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Linear response for steady-state
nonequilibrium dynamics
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Physical context and motivations

Transport coefficients (e.g. thermal conductivity): quantitative estimates

J = −κ∇T (Fourier’s law)

Slow convergence due to large noise to signal ratio
Long computational times to estimate κ (up to several weeks/months)
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Nonequilibrium stochastic dynamics

Consider the following family of SDEs with values in Rd and additive noise:

dXη
t = (b (Xη

t ) + ηF (Xη
t )) dt+

√
2

β
dWt,

where b, F : Rd → Rd are smooth and η ∈ R. The above dynamics has
generator

Lη = L+ ηL̃, L̃ = F · ∇, L = b · ∇+
1

β
∆,

and we assume that for each η the above dynamics admits a unique
invariant measure νη. We further assume that the drift is contractive at
infinity, i.e.

Assumption

There exists M ⩾ 0 and λ > 0 such that

⟨x− y, b(x)− b(y)⟩ ⩽ −λ |x− y|2 , if |x− y| ⩾ M.
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Technical Assumptions

We need the following technical assumption to ensure that our arguments
based on the solutions to the Poisson equation are justified. Let S be the
space of smooth function who grow at most polynomially along with their
derivatives. Denoting by ∂k = ∂k1

x1
· · · ∂kd

xd
for k = (k1, . . . , kd) ∈ Nd and

Kn(x) = 1 + |x|n,

S :=
{
φ ∈ C∞(Rd)

∣∣∣∀k ∈ Nd ∃C > 0, ∃n ∈ N s.t.
∣∣∣∂kφ

∣∣∣ ⩽ CKn

}
Assumption

Assume that b, F ∈ S and for any η∗ > 0 there exists λη∗ > 0 such that

∇ (b(x) + ηF (x)) · (h, h) ⩽ λη∗ |h|
2 , ∀η ∈ [−η∗, η∗] , ∀x, h ∈ Rd

The two assumption are satisfied if b(x) = −V1(x)− V2(x), where V1 is a
strongly convex confining potential and V2 is a compactly supported
potential modeling the local interactions.
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Definition of transport coefficients

Perturbative regime: invariant measure νη = fην0 with fη = 1 +O(η)

∀φ, 0 =

∫
Rd

[(
L+ ηL̃

)
φ
]
fη dν0 =

∫
Rd

φ
[(

L+ ηL̃
)∗

fη

]
dν0

* = adjoints on L2(ν0)

Fokker–Planck equation (
L+ ηL̃

)∗
fη = 0

By identifying powers of η (and denoting by Π0φ := φ− ν0(φ))

fη = 1 + ηf1 + η2f2 + . . . , f1 = (−L∗)−1 L̃∗1

Response property R ∈ L2
0(ν0) = Π0L

2(ν0), the transport coefficient αR

satisfies:

αR = lim
η→0

Eη(R)

η
=

∫
Rd

Rf1 dν0
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Error estimates for NEMD
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Principle of nonequilibrium molecular dynamics

Estimator of linear response (observable R average 0 with respect to ν0)

Φ̂η,t =
1

ηt

∫ t

0
R(Xη

t ) ds
a.s.−−−−→

t→+∞
αR,η :=

1

η

∫
Rd

Rdνη = αR +O(η)

Issues with linear response methods:

Statistical error with asymptotic variance O(η−2)

Bias from finite integration time

Timestep discretization bias

Bias O(η) due to η ̸= 0
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Analysis of variance / finite integration time bias

•Statistical error dictated by Central Limit Theorem:

√
t
(
Φ̂η,t − αη

)
law−−−−→

t→+∞
N

(
0,

σ2
R,η

η2

)
, σ2

R,η = σ2
R,0 +O(η)

so Φ̂η,t = αη +OP

(
1

η
√
t

)
→ requires long simulation times t ∼ η−2

•Finite time integration bias:
∣∣∣E(Φ̂η,t

)
− αη

∣∣∣ ⩽ K

ηt

Bias due to t < +∞ is O

(
1

ηt

)
→ typically smaller than statistical error

•Key equality for the proofs: introduce −LηR̂η = R−
∫
Rd

Rdνη

Φ̂η,t −
1

η

∫
Rd

Rdνη =
R̂η(X

η
0 )− R̂η(X

η
t )

ηt
+

√
2

ηt
√
β

∫ t

0
∇R̂η(X

η
s ) · dWs
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Couplings Based Estimators
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Couplings Based Estimator

