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1 The sketched learning approach

2 A framework for sketched learning

3 Two examples
Sketched PCA
Sketched clustering

4 How to construct a sketching operator
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C�������� ����� ��� ��������

I Each training data point is stored as a d -vector

I Training collection X = (x1, . . . , xn) seen as a (d , n) matrix

I Usual abstract approach (decision theory):
I Want to find a predictor (“hypothesis”) h 2 H suited to data
I Performance on data point x measured by loss function `(x , h)
I Goal is to minimize averaged loss and approximate the minimizer

h⇤ = Arg Min
h2H

R(h) = Arg Min
h2H

E[`(X , h)]

I Assuming (x1, . . . , xn) are drawn i.i.d., natural proxy is empirical risk minimizer

bhERM = min
h2H

bR(h) = min
h2H

1
n

n

Â
i=1

`(xi , h)

(can possibly be combined with regularization)
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S��� ��������� ��������

I Linear Regression/Classification: x = (z , y), z 2 Rd�1, y 2 R,
h 2 H = Rd�1, `(x , h) = (hz , hi � y)2,
Goal: predict label y from knowledge of z . (Will not be considered in this talk.)

I Principal Component Analysis (PCA): H is the set of k-dimensional hyperplanes,
`(x , h) = kX � PhXk2,
Goal: find a k-dimensional linear projection approximating the data on average.

I Clustering by k-means or k-medians: H = (Rd )k is the set of k-uple of
“centroids”, `(x , (c1, . . . , ck )) = minikx � cik

p , (p = 1 or p = 2),
Goal: find a best k-point discretization of the data distribution.

I k-Gaussian mixture modelling: H = (Rd
⇥ R)k is the set of Gaussian centers

`(x , (ci , ai )i ) = log
⇣

Âk
i=1 ai exp

⇣
kx � cik

2/2
⌘⌘

,
Goal: find a best approximation (in the KL sense) of the data distribution by a
k-mixture of standard Gaussians.
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C�������� ���������

bR(h) = 1
n Ân

i=1 `(xi , h)

x1

x2

x3

xn

h 2 H

Data Learning

Arg Min
h 2 H

d

n

I Storage cost: O(nd )
I Computation cost: O((nd )k) (generally 1 < k  3)
I Stochastic gradient can help but often requires several data passes

Can we compress data before learning?
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C���������� ����������

P

x1 x2 x3 xn

n

dX =

d 0PX =

Dimension reduction / Linear projection

For instance random projection, see e.g. [Calderbank & al 2009, Reboredo & al 2013]
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C���������� ����������

n0

x1 x2 x3 xn

n

X = d

X 0 = d

Subsampling,
Coreset selection

Nyström method & coresets

For instance [Williams & Seeger 2000, Agarwal & al 2003, Felman 2010] 6 / 32



S�������� ��� ����������� �������

m

x1 x2 x3 xn

n

X = d

bEF1(X )

bEF2(X )

bEFm(X )

Sketching

bEFk(X ) = 1
n Ân

i=1 Fk(xi)

Inspiration: compressive sensing [Foucart & Rauhut 2013];
sketching/hashing [Thaper & al. 2002, Cormode & al. 2005]

Relations to: generalized method of moments [Hall 2005],
kernel mean embeddings [Smola & al. 2007, Sriperimbudur & al. 2010]
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S������� �������� ��������

F1,F2, . . . ,Fm

(= 1
n Ân

i=1 F1(xi))

bE[Fm(X )]

bE[F1(X )]

bE[F2(X )]

X ! R

Learn?

Data

Arg Min bR(h)

h 2 H

Sketch
(Empirical moments)

h 2 H

x1

x2

x3

xn

d

n
m

Which moments Fi ? How large should m be?
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A��������� �� ���������

I Storage cost after sketching: O(m)

I Relation to streaming setting: sketch can be updated very easily

I Distributed setting: sketches can be collected and averaged locally, then averaged
globally.

Possible drawback: increased computation cost of learning: (hopefully polynomial in m)
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F���� ��������������

I In the classical approach, learning theory guarantees are of the form

sup
h2H

���R(h)� bR(h)
���  #(n) ,

with high probability, e.g. #(n) = O
⇣q

g
n

⌘
for a hypothesis space of metric

dimension g.

I This implies that the ERM estimator satisfies the risk bound

R(bhERM)  R(h⇤) + #(n).

I To preserve this property up to constant factor for an estimator ehSketched it is
sufficient to ensure that

���R(bhERM)�R(ehSketched )
��� . sup

h2H

���R(h)� bR(h)
���.
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A ����� ��������

I A first thought is to discretize the hypothesis space into h1, . . . , hm and take

Fi (x) := `(x , hi ), i = 1, . . . ,m.

I Then we simply have

bE[Fi (X )] =
1
n

n

Â
j=1

`(xj , hi ) = bR(hi ), i = 1, . . . ,m.

I Knowing bE[Fi (X )], we can replace ERM by “discretized ERM” over h1, . . . , hm .

