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Discussion

A PAC-Bayesian Bound for Batch Learning

A PAC-Bayesian Bound for Online Learning

Bayesian inference

Typical machine learning problem

Main ingredients :

observations object-label : (X1,Y1), (X2,Y2), ...
! either given once and for all (batch learning), once at
a time (online learning), upon request...
a restricted set of predictors (f✓, ✓ 2 ⇥).
! f✓(X ) meant to predict Y .
a criterion of success, R(✓) :
! for example R(✓) = P(f✓(X ) 6= Y ), R(✓) = k✓ � ✓0k
where ✓0 is a target parameter, ... we want R(✓) to be
small. But note that it is unknown.
an empirical proxy r(✓) for this criterion of success :
! for example r(✓) = 1

n

Pn
i=1 1(f✓(Xi) 6= Yi).
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PAC-Bayesian bounds

One more ingredient :

a prior ⇡(d✓) on the parameter space.
The PAC-Bayesian approach usually provides a “posterior
distribution” ⇢̂� and a theoretical guarantee :
Z

R(✓)⇢̂�(d✓)  inf
⇢

Z
R(✓)⇢(d✓) +

1
�
K(⇢, ⇡)

�
+ o(1).

Usually o(1) is explicit, � is some tuning-parameter to be
calibrated (constrained to some range by theory), and ⇢̂� is the
“Gibbs posterior”

⇢̂�(d✓) / exp [��r(✓)]⇡(d✓).
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Outline of the talk

1 Introduction : Learning with PAC-Bayes Bounds
A PAC-Bayesian Bound for Batch Learning
A PAC-Bayesian Bound for Online Learning
Bayesian inference

2 Variational Approximation of the Posterior
Analysis of VB approximations of Gibbs posteriors
Applications : classification, collaborative filtering
Analysis of VB approximations of the Tempered Posterior

3 Discussion
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Catoni’s bound for batch learning

Theorem [Catoni 2007]

8� > 0, P
(Z

R(✓)⇢̂�(d✓)

 inf
⇢

Z
R(✓)⇢(d✓) +

�B2

n
+

2
�


K(⇢, ⇡) + log

✓
2
"

◆��)

� 1 � ".

improving on seminal work :

Shawe-Taylor, J. & Williamson, R. C. (1997). A PAC Analysis of a Bayesian Estimator. COLT’97.

McAllester, D. A. (1998). Some PAC-Bayesian Theorems. COLT’98.
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Application : finite set of predictors ✓1, . . . , ✓M

With ⇡ the uniform distribution on {✓1, . . . , ✓M} we get
Z

R(✓)⇢̂�(d✓)

 inf
⇢=�✓i

Z
Rd⇢+

�B2

n
+

2
�


K(⇢, ⇡) + log

✓
2
"

◆��

 inf
1iM


R(✓i) +

�B2

n
+

2
�


log(M) + log

✓
2
"

◆��

= inf
1iM

R(✓i) + 2B

r
2 log(M)

n
+ log

✓
2
"

◆s
1

2n log(M)

for � =

p
2n log(M)

B
.

Pierre Alquier Variational Approximations



Introduction : Learning with PAC-Bayes Bounds

Variational Approximation of the Posterior

Discussion

A PAC-Bayesian Bound for Batch Learning

A PAC-Bayesian Bound for Online Learning

Bayesian inference

Application : finite set of predictors ✓1, . . . , ✓M

With ⇡ the uniform distribution on {✓1, . . . , ✓M} we get
Z

R(✓)⇢̂�(d✓)

 inf
⇢=�✓i

Z
Rd⇢+

�B2

n
+

2
�


K(⇢, ⇡) + log

✓
2
"

◆��

 inf
1iM


R(✓i) +

�B2

n
+

2
�


log(M) + log

✓
2
"

◆��

= inf
1iM

R(✓i) + 2B

r
2 log(M)

n
+ log

✓
2
"

◆s
1

2n log(M)

for � =

p
2n log(M)

B
.