Definition

A coupling of two random variables X and Y is a couple
(
X̃, Ỹ

)
of

random variables such that X̃
Law
= X and Ỹ

Law
= Y

Idea: Use the reference dynamics to reduce the variance and bias of the
estimator:

Ψ̂η,t =
1

ηt

∫ t

0

[
R (Xη

s )−R
(
Y 0
s

)]
ds, (1)

with (Xη
t , Y

η
t )t⩾0 the solution of

dXη
t = (b (Xη

t ) + ηF (Xη
t )) dt+

√
2

β
dWt,

dY 0
t = b

(
Y 0
t

)
dt+

√
2

β
dW̃t,

where the driving noises
(
Wt, W̃t

)
t⩾0

are cleverly coupled.
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Synchronous Coupling

By choosing W = W̃ , we can synchronously couple the Xη and Y 0, giving

d
(
Xη

t − Y 0
t

)
=
(
b (Xη

t )− b
(
Y 0
t

)
+ ηF (Xη

t )
)
dt.

If the drift is strongly contractive everywhere, i.e. M = 0, then we have
pointwise control over the distance between the coupled trajectories:∣∣Xη

t − Y 0
t

∣∣ ⩽ (∣∣Xη
0 − Y 0

0

∣∣− η ∥F∥∞
2λ

)
e−λt +

η ∥F∥
2λ

.

As a consequence,

E
[∣∣∣Ψ̂sync

η,t

∣∣∣p] ⩽ C

(∣∣Xη
0 − Y 0

0

∣∣p
ηp

e−pλt +
(
1− e−pλt

)p(∥F∥
2m

)p
)
,

and a fortiori bounded variance and bias as η ↓ 0 if
∣∣Xη

0 − Y 0
0

∣∣p = O (ηp).
Moral: Synchronous coupling is hard to beat in the presence of global
strong contractivity
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Sticky Coupling

One can constructed a coupling1 such that
(
Xη

t − Y 0
t

)
t⩾0

is sticky at 0 in
the sense that they the difference is controlled by a one-dimensional
process (rηt )t⩾0 that spends a positive amount of time at 0

Figure: Sticky coupling of a 1D particle in a double well potential perturbed by a
constant force to the right. Left: histogram of coupled process; Right: segment
of trajectory of coupled process

1A. Eberle, R. Zimmer (2019) Sticky couplings of multidimensional diffusions with different
drifts
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Difficulties with Continuous-Time Sticky Coupling

Non-explicit construction—constructed as the limit point of a tight
family of processes

Long-time properties of sticky coupled process are unclear. Unknown
if it is ergodic, admits a unique invariant measure, etc.

Convergence of discrete approximations also unclear

These difficulties arise because the limit object is highly degenerate. If it
satisfied an SDE, the equation would have discontinuous coefficients and
likely could not admit a strong solution. Furthermore

{
t ⩾ 0 : Xη

t = Y 0
t

}
is random fat Cantor set: for any T > 0

P
(∣∣{t ∈ [0, T ] : Xη

t = Y 0
t

}∣∣ > 0
)
> 0,

but
P
(
∃a < b, s.t. [a, b] ⊂

{
t ∈ [0, T ] : Xη

t = Y 0
t

})
= 0.
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Discrete-Time Sticky Coupling

Lets work with the discrete version of sticky coupling 2 instead. Consider
the estimator

Ψ̂∆t
η,N =

1

ηN

N−1∑
k=0

[
R
(
Xη,∆t

k

)
−R

(
Y 0,∆t
k

)]
with

{
Xη,∆t

k , Y 0,∆t
k

}
k∈N

the discrete sticky coupling of the

Euler-Maruyama discretizations of (Xη
t )t⩾0 and

(
Y 0
)
t⩾0

.

Let {Gk}k⩾1 and {Uk}k⩾1 be i.i.d sequences of Gaussian and uniform
random variables respectively. The evolution is given by

Xη,∆t
k+1 = Xη,∆t

k +∆t
[
b
(
Xη,∆t

k

)
+ ηF

(
Xη,∆t

k

)]
+

√
2∆t

β
Gk+1,

Y 0,∆t
k+1 = Xη,∆t

k Bk+1 + (1−Bk+1)H∆t

(
Xη,∆t

k , Y 0,∆t
k , Gk+1

)
,

2A. Durmus, A. Eberle, A. Enfroy, A. Guillin, P. Monmarché (2021) Discrete sticky couplings
of functional autoregressive processes
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Discrete-Time Sticky Coupling

with Bk+1 = 1[0,1]

