Séminaire de Mathématiques Appliquées du CERMICS

Étude d'un problème d'interaction fluide-structure : Modélisation, Analyse, Stabilisation et Simulations numériques.

Guillaume Delay (IMT/CERMICS)

4 octobre 2018

Étude d'un problème d'interaction fluide-structure: Modélisation, Analyse, Stabilisation et Simulations numériques.

Guillaume Delay

Institut de Mathématiques de Toulouse

Jeudi 4 octobre 2018

Objectif : Stabiliser le sillage autour d'une structure en la déformant.

Tourbillons derrière un avion.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Une aile d'avion.

Motivations (2/2)

Profil d'aile en soufflerie.

Allées de Von Kármán.

Solution stationnaire.

Solution perturbée.

Contrôle agissant par déformation de la structure.

• Modélisation du problème d'interaction fluide-structure

Sexistence et unicité d'une solution au problème

Stabilisation d'une solution autour d'un état stationnaire

Simulations numériques

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Section 1:

Modélisation du problème d'interaction fluide-structure.

(日) (四) (전) (전) (전) (전)

La configuration du problème

イロト イヨト イヨト イヨト

2

590

But : Modéliser un profil d'aile d'avion avec une gouverne pouvant se braquer (solutions fortes).

<u>Difficulté</u> : solutions fortes \longrightarrow déformations régulières (point O fixe).

Solides liés par des pivots.

Déformations continues.

Remarque : On pourrait prendre N > 2 paramètres.

Représentation de la cinématique de la structure

Choix :

- La structure dépend de 2 paramètres réels $(\theta_1, \theta_2) \in \mathbb{D}_{\Theta}$.
- Utilisation d'un difféomorphisme $\mathbf{X}(\theta_1, \theta_2, .)$.
- La fonction X est \mathscr{C}^{∞} (+ autres hypothèses).

- $S(\theta_1, \theta_2)$ le domaine de la structure.
- $\mathscr{F}(\theta_1, \theta_2)$ le domaine du fluide.
- $\mathbf{Y}(\theta_1, \theta_2, .)$ le difféomorphisme inverse de $\mathbf{X}(\theta_1, \theta_2, .)$.
- Comment donner des équations représentant la dynamique d'une telle structure ?

Principe des travaux virtuels

$$\begin{cases} \mathsf{Trouver}\left(\theta_{1}(t),\theta_{2}(t)\right)\in\mathbb{D}_{\Theta}, \text{ tel que} \\ \text{pour tout }\mathbf{w}\in\operatorname{Vect}(\partial_{\theta_{1}}\mathbf{X}(\theta_{1}(t),\theta_{2}(t),.),\partial_{\theta_{2}}\mathbf{X}(\theta_{1}(t),\theta_{2}(t),.)), \\ \int_{S(0,0)}\rho\left(\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}(\mathbf{X}(\theta_{1}(t),\theta_{2}(t),\mathbf{y}))-\mathbf{f}_{body}(t,\mathbf{X}(\theta_{1}(t),\theta_{2}(t),\mathbf{y}))\right)\cdot\mathbf{w}(\mathbf{y})\,\mathrm{d}\mathbf{y} \\ -\int_{\partial S(\theta_{1}(t),\theta_{2}(t))}-\sigma_{F}(\mathbf{u},p)\mathbf{n}(\gamma_{x})\cdot\mathbf{w}(\mathbf{Y}(\theta_{1}(t),\theta_{2}(t),\gamma_{x}))\,\mathrm{d}\gamma_{x}=0. \end{cases}$$

$$\begin{aligned} \left(\text{Trouver} \left(\theta_{1}, \theta_{2} \right) \in \mathbb{D}_{\Theta}, \text{ tel que pour } i \in \{1, 2\}, \\ \int_{S(0,0)} \rho \sum_{j} \ddot{\theta}_{j} \partial_{\theta_{j}} \mathbf{X}(\theta_{1}, \theta_{2}, \mathbf{y}) \cdot \partial_{\theta_{i}} \mathbf{X}(\theta_{1}, \theta_{2}, \mathbf{y}) \, \mathrm{d}\mathbf{y} \\ &= - \int_{S(0,0)} \rho \sum_{j,k} \dot{\theta}_{j} \dot{\theta}_{k} \partial_{\theta_{j}\theta_{k}} \mathbf{X}(\theta_{1}, \theta_{2}, \mathbf{y}) \cdot \partial_{\theta_{i}} \mathbf{X}(\theta_{1}, \theta_{2}, \mathbf{y}) \, \mathrm{d}\mathbf{y} \\ &+ \int_{S(0,0)} \mathbf{f}_{body}(t, \mathbf{X}(\theta_{1}, \theta_{2}, \mathbf{y})) \cdot \partial_{\theta_{i}} \mathbf{X}(\theta_{1}, \theta_{2}, \mathbf{y}) \, \mathrm{d}\mathbf{y} \\ &+ \int_{\partial S(\theta_{1}, \theta_{2})} -\sigma_{F}(\mathbf{u}, p) \mathbf{n}(\gamma_{x}) \cdot \partial_{\theta_{i}} \mathbf{X}(\theta_{1}, \theta_{2}, \mathbf{Y}(\theta_{1}, \theta_{2}, \gamma_{x})) \, \mathrm{d}\gamma_{x}, \end{aligned}$$