Pierre Alquier Variational Approximations



Introduction : Learning with PAC-Bayes Bounds

Variational Approximation of the Posterior

Discussion

A PAC-Bayesian Bound for Batch Learning

A PAC-Bayesian Bound for Online Learning

Bayesian inference

Application : finite set of predictors ✓1, . . . , ✓M

With ⇡ the uniform distribution on {✓1, . . . , ✓M} we get
Z

R(✓)⇢̂�(d✓)

 inf
⇢=�✓i

Z
Rd⇢+

�B2

n
+

2
�


K(⇢, ⇡) + log

✓
2
"

◆��

 inf
1iM


R(✓i) +

�B2

n
+

2
�


log(M) + log

✓
2
"

◆��

= inf
1iM

R(✓i) + 2B

r
2 log(M)

n
+ log

✓
2
"

◆s
1

2n log(M)

for � =

p
2n log(M)

B
.

Pierre Alquier Variational Approximations



Introduction : Learning with PAC-Bayes Bounds

Variational Approximation of the Posterior

Discussion

A PAC-Bayesian Bound for Batch Learning

A PAC-Bayesian Bound for Online Learning

Bayesian inference

1 Introduction : Learning with PAC-Bayes Bounds
A PAC-Bayesian Bound for Batch Learning
A PAC-Bayesian Bound for Online Learning
Bayesian inference

2 Variational Approximation of the Posterior
Analysis of VB approximations of Gibbs posteriors
Applications : classification, collaborative filtering
Analysis of VB approximations of the Tempered Posterior

3 Discussion

Pierre Alquier Variational Approximations



Introduction : Learning with PAC-Bayes Bounds

Variational Approximation of the Posterior

Discussion

A PAC-Bayesian Bound for Batch Learning
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2nd example : online learning

(X1,Y1), (X2,Y2), ... without any assumption.

any (f✓, ✓ 2 ⇥).
given (X1,Y1), (X2,Y2), ..., (Xt�1,Yt�1) and Xt we are
asked to predict Yt : by Ŷt . At some time T the game
stops and we evaluate the regret :

R =
TX

t=1

`(Yt , Ŷt)� inf
✓

TX

t=1

`(Yt , f✓(Xt)),

` is bounded by B and cvx. w.r.t its second argument.
at time t we can use as a proxy of the quality of ✓ :
rt�1(✓) =

Pt�1
h=1 `(Yh, f✓(Xh)).

any prior ⇡.
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stops and we evaluate the regret :

R =
TX

t=1

`(Yt , Ŷt)� inf
✓

TX

t=1

`(Yt , f✓(Xt)),

` is bounded by B and cvx. w.r.t its second argument.
at time t we can use as a proxy of the quality of ✓ :
rt�1(✓) =

Pt�1
h=1 `(Yh, f✓(Xh)).

any prior ⇡.
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PAC-Bayesian bound for online learning

Fix � > 0 and define, at each time t,

⇢̂�,t(d✓) / exp[��rt�1(✓)]⇡(d✓) and Ŷt =

Z
f✓(Xt)⇢̂�,t(d✓).

Theorem [Consequence of Audibert, 2006]

TX

t=1

`(Yt , Ŷt)  inf
⇢

(Z TX

t=1

`(Yt , f✓(Xt))⇢(d✓)

+
�TB2

2
+

K(⇢, ⇡)

�

)
.
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3rd example : Bayesian statistics

X1, . . . ,Xn i.i.d from P✓0 .

a statistical model (P✓, ✓ 2 ⇥) dominated : dP✓
dµ = p✓.

criterion on ✓ : K(P✓0 ,P✓) or h(P✓0 ,P✓).
we measure the data-fit by the likelihood :

L(✓|X n
1 ) =

nY

i=1

p✓(Xi).

any prior ⇡ on ⇥.
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Posterior and variants

The posterior :

⇡(✓|X n
1 ) / L(✓|X n

1 )⇡(✓)

/ exp(�rn(✓))⇡(✓)

where rn(✓) = �
Pn

i=1 log p✓(Xi).

Tempered posterior (or fractional posterior), for 0 < ↵  1 :

⇡↵(✓|X n
1 ) / exp(�↵rn(✓))⇡(✓)

/ L(✓|X n
1 )

↵⇡(✓).
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Various reasons to use a tempered posterior

easier to sample from.

G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

more robust to model misspecification (at least
empirically)

P. Grünwald & T. van Ommen (2017). Inconsistency of Bayesian inference for misspecified linear
models, and a proposal for repairing it. Bayesian Analysis.

theoretical analysis easier

A. Bhattacharya, D. Pati & Y. Yang (2016). Bayesian fractional posteriors. Preprint

arxiv :1611.01125.
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PAC-Bayesian inequality for the tempered posterior

(Based on [Bhattacharya, D. Pati & Y. Yang, 2016]).

