up, 1) is continuous and decreasing. . .
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An alternative approach to entropy

A concrete
example Law of large numbers

For (X7);>1 independent v-distributed variables,

Gibbs principle
Large deviations N

Statistical physics _Z(‘O(X’ —)E@(Xl):<l/ ©)

Path space i=1

Stochastic

control for every ¢, so that

References

k
6X1 wea
Z N—+o00
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An alternative approach to entropy

A concrete
example Law of large numbers

For (X7);>1 independent v-distributed variables,

Gibbs principle

Large deviations N

Statistical pl — Z (p(X' —> ESO(XI) = (v, )

Path space i=1

Stochastic

control for every ¢, so that

References .
6 ; Wea
N Z X —>+c>o
< What about fluctuations?

B(r(X") = 1) = 7
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An alternative approach to entropy

A concrete
example Law of large numbers

For (X7);>1 independent v-distributed variables,

Gibbs principle

Large deviations N

Statistical physics — Z (p(X’ —> ESO(XI) — <V, 5‘9>

Path space i=1

Stochastic

control for every ¢, so that

References
2 : weak
6X1
N—+o00

< What about fluctuations?

P(m(XN) ~ 1) ~ e~ NHY)

= H quantifies deviations from the LLN.
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Gibbs principle through large deviations

A concrete
example

From large deviations,

Gibbs principle

Large deviations ]P)( 7T(XN) c A) ~ exp |:—N inf H(ﬂ|l/):| ,
Statistical physics HEA

Path space
so that
Stochastic

control

P(<w(>?N),¢><o):exp[—N inf H(u|u)].

References My () <0
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Gibbs principle through large deviations

A concrete
example

From large deviations,
Gibbs principle

Large deviations P(*;T()?N) e A) >~ exp |:—N inf H(ﬂ|l/):| s
Statistical ysics HEA

Path space

so that

Stochastic
control

P(<w(>?N),¢><o):exp[—N inf H(u|u)].

References My () <0

Consequently,
P((n(X") € A| (r(X").0) <0) =

exp[—N( inf  H(ulv)— inf 0H(,u|u)>].

HEA,(11,1) <0 s (p,h) <
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Gibbs principle in statistical mechanics

A concrete

example

Canonical ensemble
- For the kinetic energy ¥(v) := 1mv? in R3,

Statistical physics

(w(VN) € Al (n(VM),9) =) —2

Path space N—+oco

Stochastic argmax — (v) log pu(v)dv

control s b 3 : B ’
HEPR?), (n)=y /R

References
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Gibbs principle in statistical mechanics

A concrete
example

Canonical ensemble
- For the kinetic energy ¥(v) := 1mv? in R3,
Larg ations

Statistical physics

(w(VN) € Al (n(VM),9) =) —2

Path space N—=+o0

Stochastic argmax — (v) log pu(v)dv

control s b 3 : B ’
HEP(R3), (p)=y R

References

giving the Maxwell-Boltzmann distribution

m 3/2 n"lV2
Av) = (27rkBT> o {_2/@4 ’
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A concrete
example

Gibbs principle

Statistical phy:!

Path space

Stochastic
control

References

Infinitely many constraints

Example of i.i.d. diffusion processes in RY

dXPM = vV de+dBt, 1<i< N,

V(x)

X
05 \1/ L5

Confinement potential V

with mean-field conditioning:
T
i\N
— ) <0.
vt e [0, T], N ;Zl V(X)) <0
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General setting

A conclrctc Let (X['(),T])iZI be independent vyp 7)-distributed
- C([0, T],R9)-valued variables, and let

Gibbs principle

ions 1 N

YNy . § .

Statistical physics 7T(Xt ) T N 5X;7
i=1

Path space

Stochastic denote the empirical measure at time t.
control

We condition by

References

vte [0, T], Ww(x(XM) <o. (1)
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General setting

A cunclrctc Let (X['o,T])iZI be independent vyp 7)-distributed
- C([0, T],R9)-valued variables, and let

Gibbs principle

1 N
7T(XtN) = N Z5X{7
Path space i=1

Stochastic denote the empirical measure at time t.
control

We condition by

References

vte [0, T], Ww(x(XM) <o. (1)

As N — +oo, Law( X[%]’T] [ (1)) converges towards

argmin  H(ppo, 11|70, 77)-
np, neP(C([0, TLRY))
Vte[0, T, W(ue) <0

Louis-Pierre Chaintron Pathwise Gibbs principle and stochastic control



Regularity assumptions

- The map W : P(R?) — R is C' in the following sense: for any
example 122 /L/ € P(Rd)'

Gibbs principle

d
] : 2| Vel =) = (=i G w),
- €le=0
Statistical physics

FE e for a continuous ‘;—:'L’ : P(RY) x RY — R.

Stochastic
control

References
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A concrete
example

Gibbs principle

Path space

Stochastic
control

References

Regularity assumptions

The map W : P(RY) — R is C in the following sense: for any
p ' € P(RY),

| Vletel —p)=

e=0

(=1, 5 (1)),

for a continuous 5"’ P(RY) x R? — R.

