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PLAN

@ The sketched learning approach
@ A framework for sketched learning

© Two examples
Sketched PCA
Sketched clustering

@ How to construct a sketching operator
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CLASSICAL MODEL FOR LEARNING

» Each training data point is stored as a d-vector

» Training collection X = (xj, ..., Xp) seenasa (d, n) matrix
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» Each training data point is stored as a d-vector
» Training collection X = (xj, ..., Xp) seenasa (d, n) matrix

» Usual abstract approach (decision theory):

» Want to find a predictor (“hypothesis”) h € 7 suited to data
» Performance on data point x measured by loss function /(x, h)
» Goal is to minimize averaged loss and approximate the minimizer

h* = ArgMin R (h) = ArgMinE[((X, h)]
heH heH
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CLASSICAL MODEL FOR LEARNING

» Each training data point is stored as a d-vector
» Training collection X = (xj, ..., Xp) seenasa (d, n) matrix

» Usual abstract approach (decision theory):
» Want to find a predictor (“hypothesis”) h € 7 suited to data
» Performance on data point x measured by loss function /(x, h)
» Goal is to minimize averaged loss and approximate the minimizer

h* = ArgMin R (h) = ArgMinE[((X, h)]
heH heH

> Assuming (x, .. ., Xp) are drawn i.i.d., natural proxy is empirical risk minimizer
N N 10
hegmy = min R(h) = min — ) £(x;, h
ErM = min (h) 22'7%21 (x;., h)

=

(can possibly be combined with regularization)
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SOME CLASSICAL EXAMPLES

» Linear Regression/Classification: x = (z, y),z € Ry e R,
he H =R U(x h) = ((z.h) —y),
Goal: predict label y from knowledge of z. (Will not be considered in this talk.)

» Principal Component Analysis (PCA): 7 is the set of k-dimensional hyperplanes,
(0x, b) = [ X = PR
Goal: find a k-dimensional linear projection approximating the data on average.

» Clustering by k-means or k-medians: 2 = (IR) is the set of k-uple of
“centroids”, /(x, (q, ..., c)) = minj[|x — ¢||P,(p=1orp = 2),
Goal: find a best k-point discretization of the data distribution.

> k-Gaussian mixture modelling: 7 = (IRY x R)¥ is the set of Gaussian centers
£(x, (¢, aj);) = log <Ef'(:1 “/eXP(HX - C,-H2/2)>,
Goal: find a best approximation (in the KL sense) of the data distribution by a
k-mixture of standard Gaussians.
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CLASSICAL FRAMEWORK

| ’
_ L

Data Learning

» Storage cost: O(nd)
» Computation cost: O((nd)") (generally 1 < x < 3)
» Stochastic gradient can help but often requires several data passes
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CLASSICAL FRAMEWORK

Data

» Storage cost: O(nd)

heH

Jl

R() = 10,00, ) ’

'

—

Learning

» Computation cost: O((nd)") (generally 1 < x < 3)
» Stochastic gradient can help but often requires several data passes

Can we compress data before learning?
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COMPRESSING APPROACHES

~~ I

Dimension reduction / Linear projection

For instance random projection, see e.g. [Calderbank & al 2009, Reboredo & al 2013]
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COMPRESSING APPROACHES

Subsampling,
Coreset selection

N I .
- I

Nystrém method & coresets

For instance [Williams & Seeger 2000, Agarwal & al 2003, Felman 2010] P



SKETCHING VIA GENERALIZED MOMENTS

n

Sketching

] ]E@k(X) = %2?21 D(x)

Inspiration: compressive sensing [Foucart & Rauhut 2013];
sketching/hashing [Thaper & al. 2002, Cormode & al. 2005]
Relations to: generalized method of moments [Hall 2005],
kernel mean embeddings [Smola & al. 2007, Sriperimbudur & al. 2010]
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SKETCHED LEARNING APPROACH

Sketch

Data (Empirical moments)

heH

Which moments ©;? How large should m be?

Learn?
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ADVANTAGES OF SKETCHING

» Storage cost after sketching: O(m)

» Relation to streaming setting: sketch can be updated very easily

» Distributed setting: sketches can be collected and averaged locally, then averaged
globally.

Possible drawback: increased computation cost of learning: (hopefully polynomial in m)
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FIRST CONSIDERATIONS

» In the classical approach, learning theory guarantees are of the form

R(h) = R(h)| < e(n),

sup
heH

with high probability, e.g. ¢(n) = O(
dimension 7.