Theorem [Alquier & Ridgway, 2017]
For any ↵ 2 (1/2, 1),

E
Z

h2(P✓,P✓0)⇡↵(d✓|X n
1 )

�

 inf
⇢

⇢
↵

1 � ↵

Z
K(P✓0 ,P✓)⇢(d✓) +

K(⇢, ⇡)

n(1 � ↵)

�
.
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Concentration of the tempered posterior

B(r) = {✓ 2 ⇥ : K(P✓0 ,P✓)} .

Corollary
For any sequence ("n) such that

� log ⇡[B(rn)]  n"n

we have

E
Z

h2(P✓,P✓0)⇡↵(d✓|X n
1 )

�
 1 + ↵

1 � ↵
"n.
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The (more classical) case ↵ = 1 is covered in depth in :
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Variational Bayes methods

Idea : approximate the posterior distribution ⇡(✓|X n
1 ). We fix a

convenient family of probability distributions F and
approximate the posterior by ⇡̃(✓) :

⇡̃ = arg min
⇢2F

K(⇢, ⇡(·|X n
1 )).

Jordan, M. et al (1999). An Introduction to Variational Methods for Graphical Models. Machine

Learning.

F is either parametric or non-parametric. In the parametric
case, the problem boils down to an optimization problem :

F = {⇢a, a 2 A ⇢ Rd} 99K min
a2A

K(⇢a, ⇡(·|X n
1 )).

Theoretical guarantees on the approximation ?
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VB in the machine learning framework

⇢̂�(d✓) / exp [��r(✓)]⇡(d✓).

Then :

K(⇢a, ⇢̂�) =

Z
log

d⇢a
d⇡

d⇡
d⇢̂�

�
d⇢a

= �

Z
r(✓)⇢a(d✓) +K(⇢a, ⇡) + log

Z
exp[��r ]d⇡.

We put

ã� = arg min
a2A


�

Z
r(✓)⇢a(d✓) +K(⇢a, ⇡)

�
and ⇢̃� = ⇢â� .
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A PAC-Bound for VB Approximation

Theorem
Alquier, P., Ridgway, J. & Chopin, N. (2015). On the Properties of Variational Approximations of
Gibbs Posteriors. JMLR.

8� > 0, P
(Z

R(✓)⇢̃�(d✓)

 inf
a2A

Z
R(✓)⇢a(d✓) +

�

n
+

2
�


K(⇢a, ⇡) + log

✓
2
"

◆��)

� 1 � ".

99K if we can derive a tight oracle inequality from this bound,
we know that the VB approximation is “at no cost”.

Pierre Alquier Variational Approximations



Introduction : Learning with PAC-Bayes Bounds

Variational Approximation of the Posterior

Discussion

Analysis of VB approximations of Gibbs posteriors

Applications : classification, collaborative filtering

Analysis of VB approximations of the Tempered Posterior

A PAC-Bound for VB Approximation

Theorem
Alquier, P., Ridgway, J. & Chopin, N. (2015). On the Properties of Variational Approximations of
Gibbs Posteriors. JMLR.

8� > 0, P
(Z

R(✓)⇢̃�(d✓)

 inf
a2A

Z
R(✓)⇢a(d✓) +

�

n
+

2
�


K(⇢a, ⇡) + log

✓
2
"

◆��)

� 1 � ".

99K if we can derive a tight oracle inequality from this bound,
we know that the VB approximation is “at no cost”.

Pierre Alquier Variational Approximations



Introduction : Learning with PAC-Bayes Bounds

Variational Approximation of the Posterior

Discussion

Analysis of VB approximations of Gibbs posteriors

Applications : classification, collaborative filtering

Analysis of VB approximations of the Tempered Posterior

1 Introduction : Learning with PAC-Bayes Bounds
A PAC-Bayesian Bound for Batch Learning
A PAC-Bayesian Bound for Online Learning
Bayesian inference

2 Variational Approximation of the Posterior
Analysis of VB approximations of Gibbs posteriors
Applications : classification, collaborative filtering
Analysis of VB approximations of the Tempered Posterior

3 Discussion

Pierre Alquier Variational Approximations



Introduction : Learning with PAC-Bayes Bounds

Variational Approximation of the Posterior

Discussion

Analysis of VB approximations of Gibbs posteriors
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Application to a linear classification problem

(X1,Y1), (X2,Y2), ..., (Xn,Yn) iid from P.

f✓(x) = 1(h✓, xi � 0), x , ✓ 2 Rd .
R(✓) = P[Y 6= f✓(X )].
rn(✓) =

1
n

Pn
i=1 1[Yi 6= f✓(Xi)].

