Machine Learning and Combinatorial Optimization
for the Dynamic Vehicle Routing Problem

Léo Baty1, Kai Jungel2, Patrick Klein2, Maximilian Schiffer2,
Axel Parmentier1

1CERMICS, École des Ponts, 2Technical University of Munich

January 25, 2022
1 Problem statement
2 Machine Learning pipeline
3 Learning approach
4 Results
Problem statement

- Static problem
- Dynamic problem

Machine Learning pipeline

Learning approach

Results
Vehicle Routing Problem with Time Windows (VRPTW)

Depot: vehicles capacity Q

Requests $v \in V$

- Request 1
- Request 2
- Request 3
- Request 4
- Request 5
- Request 6
Vehicle Routing Problem with Time Windows (VRPTW)

Depot: vehicles capacity Q

Requests $v \in V$

1. Coordinates p
 \[\Rightarrow \] costs $c_{v,v'}$

\[
\begin{align*}
(0.75, 2.5) & \\
(-0.6, 1.5) & \\
(-2.0, 1) & \\
(0, 0) & \\
(1, 1) & \\
(0, 0.75) & \\
(-1.0, -1.0) & \\
(1, -0.5) & \\
\end{align*}
\]
Vehicle Routing Problem with Time Windows (VRPTW)

Depot: vehicles capacity Q

Requests $v \in V$

1. Coordinates p
 \Rightarrow costs $c_{v,v'}$
2. Time Windows $[\ell, u]$
Vehicle Routing Problem with Time Windows (VRPTW)

Depot: vehicles capacity Q

Requests $v \in V$

1. Coordinates p
 \Rightarrow costs $c_{v,v'}$
2. Time Windows $[\ell, u]$
3. Demand q
Vehicle Routing Problem with Time Windows (VRPTW)

Problem statement

Depot: vehicles capacity Q

Requests $v \in V$

1. Coordinates p
 \Rightarrow costs $c_{v,v'}$

2. Time Windows $[\ell, u]$

3. Demand q

4. Service time s
Vehicle Routing Problem with Time Windows (VRPTW)

Depot: vehicles capacity Q

Requests $v \in V$

1. Coordinates p
 \Rightarrow costs $c_{v,v'}$
2. Time Windows $[\ell,u]$
3. Demand q
4. Service time s

Objective: build feasible routes serving all requests at minimum cost
State-of-the-art algorithm: Hybrid Genetic Search (HGS)

- Genetic algorithm
- Maintains a population of solutions
- Improves it over the iterations using crossover combined with neighborhood searches

See [Vidal, 2021] for details.
1. Problem statement
 - Static problem
 - Dynamic problem

2. Machine Learning pipeline

3. Learning approach

4. Results
Dynamic VRPTW

- Same setting as the static problem
- Discrete time horizon $[T]$, 1-hour epochs
- New requests arrive at the start of each epoch
 \Rightarrow future requests are not known in advance
Dynamic VRPTW: example

Start of epoch 1: requests arrive
Dynamic VRPTW: example

- Decide which request to **dispatch**
- Build routes serving them, other requests are **postponed**
- Each request must be served before end of its time window
 ⇒ some requests must be dispatched
Dynamic VRPTW: example

- Decide which request to **dispatch**
- Build routes serving them, other requests are **postponed**
- Each request must be served before end of its time window
 ⇒ some requests must be dispatched
Dynamic VRPTW: example

► Start of epoch 2: new requests arrive
Dynamic VRPTW: example

- Start of epoch 2: new requests arrive
- Epoch 2 routes
Summary

- At every epoch t:
 - Decide which request to **dispatch**
 - Build routes serving them, other requests are **postponed**
 - Each request must be served before end of its time window
 \Rightarrow some requests must be dispatched

- **State** x_t of the system at epoch t: set of requests arrived at t
 or arrived before but not yet served

- **Objective**: serve all requests, minimize total travel distance

\Rightarrow no state-of-the-art
1 Problem statement
 • Static problem
 • Dynamic problem

2 Machine Learning pipeline

3 Learning approach

4 Results
Policy based on a Deep Learning pipeline

Epoch decisions can be seen as the solution of a Prize Collecting VRPTW:

- Serving requests is optional
- Serving request v gives prize θ_v
- **Objective**: maximize total profit minus costs

$$\max_{y \in \mathcal{Y}(x_t)} \sum_{(u,v) \in x_t^2} (\theta_v - c_{u,v})y_{u,v}.$$

- **Algorithm**: Prize Collecting Hybrid Genetic Search
 \[\rightarrow\] Combinatorial Optimization layer
Problem: we have no way of computing meaningful prizes
Policy based on a Deep Learning pipeline

Solution: use a neural network to predict request prizes θ_v

Goal: find parameters w such that our pipeline is a “good” policy.
1. Problem statement
 - Static problem
 - Dynamic problem