%

%) for a hypothesis space of metric
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» In the classical approach, learning theory guarantees are of the form

R(h) = R(h)| < e(n),

sup
heH

with high probability, e.g. ¢(n) = O ( ﬂ ) for a hypothesis space of metric
dimension 7.
» This implies that the ERM estimator satisfies the risk bound

R (heam) < R(K*) +&(n).
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FIRST CONSIDERATIONS

» In the classical approach, learning theory guarantees are of the form

R(h) = R(h)| < e(n),

sup
heH

with high probability, e.g. ¢(n) = O < ﬂ ) for a hypothesis space of metric
dimension 7.

» This implies that the ERM estimator satisfies the risk bound

R (heam) < R(h*) +e(n).

» To preserve this property up to constant factor for an estimator gy e, it is
sufficient to ensure that

7?'(EERM> - 7?'(775!(etched) ’ N ;,UZ

R(h) — R(h)|.
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A NAIVE APPROACH

» A first thought is to discretize the hypothesis spaceinto /1, . . ., hm and take

D;(x) := L(x, hy), i=1..., m.

> Then we simply have

B[0(0)] = LY t0gh) = R(h),  i=1.om
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A NAIVE APPROACH

» A first thought is to discretize the hypothesis spaceinto /1, . . ., hm and take

D;(x) := L(x, hy), i=1..., m.

> Then we simply have

B[0(0)] = LY t0gh) = R(h),  i=1.om

» Knowing IE[®;(X)], we can replace ERM by “discretized ERM" over f, . . ., hm.

> Toensure | R (hegu) — R (B eam)| < e(n), require (hy, ..., hm) tobean
¢(n)-covering of the space 7 (say for supremum norm).

» |f 7 is of metric dimension 7y a covering typically requires
m=0(e7) = 0(n"'?), seems hopeless!
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SOME HOPE (1)

» Consider “trivial” example /(x, h) = || x — h||%, goal is to learn mean
h* = E[X]; obviously only need to store only the empirical mean
E[h(X)] =1y xiem=1

~n

12/ 32



SOME HOPE (1)

» Consider “trivial” example /(x, h) = || x — h||%, goal is to learn mean
h* = E[X]; obviously only need to store only the empirical mean
E[h(X)] =1y xiem=1

~n

» Can this phenomenon be generalized?
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SOME HOPE (2)

» Example 2: PCA. Since we only need the estimated (covariance) matrix to find PCA
directions, we only need to keep moments of order 2 (m = O(d?)).

» We can even hope do to better by using low-rank approximations of the covariance.
Using random projections on Gaussian vectors is a well-known means to this goal.
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TOWARDS SKETCHED CLUSTERING

» Example 3: We will be interested in learning goals where the target cannot be
easily represented in terms of moments, i.e. k-means/ k-medians.
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AN ABSTRACT FRAMEWORK

» Let 90 denote the set of probability measures on X' = IR
» Define the Risk Operator

R(7, h) = Ex_[¢(X, h)].

Note that the empirical risk is

n

i=1

» Observe that R (7t, h) is linear in 7.

R(h) = R(7p, h), with 7T, = % ) _ 5y, [empirical measure).
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AN ABSTRACT FRAMEWORK

» Let 90 denote the set of probability measures on X' = IR

v

Define the Risk Operator
R, h) = Exonl0(X, h)].

Note that the empirical risk is

n
R(h) = R(7n, h), with 7T, = % ) _ 5y, [empirical measure).
i=

v

Observe that R (7, h) is linear in 77.
Given ®(x) = (P4(x), ..., D, (x)) define the sketching operator

v

.Aq)(ﬂ) = ]EXwn[q)(X”-

-~

The data sketchis s = E[D(X)] = Ag(7T,).

Note that A, is a linear operator on probability measures.

v
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APPROACH (FORMAL VERSION)

» Sketch step: () .
5= Ap 7/1\,',7 e R".
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APPROACH (FORMAL VERSION)

» Sketch step: () .
5= Ap 7/1\,',7 e R".

» Reconstruction (“decoding”) from sketch step:
s Als] =: T € M.

This formally reconstructs a probability distribution 77 by applying the “decoder”
A to the sketch.
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APPROACH (FORMAL VERSION)

» Sketch step: () .
5= Ap ﬁn e R".