(
p∆t,β

(
Xη,∆t

k , Y 0,∆t
k , Gk+1

)
− Uk+1

)
and

H∆t (x, y, z) = y +∆tb (y) +

√
2∆t

β

[
Id− 2e (x, y) e (x, y)T

]
z,

E (x, y) = y − x+∆t [b(y)− b(x)− ηF (x)] ,

e (x, y) =


E (x, y)

|E (x, y)|
if E (x, y) ̸= 0

e0 otherwise,

p∆t,β (x, y, z) = min

1,

φ

(√
β

2∆t |E (x, y)| − ⟨e (x, y) , z⟩
)

φ (⟨e (x, y) , z⟩)

 ,

We denote by T η,∆t the Markov kernel of the coupled process
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Discrete-Time Sticky Coupling

G

Xη,∆t
k

G̃

Y 0,∆t
k

(a) Collision

G

Xη,∆t
k

G̃

Y 0,∆t
k

(b) Reflection resulting in
separation

G

Xη,∆t
k G̃

Y 0,∆t
k

(c) Reflection resulting in
contraction
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Discrete-Time Sticky Coupling

Proposition

If b is strongly contractive at infinity and ∆t sufficiently small, the
discrete-time sticky coupled process

{
Xη

k , Y
0
k

}
k∈N admits a unique

invariant measure, µη,∆t. Furthermore it is geometrically ergodic wrt to
this measure.

Proof : Use Hairer & Mattingly strategy3

Strong contractivity implies that ec|x|
2

+ ec|y|
2

is a Lyapunov function.
Furthermore p∆t,β(x, y, z) > 0 implies that there is always strictly positive
probability of the process returning to the diagonal. Thus for any K > 0
there exists ρK ∈ (0, 1) such that

inf
max{|x|,|y|}⩽K

T η,∆t ((x, y) , ·) ⩾ ρKξK (·)

with ξK the uniform probability on {x = y} ∩ {max {|x|, |y|} ⩽ K}
3M. Hairer and J. Mattingly Yet another look at Harris’s ergodic theorem for Markov chains
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Performance of the Sticky Coupling Based Estimator

The coupling based estimator improves upon the bias and variance of the
NEMD estimator by a factor of η−1:

Theorem

Let η∗ > 0 and R ∈ S such that ν0(R) = 0. Assume that Xη and Y 0

have the same initial value. If the two previously stated assumptions hold

and ∆t small enough, then
{
Xη,∆t

k , Y 0,∆t
k

}
k∈N

satisfies a CLT and there

exists K1,K2 such that

∀η ∈ [−η∗, η∗] , lim
N→∞

NVar
(
Ψ̂∆t

η,N

)
⩽ K1

(
1 + ∆t

η
+∆t

)
, (2)

and ∣∣∣E [Ψ̂∆t
η,N

]
− αR,η

∣∣∣ ⩽ K2

(
1

N
+∆t

)
. (3)
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Ideas of Proof (1)

Denote by νη,∆t, and ν0,∆t the invariant measures of the respective
discrete marginal processes and let Πη,∆t and Π0,∆t be the operators that
center function with respect to these measures. Denote by P η,∆t and
P 0,∆ their Markov kernels.
The CLT follows ergodicity, constructing an explicit solution to the
discrete Poisson equation

∆t−1
(
Id− T η,∆t

)
u(x, y) = Πη,∆tR(x)−Π0,∆tR(y),

and a CLT for Markov chains4. This further gives an expression for the
asymptotic variance, σ2

R,η,∆t in terms of the

R̂η,∆t = ∆t
(
Id− P η,∆t

)−1
Πη,∆tR,

and
R̂0,∆t = ∆t

(
Id− P 0,∆t

)−1
Π0,∆tR.

4R. Douc et. al (2018) Markov Chains
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Ideas of Proof (2)

A long computation adapting the strategies of Leimkuhler, et. al (2015)5

and Plechac, et. al (2021)6 lets us bound the bias and variance with terms
of the form ∫

Rd×Rd

(Kn(x) +Kn(y))1{x ̸=y} dµη,∆t (dx dy) ,

and higher order terms. (Recall Kn = 1 + |x|n). It only remains to control
this integral

5B. Leimkuhler, C. Matthews, and G. Stoltz The computation of averages from
equilibrium and non-equilibrium Langevin molecular dynamics

6P. Plechac, G. Stoltz, and T. Wang Convergence of the likelihood ratio method for
linear response of non-equilibrium stationary states
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Ideas of Proof (3)

Proposition

Under the same hypothesis as the theorem,∫
Rd×Rd

(Kn(x) +Kn(y))1{x ̸=y} dµη,∆t (dx dy) ⩽ Cη (νη,∆t (Kn) + ν0,∆t (Kn)) .