2. Machine Learning pipeline

3. Learning approach

4. Results
Learn to imitate an anticipative policy

Anticipative policy

▸ At $t = 0$, we assume that we know all future requests.
▸ Optimal solution by solving a VRPTW with release times
⇒ Hybrid Genetic Search
Learn to imitate an anticipative policy

Anticipative policy

- At $t = 0$, we assume that we know all future requests.
- Optimal solution by solving a VRPTW with release times

\Rightarrow Hybrid Genetic Search

Dataset labeled with anticipative decisions:

$$\mathcal{D} = \{(x^1, y^1), \ldots, (x^n, y^n)\}$$
Learn to imitate an anticipative policy

Anticipative policy

- At $t = 0$, we assume that we know all future requests.
- Optimal solution by solving a VRPTW with release times

⇒ Hybrid Genetic Search

Dataset labeled with anticipative decisions:

$$\mathcal{D} = \{(x^1, \bar{y}^1), \ldots, (x^n, \bar{y}^n)\}$$

Can we apply classical supervised learning techniques?
A natural loss function

Combinatorial Optimization (CO) layer:

\[f: \theta \mapsto \arg\max_{y \in \mathcal{Y}(x_t)} \sum_{(u,v) \in x_t^2} (\theta_v - c_{u,v})y_{u,v}. \]

\[f: \theta \mapsto \arg\max_{y \in \mathcal{Y}(x_t)} \theta^\top g(y) + h(y) \]

with \(g(y) = (\sum_{u \in V} y_{u,v})_{v \in V}, \) and \(h(y) = -\sum_{(u,v) \in x_t^2} c_{u,v}y_{u,v} \)
A natural loss function

\[f : \theta \mapsto \arg\max_{y \in \mathcal{Y}(x_t)} \theta^\top g(y) + h(y) \]

When we apply Automatic Differentiation (AD) to a CO oracle:

- It usually doesn’t work (lack of compatibility with solver)
- Even when it does, the Jacobian is either zero or undefined
A natural loss function

\[f: \theta \longmapsto \arg\max_{y \in \mathcal{Y}(x_t)} \theta^\top g(y) + h(y) \]

When we apply Automatic Differentiation (AD) to a CO oracle:
- It usually doesn’t work (lack of compatibility with solver)
- Even when it does, the Jacobian is either zero or undefined

Natural loss function

Non-optimality of target routes \(\bar{y} \) as a solution of \(f \)

\[\mathcal{L}(\theta, \bar{y}) = \max_{y \in \mathcal{Y}(x)} \{ \theta^\top g(y) + h(y) \} - (\theta^\top g(\bar{y}) + h(\bar{y})) \]

Problem: \(\theta = 0 \) is a trivial solution that minimizes \(\mathcal{L}(\cdot, \bar{y}) \)
Regularization through perturbation

Perturb the objective with an additive noise [Berthet et al., 2020]:

$$
\hat{f}_\varepsilon : \theta \mapsto \mathbb{E} \left[\arg\max_{y \in \mathcal{Y}(x_t)} (\theta + \varepsilon Z)^\top g(y) + h(y) \right] = \mathbb{E}[f(\theta + \varepsilon Z)]
$$

with $Z \sim \mathcal{N}(0, 1)$, and $\varepsilon \in \mathbb{R}_+$.

Intractable expectation \Rightarrow Monte-Carlo sampling approximation
Fenchel-Young loss

Perturbed Fenchel-Young loss

\[
\mathcal{L}_\varepsilon(\theta, \bar{y}) = \mathbb{E} \left[\max_{y \in \mathcal{Y}(x_t)} (\theta + \varepsilon Z) \top g(y) + h(y) \right] - (\theta \top g(\bar{y}) + h(\bar{y})) ,
\]

\[
g(\hat{f}_\varepsilon(\theta)) - g(\bar{y}) \in \partial_\theta \mathcal{L}_\varepsilon(\theta, \bar{y}).
\]

Learning problem:

\[
\arg\min_w \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_\varepsilon(\varphi_w(x^i), \bar{y}^i)
\]
How to implement this pipeline?

Our package InferOpt.jl [Dalle et al., 2022], written in Julia:

- Open source: https://github.com/axelparmentier/InferOpt.jl
- Easy to use
- Works with any CO oracle, independent of the implementation
- Compatible with Julia ML and AD ecosystem (through ChainRules.jl)
1 Problem statement
 - Static problem
 - Dynamic problem

2 Machine Learning pipeline

3 Learning approach

4 Results
Results: 4.4% average gap

Benchmark on 2252 instances-seed combinations:
Winner team of Euro-NeurIPS competition

<table>
<thead>
<tr>
<th>Rank</th>
<th>Team name</th>
<th>Dynamic cost</th>
<th>Static rank</th>
<th>Dynamic rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kléopatra</td>
<td>348831.56</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>OptiML</td>
<td>359270.09</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Team_SB</td>
<td>358161.36</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>HustSmart</td>
<td>361803.57</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Miles To Go Before We Sleep</td>
<td>369098.13</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>