Example

The constraints

Wy (p) = (u (1 W )

are respectively linear and non-convex in p. For even W/,

, VY and Wy (p) =

sV,
op

(5\IJW

w)="V and (,u)—2W*u

< For W(x) = x2, we obtain W = Var.

Louis-Pierre Chaintron
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Gibbs principle on path space

A concrete
example

Theorem (Gibbs path measure)

Gibbs principle

Large deviations For any minimiser i, 1| of

Statistical physics

Path space Inf J H(,LL[O,T] |l/[07 T])
neP(C([0, T],R?))
Stochastic vte[0, T], W(p,)<0

control

some )\ in M ([0, T]) exists s.t.

References

dfzo, 1) vy 1 [ /T ov = ]
—— (X = (# exp|— — (i, x¢)A(dt) |,
dV[o,T]( [o,T]) ( T) p s o (e, xe)A(dt)

with W(zi,) = 0 M\-a.e. Sufficient condition in the convex case.
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From conditioning to control

A concrete

example . ) .
Conditioned diffusion system

Gibbs principle

Stochastic
control Gibbs principle

Time marginals

Gibbs measure

Interacting

partic!

References

Dawson-Gartner N

Stochastic control ———— Time marginals
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Stochastic control in the diffusion setting

A concrete Controlled process

example

Gibbs principle
Stochastic {dXSt,H,a - —VV(XSt:/‘va)ds + Oést + d857 t<s< T7

control

t t t
Xtyltyot — Xt’ﬂa Xt’“ ~ I,

for some adapted process @ = (@s)i<s< 7.

Value function

References

1
V(t,p) = ( ;n<f<T ]E/ §|a5\2ds.
Qs )t<s< t
Vse[t, T], W(Law(X5*)) <0

— One looks for @ which realises V/(0, fig).

= Control problem with law constraints [Dau21].
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Pathwise law

A concrete
example

Gibbs principle
Theorem
Stochastic

control There exists an optimal oy = p(t, X{") such that

Relation with
path space

LaW(X[%, T]) = Ho,T]

Time marginals

and

References inf ., H(,UI[O,T]‘V[O,T]) = H(ﬁ0|l/o) T V(O,ﬁo)
neP(C([0, T],RY))
Vt€e[0, T, W(p:)<0

= This characterises time marginals.
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A concrete
example

Gibbs principle

Stochastic
control

REES

path space

References

Time marginals

Potential mean-field game structure

(¢, (fz)) is a solution of the MFG system

dep—VV -V +1Ap— |V<p|2 — %(ﬁ ),
Oty — div(r,VV + 71, Vo(t, ) + 3V,) =0
‘P(Tv’) =0.

As N — +o0, this describes a Nash equilibrium for the game

1, T ow -
| Flatiars [ S mx) xixn.
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Summary

A concrete
example Law (N(XY ;) [vee 0.7 w(x (X)) <0)

Gibbs principle

Stochastic
control

Gibbs principle

Relatio

path spac

argmin H(ppo, 711vp0,11)
7]

Time marginals Mo,

Interacting Vt, W(pe) <0

partic
References
Dawson-Gartner, Girsanov

inf 5 [ Ela;|?dt ——————— MFG system on (1, V/(t
a t2 j;’ ! HJB equation ( t ( ))
Vt, W(Law(X))<0
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The case of interacting particles

A concrete Mean-field interaction:

example

Gibbs principle dXé',N - _V V(X’ N) Z VW X' N X"’ )dt + dBl N
Stochastic J 1
control

Relation w V(x) W(x)
. 4 4
path spa
Time mz als 3
Interacting
particles 2 2
References 1 1
x ) X
15 Wfo.s 0.5 \1/ 15 —1 7&\—/5 1
-1 =
Confinement potential V Interaction potential W

Conditioning:

vie 0. T]. w(x(XN)) <o.
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Mean-field stochastic control

A concrete

Controlled process

example
Gibbs principle
Stochastic dXEe = —VV(XEH*)ds — V(W x Law (XE42) ) (XE#>)ds
control +asds+dBs, t<s<T,
Relation w XERO = X XEE

path spa
Time ma
for some adapted process @ = (@s)i<s< 7.

Interacting
particles

References

Value function

"1
V(t,pu) = ( ;n<f<T IE/ E\as|2ds.
s )t<s< t
VsE[t, T], W(Law (X)) <0

= McKean-Vlasov control problem with law constraints.
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A concrete
example

Gibbs principle
Stochastic

control

Relation with

path space
Time marginals
Interacting

particles

References

Pathwise law

Theorem

There exists an optimal control such that Law(X( 1) = Jip 7] and

inf_ H(pp,n|TM(kp,m)) = H(Ilvo) + V(0, o).
neP(C([0, T],R?))
Vte[0, T], W(u:)<0

Time-marginals

Oep = VV - Vip = 2V(W 1) - Vip + 3 8¢
- %|Vg0|2 = _)‘&(ﬁt )

o(T,)=0.
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Thank you!
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