» Reconstruction (“decoding”) from sketch step:
s Als] =1 T e M.
This formally reconstructs a probability distribution 77 by applying the “decoder”
A to the sketch.
» Approximate learning step:

h = ArgMin R(7, h).
heH
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GOAL FOR THEORY

» Remember from initial considerations we aim (ideally) at

R (e, 7) — R Rsieted: )| S sup| R (h, 1) — R (h o).
€
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GOAL FOR THEORY

» Remember from initial considerations we aim (ideally) at

R (e, 7) — R Rsieted: )| S sup| R (h, 1) — R (h o).
€

» Since fizzy and Pstetcheq are two ERMs based on the true empirical 77, and its
reconstruction 77, a sufficient condition for the above is

sup|R(h, 1) — R(h, )| < sup|R(h, ) — R(h, 7Tn)|.
heH heH
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GOAL FOR THEORY

» Remember from initial considerations we aim (ideally) at

R (e, 7) — R Rsieted: )| S sup| R (h, 1) — R (h o).
€

» Since fizzy and Pstetcheq are two ERMs based on the true empirical 77, and its
reconstruction 77, a sufficient condition for the above is

sup|R(h, t) — R(h, 77)| < sup|R(h 1) — R(h, 7Tn)|.
heH heH

Denoting (0| () := suppey R (A p)|,and 7T := A(Aq (715)), rewrite as

171 = A(AS(7Tn)) | £(0) S 170 = Tenll £ o)

» Reconstruction obtained from sketch information only, hence reasonable to aim at

17z = 8(Ae ()| £y S A (m =], S |72 = 7| 23

for appropriate 7T, /T/ (maybe in some restricted model).
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ABSTRACT COMPRESSION/DECODING RESULTS

(Bourrier et al, 2014)

> Assume we have a “model” & C 91 so that the sketching operator satisfies the
following lower restricted isometry property:

v, e H”_”/Hc('}-{) < CAH.A(T[—T[’)HZ. (LRIP)
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ABSTRACT COMPRESSION/DECODING RESULTS

(Bourrier et al, 2014)

> Assume we have a “model” & C 91 so that the sketching operator satisfies the

following lower restricted isometry property:

Ve ed |- g5 < Cll Al =),

» Then the “ideal decoder”

A(s) = ArgMin|js — A7),

Ted

satisfies the following instance optimality property for any 7t, 77:

l7e = ACA) | £ 3g) S d0.8) + [| AT =) .

with

d(m,6) = inf (|| = ol o) + 2Call AT = 0)],)

» (Conversely, the above property implies a LRIP inequality).

(LRIP)
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BLUEPRINT FOR SKETCHED LEARNING METHOD

» Define suitable restricted model for distributions &. Generally it should include
distributions whose risk vanishes.
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BLUEPRINT FOR SKETCHED LEARNING METHOD

» Define suitable restricted model for distributions &. Generally it should include
distributions whose risk vanishes.

» Find suitable sketching dimension m and features & so that the corresponding
sketching operator A4 satisfies a LRIP inequality, restricted to model &.
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BLUEPRINT FOR SKETCHED LEARNING METHOD

» Define suitable restricted model for distributions &. Generally it should include
distributions whose risk vanishes.

» Find suitable sketching dimension m and features & so that the corresponding
sketching operator A4 satisfies a LRIP inequality, restricted to model &.

» Define the ideal decoder from sketch s
A(s) = ArgMin||s — Ag (), .
eSS
» For theory: interpret the resulting instance optimality bound in terms of the

learning risk.

» For practice: find suitable approximation of the ideal decoder if it is
computationally too demanding.
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WARM UP: SKETCHED PCA

» Therisk is the PCA reconstruction error
2
Rpca(. h) = Exre [ IX = PoX1]

where h € H = linear subspaces of dimension &,
and P, = orthogonal projector onto h.

20/ 32



WARM UP: SKETCHED PCA

» Therisk is the PCA reconstruction error
2
Reca(7, h) = Exr[|1X = PX|2]

where h € H = linear subspaces of dimension &,
and P, = orthogonal projector onto h.
» To construct A, use a linear operator /M to IR” satisfying the RIP

IMM 5

1-0< 5
HMHFmb

for all matrices M of rank less than &.
(m = O(kd) using random linear operator, Candés and Plan 2011)
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WARM UP: SKETCHED PCA

» Therisk is the PCA reconstruction error
2
Reca(7, h) = Exr[|1X = PX|2]

where h € H = linear subspaces of dimension &,
and P, = orthogonal projector onto h.
» To construct A, use a linear operator /M to IR” satisfying the RIP

IMMIZ s

1-0< 5
HMHFmb

for all matrices M of rank less than &.
(m = O(kd) using random linear operator, Candés and Plan 2011)