Gaussian prior ⇡ = N (0,#I ).
Gaussian approx. of the posterior :
F =

�
N (µ,⌃), µ 2 Rd ,⌃ s. pos. def.

 
.

Optimization criterion :

�

n

nX

i=1

�

 
�Yi hXi , µip
hXi ,⌃Xii

!
+

kµk2

2#
+

1
2

✓
1
#

tr(⌃)� log |⌃|
◆

using deterministic annealing and gradient descent.
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Application of the main theorem

Corollary
Assume that, for k✓k = k✓0k = 1,
P(h✓,X i h✓0,X i)  ck✓ � ✓0k and take � =

p
nd and

# = 1/
p
d . Then

P
(Z

R(✓)⇢̃�(d✓)  inf
✓
R(✓) +

r
d

n

h
log(4ne2) + c

i

+
2 log

�2
"

�
p
nd

)
� 1 � ".

N.B : under margin assumption, possible to obtain d/n rates...
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Sketch of the proof

By the main theorem, with probability at least 1 � ",
Z

Rd⇢̃�

 inf
⇢=N (✓,s2I )

Z
Rd⇢+

�

n
+

2
�


K(⇢, ⇡) + log

✓
2
"

◆��
.

As ⇡ = N (0,#I ) we have

K(⇢, ⇡) =
1
2


M

✓
s2

#
� 1 + log

✓
#

s2

◆◆
+

k✓0k2

#

�
.

ThenZ
Rd⇢  R(✓) +

Z
2cku � ✓k⇢(du)  R(✓) + 2c

p
M�.

Chose adequate values for �, # and s2 to conclude.
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Test on real data

Dataset Covariates VB SMC SVM

Pima 7 21.3 22.3 30.4
Credit 60 33.6 32.0 32.0
DNA 180 23.6 23.6 20.4
SPECTF 22 06.9 08.5 10.1
Glass 10 19.6 23.3 4.7
Indian 11 25.5 26.2 26.8
Breast 10 1.1 1.1 1.7

Table – Comparison of misclassification rates (%). Last column :
kernel-SVM with radial kernel. The hyper-parameters � and # are
chosen by cross-validation.
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Convexification of the loss

Can replace the 0/1 loss by a convex surrogate at “no” cost :

Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex
risk minimization. Annals of Statistics.

R(✓) = E[(1 � Yf✓(X ))+] (hinge loss).
rn(✓) =

1
n

Pn
i=1(1 � Yi f✓(Xi))+.

Gaussian approx. : F =
�
N (µ, �2I ), µ 2 Rd , � > 0

 
.

99K the following criterion (which turns out to be convex !) :

1
n

nX

i=1

(1 � Yi hµ,Xii)�
✓

1 � Yi hµ,Xii
�kXik2

◆

+
1
n

nX

i=1

�kXik'
✓

1 � Yi hµ,Xii
�kXik2

◆
+
kµk2

2

2#
+
d

2

✓
#

�2 � log �2
◆
.
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Application of the main theorem

Optimization with stochastic gradient descent on a ball of
radius M . On this ball, the objetive function is L-Lipschitz.
After k step, we have the approximation ⇢̃(k)� of the posterior.

Corollary

Assume kXk  cx a.s., take � =
p
nd and # = 1/

p
d . Then

P
(Z

R(✓)⇢̃(k)� (d✓)  inf
✓
R(✓)

+
LMp
1 + k

+
cx
2

r
d

n
log
⇣n
d

⌘
+

c2
x+1
2cx + 2cx log

�2
"

�
p
nd

)

� 1 � ".
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The PACVB package (James Ridgway)
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Collaborative filtering as matrix completion

Stan
Pierre
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Bob
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Léa
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1-bit matrix completion

Object of interest : an m1 ⇥m2 matrix M , values in

{ , } = {�1,+1}.

Entries X1 = (i1, j1), . . . , (in, jn) i.i.d from a distribution P , and
Y` = MX`

.