$$\mathcal{M}_{\theta_1,\theta_2}\!\begin{pmatrix} \ddot{\theta}_1\\ \ddot{\theta}_2 \end{pmatrix} = \mathbf{M}_{\mathbf{I}}(\theta_1,\theta_2,\dot{\theta}_1,\dot{\theta}_2) + \mathbf{M}_{\mathbf{A}}(\theta_1,\theta_2,-\sigma_F(\mathbf{u},p)\mathbf{n}) + \mathbf{f}_{\mathbf{s}}.$$

Les équations du problème fluide-structure

$$\begin{split} & \begin{pmatrix} \partial \mathbf{u} \\ \partial t \\ \partial t \\ \end{pmatrix} + (\mathbf{u}(t, \mathbf{x}) + (\mathbf{u}(t, \mathbf{x}) \cdot \nabla) \mathbf{u}(t, \mathbf{x}) \\ & -\operatorname{div} \sigma_F(\mathbf{u}(t, \mathbf{x}), p(t, \mathbf{x})) = \mathbf{f}_{\mathscr{F}}(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \mathscr{F}(\theta_1(t), \theta_2(t)), \\ & \operatorname{div} \mathbf{u}(t, \mathbf{x}) = 0, & t \in (0, T), \quad \mathbf{x} \in \mathscr{F}(\theta_1(t), \theta_2(t)), \\ & \mathbf{u}(t, \mathbf{x}) = \sum_{j=1}^{2} \dot{\theta}_j(t) \partial_{\theta_j} \mathbf{X}(\theta_1(t), \theta_2(t), \mathbf{Y}(\theta_1(t), \theta_2(t), \mathbf{x})), & t \in (0, T), \quad \mathbf{x} \in \partial S(\theta_1(t), \theta_2(t)), \\ & \mathbf{u}(t, \mathbf{x}) = \mathbf{u}^i(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \partial S(\theta_1(t), \theta_2(t)), \\ & \mathbf{u}(t, \mathbf{x}) = \mathbf{u}_i(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \Gamma_i, \\ & \mathbf{u}(t, \mathbf{x}) = 0, & t \in (0, T), \quad \mathbf{x} \in \Gamma_w, \\ & \sigma_F(\mathbf{u}(t, \mathbf{x}), p(t, \mathbf{x})) \mathbf{n}(\mathbf{x}) = 0, & t \in (0, T), \quad \mathbf{x} \in \mathcal{F}_W, \\ & \mathbf{u}(0, \mathbf{x}) = \mathbf{u}_0(\mathbf{x}), & \mathbf{x} \in \mathscr{F}(\theta_{1,0}, \theta_{2,0}), \\ & \mathcal{M}_{\theta_1, \theta_2} \begin{pmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{pmatrix} = \mathbf{M}_{\mathbf{I}}(\theta_1, \theta_2, -\sigma_F(\mathbf{u}, p)\mathbf{n}) + \mathbf{f}_{\mathbf{s}}, & t \in (0, T), \\ & \theta_1(0) = \theta_{1,0}, \quad \theta_2(0) = \theta_{2,0}, \\ & \dot{\theta}_1(0) = \omega_{1,0}, \quad \dot{\theta}_2(0) = \omega_{2,0}. \end{split}$$

Termes de couplages en rouge.