» Sketch: Ag(77,) = M (Z,) (apply /M to empirical covar. matrix 3..)
» Reconstruct from a sketch s: find

¥ = ArgMin|[s — M(M)|],.
rank(M) <k

» Output: /= space spanned by £ first eigenvectors of 3.
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THEORETICAL GUARANTEE

For any distribution 7z on B(0, R), we have the bound (w.h.p. over data sampling)

Reca(7t,h) — Rpea(t, h*) < C<ﬂ7€pa(n, h*) + RZ\/§> _

» independent of total data dimension

» the first factor \/k may be spared using more precise results from low rank matrix
sensing (also convex relaxation of reconstruction program for better computational
efficiency)

7M1/ 32



SKETCHED CLUSTERING: SETTING

» Consider k-means or k-medians. Assume data is bounded by R.

» Hypothesis space: # = H; 5. p, set of cluster centroids h = (¢, .. ., ¢ ) that
are R-bounded and pairwise 2¢-separated.

» Loss function
L(x,h) = min ||x—¢]?,
(x, h) @'&H ill3

with p = 1for k-medians, p = 2 for k-means.
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SKETCHED CLUSTERING: SETTING

v

Consider k-means or k-medians. Assume data is bounded by R.

v

Hypothesis space: 7 = 7 . g, set of cluster centroids / = (¢, ..., ¢y ) that
are R-bounded and pairwise 2¢-separated.

Loss function

v

£x.h) = min 1~ .

with p = 1for k-medians, p = 2 for k-means.

v

Restricted model: & = & 5. g set of k-point distributions whose support is in
Hi2e,R-
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SKETCHED CLUSTERING: SKETCHING

» Fourier features: consider scaled Fourier features

q)w(x) _ &e/aﬂx'

where C, ~ d/((1+¢||w]) log k).
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SKETCHED CLUSTERING: SKETCHING

» Fourier features: consider scaled Fourier features

q)w(x) _ j%eiwtx '

where C, ~ d/((1+¢||w]) log k).

» Random frequency vectors: draw vy, . . ., wpmiid.inRY from the distribution
with density

A(w) « (1+ e2]|w]|?) exp(—€]|w|*/ (2log k)) .

» The sketching operator .4, corresponds to the random Fourier features (P, ),
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SKETCHED CLUSTERING: RECONSTRUCTION

» Reconstruct from a sketch s: find

7T = ArgMin||s — Ao ()|, .

eS¢ R

» Output: centroids given by support of 77.
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SKETCHED CLUSTERING: RECONSTRUCTION

» Reconstruct from a sketch s: find

7T = ArgMin||s — Ao ()|, .

eS¢ R

» Output: centroids given by support of 77.

» Theoretical guarantee on reconstruction: if

m > k*dpolylog(k, d) log <§> ,
then for any distribution 77 on 3(0, R), with high probability on the draw of
frequencies and of the data, it holds

< Rp\/klogkR RPdk log k

(T, h* )P + NG

R(mt, h) — R(m, h*)
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SKETCHED CLUSTERING: EXPERIMENTS

Simplifications (or cut corners...) for experiments:

» Use regular Gaussian density for frequency drawing (no weighting)

» Use heuristic greedy search for the reconstruction operator

» Ignore the 2¢-separation constraint for reconstruction
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SKETCHED CLUSTERING: EXPERIMENTS

Data: mixture of 10 Gaussians with uniform weights and centers drawn from a Gaussian

0.02 0.04 0.06 0.02 0.04 0.06 0.08

25

10’ 107" 10° 10’
m/(kd) m/(kd)

Normalized k-means risk, on n = 10 k points uniformly drawniin [0, 1]%, d = 10 (left),

k =10 (right).
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SKETCHED CLUSTERING: EXPERIMENTS

S 10° 0
> & 0000000009 &
o =
£ 2 yevwvIVVVYy £
(0] g (]
S o 10 ) £
(0] x O 10 S XI
2 E ettt <
© = >
o) ) =
o = \ ©
& ¢ o
(] -2 ‘ ‘ E
@ 10 0 1 0 1
10 10 10 10
m/(kd) m/(kd) m/(kd)

Q@ n=10* ¥ n=10° ¥ n=10°% ¢ n=10"

Relative time, memory and k-means risk of CKM with respect to k-means (10°
represents the k-means result). (¢ = 10)
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CONSTRUCTING A SUITABLE SKETCHING OPERATOR

» Core of approach: finding a sketching operator .4, satisfying LRIP.
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CONSTRUCTING A SUITABLE SKETCHING OPERATOR

» Core of approach: finding a sketching operator .4, satisfying LRIP.