Usual assumption : rank(M) = r ⌧ min(m1,m2).
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Prior specification

Prior ⇡

M|{z}
m1⇥m2

= L|{z}
m1⇥K

RT
|{z}
K⇥m2

,

Li ,k ,Rj ,k |�k ⇠ N (0, �k),
1
�k

⇠ �(a, b).

Empirical hinge risk :

r(L,R) =
1
n

nX

`=1

�
1 � Y`(LR

T )X`

�
+
.

Gibbs posterior : ⇢̂�(L,R) = exp [��r(L,R)]⇡(L,R).

Pierre Alquier Variational Approximations



Introduction : Learning with PAC-Bayes Bounds

Variational Approximation of the Posterior

Discussion

Analysis of VB approximations of Gibbs posteriors

Applications : classification, collaborative filtering

Analysis of VB approximations of the Tempered Posterior

Prior specification

Prior ⇡

M|{z}
m1⇥m2

= L|{z}
m1⇥K

RT
|{z}
K⇥m2

,

Li ,k ,Rj ,k |�k ⇠ N (0, �k),
1
�k

⇠ �(a, b).

Empirical hinge risk :

r(L,R) =
1
n

nX

`=1

�
1 � Y`(LR

T )X`

�
+
.

Gibbs posterior : ⇢̂�(L,R) = exp [��r(L,R)]⇡(L,R).

Pierre Alquier Variational Approximations



Introduction : Learning with PAC-Bayes Bounds

Variational Approximation of the Posterior

Discussion

Analysis of VB approximations of Gibbs posteriors

Applications : classification, collaborative filtering

Analysis of VB approximations of the Tempered Posterior

Prior specification

Prior ⇡

M|{z}
m1⇥m2

= L|{z}
m1⇥K

RT
|{z}
K⇥m2

,

Li ,k ,Rj ,k |�k ⇠ N (0, �k),
1
�k

⇠ �(a, b).

Empirical hinge risk :

r(L,R) =
1
n

nX

`=1

�
1 � Y`(LR

T )X`

�
+
.

Gibbs posterior : ⇢̂�(L,R) = exp [��r(L,R)]⇡(L,R).

Pierre Alquier Variational Approximations



Introduction : Learning with PAC-Bayes Bounds

Variational Approximation of the Posterior

Discussion

Analysis of VB approximations of Gibbs posteriors

Applications : classification, collaborative filtering

Analysis of VB approximations of the Tempered Posterior

Variational approximation

Here, family of approximation : ⇢a = ⇢(L,R,S ,⌃,↵,�)

Li ,k indep. N (Li ,k , Si ,k), Ri ,k indep. N (Ri ,k ,⌃i ,k),

1
�k

indep. �(↵k , �k).

In this case, the
R
rd⇢a is not tractable but we prove that

8a 2 A,

Z
rd⇢a +

K(⇢a, ⇡)

�
 r

�
LRT

�
+ B�(a)

for some known and tractable B�(a).

Definition

⇢̃ = arg min
⇢a

r
�
LRT

�
+ B�(a).
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Application of the general result

Theorem
Cottet, V. & Alquier, P. (2018). 1-bit Matrix Completion : PAC-Bayesian Analysis of a
Variational Approximation. Machine Learning.

With proba. at least 1 � " on the sample,

P(L,R)⇠⇢̃,(i ,j)⇠P [sign((LRT )i ,j) 6= Mi ,j ]  C r(m1 +m2) log(n)
n

for some (known) C > 0.

in practice, blockwise coordinate optimization with
gradient descent gives good results to compute ⇢̃.
in the paper, extention for noisy observations.
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Simulation study

Comparison with the logistic regression approach with nuclear
norm penalization from

J. Laffond, O. Klopp, E. Moulines & J. Salmon (2014). Probabilistic low-rank matrix completion
on finite alphabets. NIPS.
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Reminder : concentration of the tempered posterior

B(r) = {✓ 2 ⇥ : K(P✓0 ,P✓)  r} .

Theorem
For 1/2  ↵ < 1, for any sequence ("n) such that

� log ⇡[B(rn)]  n"n

we have

E
Z

h2(P✓,P✓0)⇡↵(d✓|X n
1 )

�
 1 + ↵

1 � ↵
"n.
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Analysis of VB approx.