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つくぐ

Les équations du problème fluide-structure avec le contrôle

$$\begin{split} & \begin{pmatrix} \partial \mathbf{u} \\ \partial t \\ \partial t \\ (t, \mathbf{x}) + (\mathbf{u}(t, \mathbf{x}) \cdot \nabla) \mathbf{u}(t, \mathbf{x}) \\ & - \operatorname{div} \sigma_F(\mathbf{u}(t, \mathbf{x}), p(t, \mathbf{x})) = \mathbf{f}_{\mathscr{F}}(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \mathscr{F}(\theta_1(t), \theta_2(t)), \\ \operatorname{div} \mathbf{u}(t, \mathbf{x}) &= 0, & t \in (0, T), \quad \mathbf{x} \in \mathscr{F}(\theta_1(t), \theta_2(t)), \\ \mathbf{u}(t, \mathbf{x}) &= \sum_{j=1}^{2} \dot{\theta}_j(t) \partial_{\theta_j} \mathbf{X}(\theta_1(t), \theta_2(t), \mathbf{Y}(\theta_1(t), \theta_2(t), \mathbf{x})), & t \in (0, T), \quad \mathbf{x} \in \partial S(\theta_1(t), \theta_2(t)), \\ \mathbf{u}(t, \mathbf{x}) &= \mathbf{u}^i(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \partial S(\theta_1(t), \theta_2(t)), \\ \mathbf{u}(t, \mathbf{x}) &= \mathbf{u}^i(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \mathcal{F}_{\mathbf{i}}, \\ \mathbf{u}(t, \mathbf{x}) &= 0, & t \in (0, T), \quad \mathbf{x} \in \Gamma_{\mathbf{w}}, \\ \sigma_F(\mathbf{u}(t, \mathbf{x}), p(t, \mathbf{x})) \mathbf{n}(\mathbf{x}) &= 0, & t \in (0, T), \quad \mathbf{x} \in \mathcal{F}_{\mathbf{w}}, \\ \mathbf{u}(0, \mathbf{x}) &= \mathbf{u}_0(\mathbf{x}), & \mathbf{x} \in \mathcal{F}_{\mathbf{N}}, \\ \mathbf{u}(0, \mathbf{x}) &= \mathbf{u}_0(\mathbf{x}), & \mathbf{x} \in \mathscr{F}(\theta_{1,0}, \theta_{2,0}), \\ \mathcal{M}_{\theta_1, \theta_2}\left(\begin{array}{c} \dot{\theta}_1 \\ \dot{\theta}_2 \end{array} \right) &= \mathbf{M}_{\mathbf{I}}(\theta_1, \theta_2, \dot{\theta}_1, \dot{\theta}_2) \\ &+ \mathbf{M}_{\mathbf{A}}(\theta_1, \theta_2, -\sigma_F(\mathbf{u}, p)\mathbf{n}) + \mathbf{f}_{\mathbf{s}} + \mathbf{h}, & t \in (0, T), \\ \theta_1(0) &= \theta_{1,0}, & \theta_2(0) = \theta_{2,0}, \\ \theta_1(0) &= \omega_{1,0}, & \dot{\theta}_2(0) = \omega_{2,0}. \end{split}$$

Termes de couplages en rouge.

Le contrôle en bleu.

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つくぐ

Section 2:

Existence et unicité de solutions fortes en temps petits.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへで

Le difféomorphisme $\mathbf{\Phi}^0(heta_1, heta_2,.)$

- Dans cette section $\theta_{1,0} = \theta_{2,0} = 0$.
- $S_0 = S(0,0).$
- $\mathscr{F}_0 = \mathscr{F}(0,0).$
- $\forall (\theta_1, \theta_2) \in \mathbb{D}_{\Theta}, \Phi^0(\theta_1, \theta_2, .)$ est un $\mathbf{W}^{3,\infty}$ -difféo de Ω vers Ω .
- $\forall (\theta_1, \theta_2) \in \mathbb{D}_{\Theta}, \Phi^0(\theta_1, \theta_2, S_0) = S(\theta_1, \theta_2).$
- $\forall (\theta_1, \theta_2) \in \mathbb{D}_{\Theta}, \forall \mathbf{y} \in \partial \Omega, \mathbf{\Phi}^0(\theta_1, \theta_2, \mathbf{y}) = \mathbf{y}.$

• Φ^0 extension de X dans Ω .

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Résultat

Existence et unicité de solutions fortes

Pour toutes données initiales $(\mathbf{u}_0, \omega_{1,0}, \omega_{2,0}) \in \mathbf{H}^1(\mathscr{F}_0) \times \mathbb{R}^2$ vérifiant div $\mathbf{u}_0 = 0$ dans \mathscr{F}_0 , $\mathbf{u}_0 = \sum_j \omega_{j,0} \partial_{\theta_j} \mathbf{X}(0, 0, .)$ sur ∂S_0 , $\mathbf{u}_0 = \mathbf{u}^i(0, .)$ sur Γ_i et $\mathbf{u}_0 = 0$ sur Γ_w ,

il existe un temps final T>0 tel que le système admet une unique solution $({\bf u},p,\theta_1,\theta_2)$ vérifiant

 $\begin{aligned} & (\theta_1, \theta_2) \in \mathrm{H}^2(0, T; \mathbb{D}_{\Theta}), \\ \mathbf{u}(t, \mathbf{\Phi}^0(\theta_1, \theta_2, \mathbf{y})) \in \mathrm{H}^1(0, T; \mathbf{L}^2(\mathscr{F}_0)) \cap \mathscr{C}^0([0, T]; \mathbf{H}^1(\mathscr{F}_0)) \\ & \cap \mathrm{L}^2(0, T; \mathbf{H}^2_\beta(\mathscr{F}_0)), \\ & p(t, \mathbf{\Phi}^0(\theta_1, \theta_2, \mathbf{y})) \in \mathrm{L}^2(0, T; \mathrm{H}^1_\beta(\mathscr{F}_0)). \end{aligned}$