I To ensure
��R(bhERM)�R(ehdisc.ERM)

��  #(n), require (h1, . . . , hm) to be an
#(n)-covering of the space H (say for supremum norm).

I If H is of metric dimension g a covering typically requires
m = O(#�g) = O(ng/2) , seems hopeless!
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S��� ���� (1)

I Consider “trivial” example `(x , h) = kx � hk2, goal is to learn mean
h⇤ = E[X ]; obviously only need to store only the empirical mean
bE[h(X )] = 1

n Ân
i=1 xi i.e. m = 1!

I Can this phenomenon be generalized?
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S��� ���� (2)

I Example 2: PCA. Since we only need the estimated (covariance) matrix to find PCA
directions, we only need to keep moments of order 2 (m = O(d 2)).

I We can even hope do to better by using low-rank approximations of the covariance.
Using random projections on Gaussian vectors is a well-known means to this goal.
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T������ �������� ����������

I Example 3: We will be interested in learning goals where the target cannot be
easily represented in terms of moments, i.e. k-means/k-medians.
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A� �������� ���������

I Let M denote the set of probability measures on X = Rd .
I Define the Risk Operator

R(p, h) = EX⇠p [`(X , h)].

Note that the empirical risk is

bR(h) = R(bpn, h), with bpn =
1
n

n

Â
i=1

dxi (empirical measure).

I Observe that R(p, h) is linear in p.

I Given F(x) = (F1(x), . . . ,Fm(x)) define the sketching operator

AF(p) = EX⇠p [F(X )].

The data sketch is s = bE[F(X )] = AF(bpn).
I Note that AF is a linear operator on probability measures.
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A������� (������ �������)

I Sketch step:
s = AF(bpn) 2 Rm.

I Reconstruction (“decoding”) from sketch step:

s 7! D[s] =: ep 2 M.

This formally reconstructs a probability distribution ep by applying the “decoder”
D to the sketch.

I Approximate learning step:

eh = Arg Min
h2H

R(ep, h).

16 / 32
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G��� ��� ������

I Remember from initial considerations we aim (ideally) at
���R(bhERM ,p)�R(ehSketched ,p)

��� . sup
h2H

|R(h,p)�R(h, bpn)|.

I Since bhERM and ehSketched are two ERMs based on the true empirical bpn and its
reconstruction ep, a sufficient condition for the above is

sup
h2H

|R(h,p)�R(h, ep)| . sup
h2H

|R(h,p)�R(h, bpn)|.

Denoting krk
L(H) := suph2H|R(h, r)|, and ep := D(AF(bpn)), rewrite as

kp � D(AF(bpn))kL(H) . kp � bpnkL(H) .

I Reconstruction obtained from sketch information only, hence reasonable to aim at

��p � D(AF(p
0))
��
L(H) .

��AF(p � p0)
��

2 .
��p � p0

��
L(H) ,

for appropriate p,p0 (maybe in some restricted model).
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A������� �����������/�������� �������
(Bourrier et al, 2014)

I Assume we have a “model” S ⇢ M so that the sketching operator satisfies the
following lower restricted isometry property:

8p,p0
2 S

��p � p0
��
L(H)  CA

��A(p � p0)
��

2 . (LRIP)

I Then the “ideal decoder”

D(s) = Arg Min
p2S

ks �A(p)k2

satisfies the following instance optimality property for any p,p0:
��p � D(A(p0))

��
L(H) . d (p,S) +

��A(p � p0)
��

2 ,

with
d (p,S) = inf

s2S

⇣
kp � sk

L(H) + 2CAkA(p � s)k2

⌘
.

I (Conversely, the above property implies a LRIP inequality).
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B�������� ��� �������� �������� ������

I Define suitable restricted model for distributions S. Generally it should include
distributions whose risk vanishes.

I Find suitable sketching dimension m and features F so that the corresponding
sketching operator AF satisfies a LRIP inequality, restricted to model S.

I Define the ideal decoder from sketch s

D(s) = Arg Min
p2S

ks �AF(p)k2 .

I For theory: interpret the resulting instance optimality bound in terms of the
learning risk.

I For practice: find suitable approximation of the ideal decoder if it is
computationally too demanding.
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W��� ��: �������� PCA

I The risk is the PCA reconstruction error

RPCA(p, h) = EX⇠p

h
kX � PhXk2

2

i
,

where h 2 H = linear subspaces of dimension k ,
and Ph = orthogonal projector onto h.

I To construct AF, use a linear operator M to Rm satisfying the RIP

1 � d 
kM(M)k2

2

kMk
2
Frob

 1 + d

for all matrices M of rank less than k .
(m = O(kd ) using random linear operator, Candès and Plan 2011)

I Sketch: AF(bpn) = M(bSn) (apply M to empirical covar. matrix bS.)
I Reconstruct from a sketch s : find

eS = Arg Min
rank(M)k

ks �M(M)k2 .

I Output: eh = space spanned by k first eigenvectors of eS.