VB. approx : ⇡̃↵ = arg min
⇢2F

K(⇢, ⇡↵(·|X n
1 )).

Theorem
Alquier, P. & Ridgway, J. (2017). Concentration of Tempered Posteriors and of their Variational
Approximations. Preprint arXiv.

Fix 1/2  ↵ < 1. Assume that for the sequence ("n) there is
⇢n 2 F such that

Z
K(P✓0 ,P✓)⇢n(d✓)  "n and K(⇢n, ⇡)  "n.

Then E
Z

h2(P✓,P✓0)⇡̃↵(d✓|X n
1 )

�
 1 + ↵

1 � ↵
"n.
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Further work (1/2)

our paper contains applications to various statistical
models (logistic regression, nonparametric regression
estimation).

our paper also contains results for the misspecified case
where the true distribution of the Xi does not belong to
(P✓, ✓ 2 ⇥).
the case ↵ = 1 (“proper” Bayesian inference) is not
covered by our paper. It was recently analyzed by

F. Zhang & C. Gao (2017). Convergence rates of variational posterior distributions. Preprint

arXiv.

This requires additional assumptions and does not cover
the misspecified case.
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Further work (2/2)

according to a recent survey (Blei et al), one of the most
popular applications of VB is to mixture models. The
upper bound is also used for model selection. Blei states
that there is no justification to this. Badr-Eddine
Chérief-Abdellatif since proved this is consistent.

D. Blei, A. Kucukelbir & J. D. McAuliffe (2017). Variational inference : A review for statisticians.
Journal of the American Statistical Association.

B.-E. Chérief-Abdellatif & P. Alquier, (2018). Consistency of Variational Bayes Inference for
Estimation and Model Selection in Mixtures. Preprint arXiv.
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Discussion

Issue 1 : distortion of the posterior

we proved that the VB approx. concentrates at the
optimal rate but what about the closeness of the approx.
to the true posterior ?

example : it is well known by practitioners that VB tends
to reduce the variance of the posterior.
is it possible to control the variance distortion ?
controversial : it is also well known that Bayesian
“credibility intervals” can be misleading.
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Issue 2 : convergence of the optimization algorithm

in the case of classification with hinge loss, we obtain a
convex minimization problem. This also happens for
logistic regression.

but in many other settings, the VB approximation is
defined by a non-convex minimization problem. In this
case, the convergence is an open issue in general. E.g :
mixture models.
the work on matrix completion relies on alternate
optimisation of d(M ,UV ) w.r.t U and V . The problem is
convex in U , in V , but not in (U ,V ). Still, recent work
gives hope that this procedure might converge :

R. Ge, J. D. Lee & T. Ma (2016). Matrix Completion has No Spurious Local Minimum. NIPS.
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Issue 3 : online variational approximations

online algorithms (like OGA) are sometimes used to
compute the variational approximation. This is called
online variational inference by

C. Wang, J. Paisley & D. Blei (2011). Online variational inference for the hierarchical Dirichlet
process. AISTATS.

but a more challenging question is to extend variational
approximations to approximate EWA in the online setting
(extend the result by [Audibert, 2016]) : it is well known
that apart in the case of a finite number of predictors,
EWA is not feasible in practice...
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Issue 3 : reminder

Fix � > 0 and define, at each time t,

⇢̂�,t(d✓) / exp[��rt�1(✓)]⇡(d✓) and Ŷt =

Z
f✓(Xt)⇢̂�,t(d✓).

Theorem [Consequence of Audibert, 2006]

TX

t=1

`(Yt , Ŷt)  inf
⇢

(Z TX

t=1

`(Yt , f✓(Xt))⇢(d✓)

+
�TB2

2
+

K(⇢, ⇡)

�

)
.
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Issue 3 : extension of VB

Many definitions are possible. For example :

C. V. Nguyen, T. D. Bui, Y. Li & R. E. Turner (2017). Online Variational Bayesian Inference :
Algorithms for Sparse Gaussian Processes and Theoretical Bounds. ICML.

propose

⇢̂�,t(d✓) / exp[��rt�1(✓)]⇡(d✓) and ⇢̃�,t = arg min
⇢2F

K (⇢, ⇢̂�,t) .

Interesting, but might computationally expensive, and there is
no accurate theoretical analysis.

We work currently on an alternative approach with
Badr-Eddine.
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Thank you !
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