Difficultés :

- Le domaine fluide change au cours du temps.
- Les constantes issues de l'étude du linéarisé doivent être indépendantes du temps final *T*.

nan

- Structure rigide
 - [Takahashi, 2003] (existence globale de solutions)
 - [San Martín, Starovoitov, Tucsnak, 2002] (plusieurs solides)
 - [Hillairet, 2007] (non collision de solides rigides)
- Structure déformable
 - [Lequeurre, 2011] (solutions locales pour une poutre)
 - [Grandmont, Hillairet, 2016] (solutions globales pour une poutre)
 - [Raymond, Vanninathan, 2014] (système de Lamé)
 - [San Martín, Scheid, Takahashi, Tucsnak, 2008] (nage d'un poisson)

イロト 不得下 イヨト イヨト ヨー ろくつ

• [Boulakia, Schwindt, Takahashi, 2012] (approximation d'une structure dépendant d'un nombre infini de ddl)

O Changement de variables pour travailler dans un domaine fixe

- **2** Réécriture du problème linéarisé en utilisant un semigroupe
- Analyticité de l'opérateur
- Sexistence d'une unique solution au problème linéarisé
- Théorème de point fixe pour obtenir le résultat sur le problème non linéaire

イロト イロト イヨト イヨト ヨー のくや

Réécriture du problème en domaine fixe

On utilise le changement de variables (divergence nulle) : $\forall t \in [0,T], \ \forall \mathbf{y} \in \mathscr{F}_0, \begin{cases} \tilde{\mathbf{u}}(t,\mathbf{y}) = \operatorname{cof}(\mathcal{J}_{\Phi^0}(\theta_1(t),\theta_2(t),\mathbf{y}))^T \mathbf{u}(t,\Phi^0(\theta_1(t),\theta_2(t),\mathbf{y})), \\ \tilde{p}(t,\mathbf{y}) = p(t,\Phi^0(\theta_1(t),\theta_2(t),\mathbf{y})). \end{cases}$

$$\begin{array}{ll} \mathsf{L} \text{'état en domaine fixe } (\tilde{\mathbf{u}}, \tilde{p}, \theta_1, \theta_2) \text{ vérifie les équations} \\ \begin{cases} \partial \tilde{\mathbf{u}} \\ \partial t \\ \partial t \\ \partial t \\ \tilde{\mathbf{u}} \\ = 0 \\ \tilde{\mathbf{u}} \\ = \dot{\theta}_1 \partial_{\theta_1} \Phi^0(0, 0, .) + \dot{\theta}_2 \partial_{\theta_2} \Phi^0(0, 0, .) + \mathbf{g} \\ \tilde{\mathbf{u}} \\ = \dot{\theta}_1 \partial_{\theta_1} \Phi^0(0, 0, .) + \dot{\theta}_2 \partial_{\theta_2} \Phi^0(0, 0, .) + \mathbf{g} \\ \tilde{\mathbf{u}} \\ = \mathbf{u}^i \\ \tilde{\mathbf{u}} \\ = 0 \\ \sigma_F(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n} = 0 \\ \sigma_F(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n} = 0 \\ \tilde{\mathbf{u}}(0, \mathbf{y}) = \mathbf{u}_0(\mathbf{y}) \\ & \text{dans } (0, T) \times \Gamma_{\mathbf{w}}, \\ \tilde{\mathbf{u}}(0, \mathbf{y}) = \mathbf{u}_0(\mathbf{y}) \\ & \text{dans } \mathscr{F}_0, \\ \mathcal{M}_{0,0} \left(\begin{array}{c} \ddot{\theta}_1 \\ \dot{\theta}_2 \end{array} \right) = \left(\begin{split} \int_{\partial S_0} [\tilde{p} \mathbf{I} - \nu (\nabla \tilde{\mathbf{u}} + (\nabla \tilde{\mathbf{u}})^T)] \mathbf{n} \cdot \partial_{\theta_1} \Phi^0(0, 0, \gamma_y) d\gamma_y \\ \int_{\partial S_0} [\tilde{p} \mathbf{I} - \nu (\nabla \tilde{\mathbf{u}} + (\nabla \tilde{\mathbf{u}})^T)] \mathbf{n} \cdot \partial_{\theta_2} \Phi^0(0, 0, \gamma_y) d\gamma_y \\ \theta_1(0) = 0, \quad \theta_2(0) = 0, \\ \dot{\theta}_1(0) = \omega_{1,0}, \quad \dot{\theta}_2(0) = \omega_{2,0}, \end{split} \right) + \mathbf{s} \quad \text{sur } (0, T), \\ \mathbf{f}, \mathbf{g}, \mathbf{s} : \text{ termes non linéaires.} \end{array}$$

Formulation semigroupe

Difficulté : élimination de la pression pour écrire le problème sous la forme d'un semigroupe.