20 / 32
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T���������� ���������

For any distribution p on B(0, R), we have the bound (w.h.p. over data sampling)

RPCA(p,eh)�RPCA(p, h⇤)  C

 
p

kRPCA(p, h⇤) + R2
r

k

n

!
.

I independent of total data dimension

I the first factor
p

k may be spared using more precise results from low rank matrix
sensing (also convex relaxation of reconstruction program for better computational
efficiency)

21 / 32



S������� ����������: �������

I Consider k-means or k-medians. Assume data is bounded by R .

I Hypothesis space: H = Hk ,2#,R , set of cluster centroids h = (c1, . . . , ck ) that
are R-bounded and pairwise 2#-separated.

I Loss function
`(x , h) = min

1ik
kx � cik

p
2 ,

with p = 1 for k-medians, p = 2 for k-means.

I Restricted model: S = Sk ,2#,R set of k-point distributions whose support is in
Hk ,2#,R .

22 / 32
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S������� ����������: ���������

I Fourier features: consider scaled Fourier features

Fw(x) =
Cw
p

m
eiwt x ,

where Cw ' d /((1 + #kwk) log k).

I Random frequency vectors: draw w1, . . . ,wm i.i.d. in Rd from the distribution
with density

L(w) µ (1 + #2
kwk

2) exp(�#2
kwk

2/(2 log k)) .

I The sketching operator AF corresponds to the random Fourier features (Fwi ),
i = 1, . . . ,m.

23 / 32
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I Reconstruct from a sketch s : find

ep = Arg Min
p2Sk ,2#,R

ks �AF(p)k2 .

I Output: centroids given by support of ep.

I Theoretical guarantee on reconstruction: if

m � k 2dpolylog(k , d ) log

✓
R

#

◆
,

then for any distribution p on B(0, R), with high probability on the draw of
frequencies and of the data, it holds

R(p,eh)�R(p, h⇤) . Rp
p

k log k

#
R(p, h⇤)

1
p +

Rpd
p

k log k
p

n
.
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Simplifications (or cut corners. . . ) for experiments:

I Use regular Gaussian density for frequency drawing (no weighting)

I Use heuristic greedy search for the reconstruction operator

I Ignore the 2#-separation constraint for reconstruction
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Data: mixture of 10 Gaussians with uniform weights and centers drawn from a Gaussian
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Normalized k-means risk, on n = 104k points uniformly drawn in [0, 1]d , d = 10 (left),
k = 10 (right).
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I Core of approach: finding a sketching operator AF satisfying LRIP.

I Use as intermediary a kernel Hilbert norm k.kk satisfying LRIP:

8p,p0
2 S

��p � p0
��
L(H) .

��p � p0
��

k,

where k is a reproducing kernel and kpk
2
k = EX ,X 0⇠p⌦2 [k(X , X 0)].

I Assume on the other hand the following representation holds:

k(x , x 0) = Ew⇠L

h
fw(x)fw(x 0)

i
,

where (fw) is a family of complex-valued feature functions.

I Strategy: sample random features wi ⇠ L, ensuring (w.h.p.) the corresponding
sketching operator delivers good enough approximation to k.kk i.e.

8p,p0
2 S

��p � p0
��

k .
��AF(p � p0)

��
2 .
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I Uniform approximation of the kernel norm by the sketching norm obtained via
Bernstein’s inequality + covering argument on the normalized secant set

Sk.kk
(S) =

⇢
p � p0

kp � p0kk

���p,p0
2 S

�
.

I More precisely we find the sufficient condition

m & logN (Sk.kk
(S), dF , 1/2) ,

where dF (p,p0) = supw

���|EX⇠p [Fw(X )]|2 � |EX⇠p0 [Fw(X )]|2
��� .

I Finally, the vectorial form of Bernstein’s inequality can be used again (this time on
the data) to control the estimation noise kAF(p � bpn)k2.
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Overview of remaining steps to obtain bound on risk and sketch dimension:

I Establish the LRIP between the risk norm k.k
L(H) and the kernel norm k.kk on

the model S.
I Results obtained for general family of RBF-type kernels and models given by

k-mixtures of distributions

I Bound the (log) covering numbers: requires some classical inequalities between
covering numbers

I Once the instance optimality inequality is obtained, relate back the terms of the
bound to the learning task (learning risk).
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C���������

I The sketched learning framework holds promise to reduce computation and
memory burden

I General theoretical framework based on:
I LRIP/compressed sensing recovery principles
I Kernel embeddings and random features

I Theoretical recovery guarantees and bounds on the sketch dimension needed

I Applications:
I sketched PCA
I sketched clustering
I skteched mixture of Gaussians estimation
I . . .more to come?
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SketchML matlab toolbox available:
(large-scale mixture learning using sketches)

http://sketchml.gforge.inria.fr/

ArXiv Preprint:

Compressive Statistical Learning with Random Feature Moments
R. Gribonval, G. Blanchard, N. Keriven, Y. Traonmilin

https://arxiv.org/abs/1706.07180
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