Heuristic ”Proof” of proposition∫
Rd×Rd

(Kn(x) +Kn(y))1{x ̸=y} dµη,∆t (dx dy)

⩽ µη,∆t ({x ̸= y})
∫
Rd×Rd

(Kn(x) +Kn(y)) dµη,∆t (dx dy) ,

(4)

The sticky coupled process spends an order η proportion of time the
diagonal. Furthermore µη,∆t is clearly a coupling of νη,∆t and ν0,∆t.
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Numerical Illustrations: Strongly Convex Potential

Consider a 2-dimensional Ornstein-Uhlenbeck process

dXη
t = −

[
1 −η
0 1

]
Xη

t dt+

√
2

β
dWt;

here b (x) = −∇U = −x and F (x) = [x2 0]
T . We choose as response

function the covariance between the components. In this case αR is
explicitly calculable.

R(x) = x1x2, αR =
1

2β
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Numerical Illustrations: Strongly Convex Potential
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Numerical Illustrations: Strongly Convex Potential
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Numerical Illustrations: Lennard-Jones Fluid

For less trivial example, we consider a 2-D Lennard-Jones fluid composed
of 18 particles. For x =

(
x11, x

1
2, x

2
1, x

2
2, . . . , x

18
1 , x182

)
∈ R36, the

interaction is given by

V1(x) =
∑
i⩾j

[(
1

|rij |

)12

− 2

(
1

|rij |

)6
]
,

with rij = |xi − xj | if i < j and rii = |xi|. The confinement is give by

V2(x) =

18∑
i=1

[
max

{
|xi1| − 5, 0

}2
+max

{
|xi2| − 5, 0

}2]
.

Thus b(x) = −∇v = −∇(V1 + V2). For F we used two types of shear
forcing: sine shear

(Fsin(x))i =

{
sin(2πxk2/5) if i = 2k − 1

0 otherwise
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Numerical Illustrations: Lennard-Jones Fluid Sine Shear
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Numerical Illustrations: Lennard-Jones Fluid

and linear shear

(Flin(x))i =

{
xk2 if i = 2k − 1

0 otherwise
.

In this second case, we measured the mobility response

R(x) = Flin(x)
T∇V (x)
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Extensions and perspectives
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Extension to Kinetic Langevin Dynamics

For kinetic Langevin Dynamics the noise only effects the momentum.

dqηt = M−1pηt dt,

dpηt = (−∇U (qηt ) + ηF (qηt )) dt− γM−1pηt dt+

√
2γ

β
dWt.

The coordinate change78 hints at what the coupling should do: let
(Zη

t , Q
η
t ) =

(
qηt − q0t , q

η
t − q0t + γ−1

(
pηt − p0t

))
, then

dZη
t = −γM−1Zη

t dt+ γM−1Qη
t dt,

dQη
t = −γ−1

(
∇U (qηt )−∇U

(
q0t
))

dt+ γ−1ηF (qηt ) dt+

√
2

γβ
d(W − W̃ )t.

Zη is contractive whenever ∥Zη
t ∥∞ ⩾ ∥Qη

t ∥∞.

7A. Eberle, A. Guillin, R. Zimmer (2019) Couplings and quantitative contraction rates for
Langevin dynamics

8N. Bou-Rabee, A. Eberle, R. Zimmer (2020) Coupling and Convergence for Hamiltonian
Monte Carlo
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Sticky Coupling on a Manifold

Morally one should be able to extend sticky coupling to processes that
take values on a manifold. The reflection part of sticky coupling can be
extended to manifold-valued processes using the Kendall-Cranston9

If the manifold is compact can we make the coupling work for an arbitrary
potential? Example: Lennard-Jones fluids with periodic boundary
conditions.

9A. Eberle (2016) Reflection couplings and contraction rates for diffusions
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Hybrid Coupling

In contractive regions of the phase space, synchronous coupling (i.e

choosing W̃ = W ) is more effective at bring the coupled trajectories
together than reflection coupling.

On the other hand, reflective coupling can separate trajectories just as
easily as it can bring them together—MR coupling has a long ”tail”.

This suggests a hybrid approach of mixing MR coupling and synchronous
coupling.
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