• $\varepsilon_0 > 0$ donné, dépend de la géométrie.

$$\mathbb{H}_{0} = \left\{ \begin{aligned} (\tilde{\mathbf{u}}, \theta_{1}, \theta_{2}, \omega_{1}, \omega_{2}) \in \mathbf{L}^{2}(\mathscr{F}_{0}) \times \mathbb{R}^{4}, & \operatorname{div} \tilde{\mathbf{u}} = 0 \operatorname{dans} \mathscr{F}_{0}, \; \tilde{\mathbf{u}} \cdot \mathbf{n} = 0 \operatorname{sur} \Gamma_{\mathrm{D}}, \\ \tilde{\mathbf{u}} \cdot \mathbf{n} = \sum_{j} \omega_{j} \partial_{\theta_{j}} \Phi^{0}(0, 0, .) \cdot \mathbf{n} \operatorname{sur} \partial S_{0} \end{aligned} \right\},$$

$$D(A_0) = \begin{cases} (\tilde{\mathbf{u}}, \theta_1, \theta_2, \omega_1, \omega_2) \in \mathbf{H}^{3/2 + \varepsilon_0}(\mathscr{F}_0) \times \mathbb{R}^4, \\ \tilde{\mathbf{u}} = 0 \operatorname{sur} \Gamma_{\mathrm{D}}, \tilde{\mathbf{u}} = \sum_j \omega_j \partial_{\theta_j} \Phi^0(0, 0, .) \operatorname{sur} \partial S_0 \\ \operatorname{div} \tilde{\mathbf{u}} = 0 \operatorname{dans} \mathscr{F}_0, \exists \tilde{p} \in \mathrm{H}^{1/2 + \varepsilon_0}(\mathscr{F}_0) \text{ tel que} \\ \operatorname{div} \sigma_F(\tilde{\mathbf{u}}, \tilde{p}) \in \mathbf{L}^2(\mathscr{F}_0) \text{ et } \sigma_F(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n} = 0 \operatorname{sur} \Gamma_{\mathrm{N}} \end{cases} \end{cases} \right\},$$

$$A_{0} \begin{pmatrix} \theta_{1} \\ \theta_{2} \\ \omega_{1} \\ \omega_{2} \end{pmatrix} = \Pi_{\mathbb{H}_{0}} \begin{pmatrix} \omega_{1} \\ \omega_{2} \\ \mathcal{M}_{0,0}^{-1} \left(\int_{\partial S_{0}} -\sigma_{F}(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n} \cdot \partial_{\theta_{j}} \Phi^{0}(0, 0, \gamma_{y}) \, \mathrm{d}\gamma_{y} \right)_{j=1,2} \end{pmatrix},$$

où $\Pi_{\mathcal{W}}$ est la projection orthogonale sur \mathbb{H}_{0}

Théorème [Nguyen, Raymond, 2015].

Pour $\mathbf{f} \in \mathbf{L}^2(\mathscr{F}_0)$, l'unique solution $(\mathbf{u},p) \in \mathbf{H}^1(\mathscr{F}_0) \times \mathbf{L}^2(\mathscr{F}_0)$ de

 $\left\{ \begin{array}{ll} -{\rm div}\;\sigma_F(\mathbf{u},p)=\mathbf{f} & {\rm dans}\;\mathscr{F}_0,\\ {\rm div}\;\mathbf{u}=0 & {\rm dans}\;\mathscr{F}_0,\\ \mathbf{u}=0 & {\rm sur}\;\Gamma_{\rm D}\cup\partial S_0,\\ \sigma_F(\mathbf{u},p)\mathbf{n}=0 & {\rm sur}\;\Gamma_{\rm N}, \end{array} \right.$

appartient à $\mathbf{H}^2_{\beta}(\mathscr{F}_0) \times \mathrm{H}^1_{\beta}(\mathscr{F}_0)$.

Conséquence :

Si
$$(\tilde{\mathbf{u}}, \theta_1, \theta_2, \omega_1, \omega_2) \in D(A_0)$$
 alors $\tilde{\mathbf{u}} \in \mathbf{H}^2_{\beta}(\mathscr{F}_0)$.

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ● ○ ○ ○ ○

Semigroupe analytique

Le problème peut être écrit comme

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{z}(t) = A_0 \mathbf{z}(t), & t > 0, \\ \mathbf{z}(0) = \mathbf{z}_0, \end{cases}$$

avec l'état $\mathbf{z} = (\tilde{\mathbf{u}}, \theta_1, \theta_2, \omega_1, \omega_2).$

Proposition

L'opérateur $(A_0, D(A_0))$ engendre un semigroupe analytique sur \mathbb{H}_0 .