» Use as intermediary a kernel Hilbert norm ||. || satisfying LRIP:

v, ned HT[—T[/Hﬁ(H)SHn_n/HK’

where ic is a reproducing kernel and || 7||> = Ey xr ez [K(X, X")].
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CONSTRUCTING A SUITABLE SKETCHING OPERATOR

» Core of approach: finding a sketching operator .4, satisfying LRIP.
» Use as intermediary a kernel Hilbert norm ||. || satisfying LRIP:
R el Y e
where 1 is a reproducing kernel and || 71\\,2( = Ey yr. o2 [k(X, X')].
> Assume on the other hand the following representation holds:
K(x,x') = Epon {4;“, (X)W} ,

where (¢, ) is a family of complex-valued feature functions.
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CONSTRUCTING A SUITABLE SKETCHING OPERATOR

» Core of approach: finding a sketching operator .4, satisfying LRIP.
» Use as intermediary a kernel Hilbert norm ||. || satisfying LRIP:
L P P e
where 1 is a reproducing kernel and || 71\\,2( = Ey yr. o2 [k(X, X')].
> Assume on the other hand the following representation holds:
K(x,x') = Epon {4;“, (X)W} ,
where (¢, ) is a family of complex-valued feature functions.

» Strategy: sample random features cv; ~ A, ensuring (w.h.p.) the corresponding
sketching operator delivers good enough approximationto ||. ||, i.e.

Vi e 6 = S | Ae(m = 7)),
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DIMENSION OF SKETCH REQUIRED

» Uniform approximation of the kernel norm by the sketching norm obtained via
Bernstein's inequality + covering argument on the normalized secant set

T—7
Hn’* 7T/H1c

S, (8) = {

T, e 6}
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DIMENSION OF SKETCH REQUIRED

» Uniform approximation of the kernel norm by the sketching norm obtained via
Bernstein's inequality + covering argument on the normalized secant set

T—7
Hn’* 7T/H1c

), (8) = {

e 6}

» More precisely we find the sufficient condition

m Z |Og./\f(SHHK<G), d]:, 1/2) s

where dr (71, 77') = supy, ||Exex[®ew(X)] > = [Exwmw [@w(X)]]?] .
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DIMENSION OF SKETCH REQUIRED

» Uniform approximation of the kernel norm by the sketching norm obtained via
Bernstein's inequality + covering argument on the normalized secant set

T—7
Hn’* 7T/H1c

T, e 6}

S, (8) = {

» More precisely we find the sufficient condition

m z |°gN(SH-HK<G)' d]—‘, 1/2) )

where dr (77, ') = sup|[Ex-r [@e (X)]|* = [Exor [0 (X)] ] -

» Finally, the vectorial form of Bernstein’s inequality can be used again (this time on
the data) to control the estimation noise || Aq (77 — 77,) |-
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APPLICATION TO MIXTURES AND CLUSTERING

Overview of remaining steps to obtain bound on risk and sketch dimension:

> Establish the LRIP between the risk norm ||. | - ;) and the kernel norm ||. ||, on
the model &.

» Results obtained for general family of RBF-type kernels and models given by
k-mixtures of distributions
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» Bound the (log) covering numbers: requires some classical inequalities between
covering numbers
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APPLICATION TO MIXTURES AND CLUSTERING

Overview of remaining steps to obtain bound on risk and sketch dimension:

> Establish the LRIP between the risk norm ||. | - ;) and the kernel norm ||. ||, on
the model &.

» Results obtained for general family of RBF-type kernels and models given by
k-mixtures of distributions

» Bound the (log) covering numbers: requires some classical inequalities between
covering numbers

» Once the instance optimality inequality is obtained, relate back the terms of the
bound to the learning task (learning risk).
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CONCLUSION

v

The sketched learning framework holds promise to reduce computation and
memory burden

General theoretical framework based on:

» LRIP/compressed sensing recovery principles
» Kernel embeddings and random features

v

v

Theoretical recovery guarantees and bounds on the sketch dimension needed

v

Applications:

» sketched PCA

> sketched clustering

» skteched mixture of Gaussians estimation
> ...more to come?
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SketchML matlab toolbox available:
(large-scale mixture learning using sketches)

http://sketchml.gforge.inria.fr/

ArXiv Preprint:

Compressive Statistical Learning with Random Feature Moments

R. Gribonval, G. Blanchard, N. Keriven, Y. Traonmilin
https://arxiv.org/abs/1706.07180
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