Conséquence : $\exists ! \mathbf{z} \in \mathrm{H}^1(0,T;\mathbb{H}_0) \cap \mathrm{L}^2(0,T;D(A_0))$ solution.

Fin de la preuve :

- Réécriture sous forme d'E.D.P.
- Théorème de point fixe.

イロト 不得 とくき とくき とうき

Section 3:

Stabilisation du système d'équations autour d'un état stationnaire pour des perturbations petites.

イロト 不得 とくき とくき とうき

L'état stationnaire

• Solution stationnaire $(\mathbf{w}, p_{\mathbf{w}}, \xi_1, \xi_2) \longrightarrow \xi_1 = \xi_2 = 0$,

$$\begin{cases} (\mathbf{w}(\mathbf{x}) \cdot \nabla) \mathbf{w}(\mathbf{x}) - \operatorname{div} \sigma_F(\mathbf{w}(\mathbf{x}), p_{\mathbf{w}}(\mathbf{x})) = \mathbf{f}_{\mathscr{F}}(\mathbf{x}), & \mathbf{x} \in \mathscr{F}_0, \\ \operatorname{div} \mathbf{w}(\mathbf{x}) = 0, & \mathbf{x} \in \mathscr{F}_0, \\ \mathbf{w}(\mathbf{x}) = 0, & \mathbf{x} \in \partial S_0, \\ \mathbf{w}(\mathbf{x}) = \mathbf{u}^i(\mathbf{x}), & \mathbf{x} \in \Gamma_i, \\ \mathbf{w}(\mathbf{x}) = 0, & \mathbf{x} \in \Gamma_w, \\ \sigma_F(\mathbf{w}(\mathbf{x}), p_{\mathbf{w}}(\mathbf{x})) \mathbf{n} = 0, & \mathbf{x} \in \Gamma_N, \\ 0 = \mathbf{M}_{\mathbf{I}}(0, 0, 0, 0) + \mathbf{M}_{\mathbf{A}}(0, 0, -\sigma_F(\mathbf{w}, p_{\mathbf{w}}) \mathbf{n}) + \mathbf{f}_{\mathbf{s}}. \end{cases}$$

But: Pour tout taux $\delta > 0$ choisi arbitrairement, construire un contrôle h de manière à ce que la solution du problème converge exponentiellement (avec un taux δ) : pour tout t > 0,

$$\|\mathbf{u}(t, \mathbf{\Phi}^{0}(\theta_{1}(t), \theta_{2}(t), .)) - \mathbf{w}(.)\|_{\mathbf{H}^{1}(\mathscr{F}_{0})} + |\theta_{1}| + |\theta_{2}| + |\dot{\theta}_{1}| + |\dot{\theta}_{2}| \le Ce^{-\delta t}$$

Critère de Kalman

Système linéarisé en domaine fixe : $(A_{\mathbf{w}}, B)$, $\lambda \in \mathbb{C}$, $\mathcal{R}e(\lambda) \geq -\delta$,

$$\begin{cases} A_{\mathbf{w}}^* \mathbf{z} = \lambda \mathbf{z}, \\ B^* \mathbf{z} = 0, \end{cases} \end{cases} \implies \mathbf{z} = 0.$$

•
$$\mathbf{z} = (\mathbf{v}, \theta_1, \theta_2, \omega_1, \omega_2).$$

- $B^*\mathbf{z} = (\omega_1, \omega_2).$
- $A^*_{\mathbf{w}}$ dépend de Φ^0 .
- Hypothèse indépendante de $\mathbf{\Phi}^0$.
- Résultat absent de la littérature.
- Hypothèse vérifiable numériquement.

イロト 不得下 イヨト イヨト

Э

Résultat

Soit $\delta > 0$ tel que l'hypothèse précédente soit vérifiée. Il existe un opérateur $\mathcal{K}_{\delta} \in \mathcal{L}(\mathbf{L}^2(\mathscr{F}_0) \times \mathbb{R}^4, \mathbb{R}^2)$ et $\varepsilon > 0$ tels que pour toute donnée initiale $(\mathbf{u}_0, \theta_{1,0}, \theta_{2,0}, \omega_{1,0}, \omega_{2,0})$ vérifiant

$$\begin{split} &\operatorname{div} \mathbf{u}_{0} = 0 \operatorname{dans} \mathscr{F}_{0}, \\ &\mathbf{u}_{0} = \sum_{j} \omega_{j,0} \partial_{\theta_{j}} \mathbf{X}(\theta_{1,0}, \theta_{2,0}, \mathbf{Y}(\theta_{1,0}, \theta_{2,0}, .)) \operatorname{sur} \partial S_{0}, \\ &\mathbf{u}_{0} = \mathbf{u}^{i}(0, .) \operatorname{sur} \Gamma_{i} \operatorname{et} \mathbf{u}_{0} = 0 \operatorname{sur} \Gamma_{w}, \\ &\|\mathbf{u}_{0}(\boldsymbol{\Phi}^{0}(\theta_{1,0}, \theta_{2,0})) - \mathbf{w}\|_{\mathbf{H}^{1}(\mathscr{F}_{0})} + |\theta_{1,0}| + |\theta_{2,0}| + |\omega_{1,0}| + |\omega_{2,0}| \leq \varepsilon_{1} \end{split}$$

la solution du problème avec le contrôle donné par

$$\mathbf{h}(t) = \mathcal{K}_{\delta} \Big(\Big[\operatorname{cof}(\mathcal{J}_{\mathbf{\Phi}^{0}}(\theta_{1}(t), \theta_{2}(t), .))^{T} \mathbf{u}(t, \mathbf{\Phi}^{0}(\theta_{1}(t), \theta_{2}(t), .)) - \mathbf{w} \Big], \\ \theta_{1}(t), \theta_{2}(t), \dot{\theta}_{1}(t), \dot{\theta}_{2}(t) \Big),$$

converge exponentiellement vers l'état stationnaire, pour tout t > 0,

$$\|\mathbf{u}(t, \mathbf{\Phi}^{0}(\theta_{1}(t), \theta_{2}(t), .)) - \mathbf{w}(.)\|_{\mathbf{H}^{1}(\mathscr{F}_{0})} + |\theta_{1}| + |\theta_{2}| + |\dot{\theta}_{1}| + |\dot{\theta}_{2}| \le Ce^{-\delta t}$$

Difficultés :

- Le domaine fluide dépend du temps.
- Se placer dans un cadre fonctionnel permettant de construire un contrôle capable de stabiliser le système.

<u>État de l'art :</u>

- Structure rigide
 - [Boulakia, Guerrero, 2013] (contrôlabilité à zéro locale)
 - [Badra, Takahashi, 2014] (stabilisation)
- Structure déformable
 - [Avalos, Triggiani, 2009] (stabilisation de Stokes + Lamé)
 - [Raymond, 2010] (stabilisation de NS + poutre autour d'un état nul)
 - [Ndiaye, 2016] (stab de NS + poutre autour d'un état non nul)
 - [Court, 2014] (stabilisation d'un poisson)

Linéarisation du problème autour de la solution stationnaire

$$\forall \mathbf{y} \in \mathscr{F}_0, \quad \begin{cases} \mathbf{v}(t, \mathbf{y}) = \operatorname{cof}(\mathcal{J}_{\Phi^0}(\theta_1(t), \theta_2(t), \mathbf{y}))^T \mathbf{u}(t, \Phi^0(\theta_1(t), \theta_2(t), \mathbf{y})) - \mathbf{w}(\mathbf{y}), \\ q(t, \mathbf{y}) = p(t, \Phi^0(\theta_1(t), \theta_2(t), \mathbf{y})) - p_{\mathbf{w}}(\mathbf{y}), \end{cases}$$

$$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{w} \cdot \nabla) \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{w} - \mathbf{L}_{\mathbf{F}}(\theta_{1}, \theta_{2}, \dot{\theta}_{1}, \dot{\theta}_{2}, \mathbf{y}) - \nu \Delta \mathbf{v} + \nabla q = \mathbf{f} & \text{dans } (0, \infty) \times \mathscr{F}_{0}, \\ \text{div } \mathbf{v} = 0 & \text{dans } (0, \infty) \times \mathscr{F}_{0}, \\ \mathbf{v} = \dot{\theta}_{1} \partial_{\theta_{1}} \Phi^{0}(0, 0, .) + \dot{\theta}_{2} \partial_{\theta_{2}} \Phi^{0}(0, 0, .) + \mathbf{g} & \text{sur } (0, \infty) \times \partial S_{0}, \\ \mathbf{v} = 0 & \text{sur } (0, \infty) \times \nabla_{\mathbf{D}}, \\ \sigma_{F}(\mathbf{v}, q) \mathbf{n} = 0 & \text{sur } (0, \infty) \times \Gamma_{\mathbf{D}}, \\ \mathbf{v}(0, .) = \mathbf{v}_{0} & \text{dans } \mathscr{F}_{0}, \\ \mathcal{M}_{0,0} \left(\ddot{\theta}_{1}^{1} \right) = \left(\int_{\partial S_{0}} [q\mathbf{I} - \nu(\nabla \mathbf{v} + (\nabla \mathbf{v})^{T})] \mathbf{n} \cdot \partial_{\theta_{1}} \Phi^{0}(0, 0, \gamma_{y}) \, d\gamma_{y} \\ \int_{\partial S_{0}} [q\mathbf{I} - \nu(\nabla \mathbf{v} + (\nabla \mathbf{v})^{T})] \mathbf{n} \cdot \partial_{\theta_{2}} \Phi^{0}(0, 0, \gamma_{y}) \, d\gamma_{y} \\ \theta_{1}(0) = \theta_{1,0}, \quad \theta_{2}(0) = \theta_{2,0}, \quad \dot{\theta}_{1}(0) = \omega_{1,0}, \quad \dot{\theta}_{2}(0) = \omega_{2,0}, \end{cases} \quad \text{sur } (0, \infty),$$

Formulation semigroupe

$$\mathbb{H}_{0} = \left\{ \begin{aligned} (\mathbf{v}, \theta_{1}, \theta_{2}, \omega_{1}, \omega_{2}) \in \mathbf{L}^{2}(\mathscr{F}_{0}) \times \mathbb{R}^{4}, & \text{div } \mathbf{v} = 0 \text{ dans } \mathscr{F}_{0}, \quad \mathbf{v} \cdot \mathbf{n} = 0 \text{ sur } \Gamma_{\mathrm{D}}, \\ \mathbf{v} \cdot \mathbf{n} = \sum_{j} \omega_{j} \partial_{\theta_{j}} \boldsymbol{\Phi}^{0}(0, 0, .) \cdot \mathbf{n} \text{ sur } \partial S_{0} \end{aligned} \right\},$$

$$D(A_S) = \begin{cases} (\mathbf{v}, \theta_1, \theta_2, \omega_1, \omega_2) \in \mathbf{H}^{3/2 + \varepsilon_0}(\mathscr{F}_0) \times \mathbb{R}^4, \\ \mathbf{v} = 0 \operatorname{sur} \Gamma_{\mathrm{D}}, \mathbf{v} = \sum_j \omega_j \partial_{\theta_j} \Phi^0(0, 0, .) \operatorname{sur} \partial S_0 \\ \operatorname{div} \mathbf{v} = 0 \operatorname{dans} \mathscr{F}_0, \exists q \in \mathrm{H}^{1/2 + \varepsilon_0}(\mathscr{F}_0) \text{ tel que} \\ \operatorname{div} \sigma_F(\mathbf{v}, q) \in \mathbf{L}^2(\mathscr{F}_0) \text{ et } \sigma_F(\mathbf{v}, q) \mathbf{n} = 0 \operatorname{sur} \Gamma_{\mathrm{N}} \end{cases} \end{cases}$$

,

・ロト ・日 ・ ・ エ ・ ・ 日 ・ うへぐ

$$A_{S}\begin{pmatrix} \mathbf{v}\\ \theta_{1}\\ \theta_{2}\\ \omega_{1}\\ \omega_{2} \end{pmatrix} = \Pi_{\mathbb{H}_{0}} \begin{pmatrix} \operatorname{div} \sigma_{F}(\mathbf{v}, q) + \mathbf{L}_{\mathbf{F}}(\theta_{1}, \theta_{2}, \omega_{1}, \omega_{2}, \mathbf{y}) - (\mathbf{v} \cdot \nabla)\mathbf{w} - (\mathbf{w} \cdot \nabla)\mathbf{v}\\ \omega_{1}\\ \omega_{2}\\ \mathcal{M}_{0}^{-1} \begin{pmatrix} \omega_{1}\\ \omega_{2}\\ \mathcal{M}_{0,0}^{-1} \left(\left(\int_{\partial S_{0}} -\sigma_{F}(\mathbf{v}, q)\mathbf{n} \cdot \partial_{\theta_{j}} \Phi^{0}(0, 0, \gamma_{y}) \, \mathrm{d}\gamma_{y} \right)_{j=1,2} + \mathbf{L}_{\mathbf{S}}(\theta_{1}, \theta_{2}) \end{pmatrix} \right),$$

où $\Pi_{\mathbb{H}_0}$ est la projection orthogonale sur \mathbb{H}_0 .

• Opérateur de contrôle $B\in\mathcal{L}(\mathbb{R}^2,\mathbb{H}_0)$,

$$B\mathbf{h} = \Pi_{\mathbb{H}_0}(0,0,0,\mathcal{M}_{0,0}^{-1}\mathbf{h}).$$

• Le problème peut être réécrit

4

$$\begin{cases} \mathbf{z}'(t) = A_S \mathbf{z}(t) + B\mathbf{h}(t), & t > 0, \\ \mathbf{z}(0) = \mathbf{z}_0. \end{cases}$$

Proposition

L'opérateur $(A_S, D(A_S))$ engendre un semigroupe analytique sur \mathbb{H}_0 .

イロト イロト イヨト イヨト 二日

nan

Projection du problème sur le sous-espace instable

- J_u ensemble des valeurs propres instables de $A_S + \delta I$,
- $G(\lambda)$ sous-espace propre généralisé de $A_S + \delta I$ associé à λ ,
- \mathbb{Z}_u sous espace engendré par les vecteurs propres généralisés instables de $A_S + \delta \mathbf{I}$,

$$\mathbb{Z}_u = \bigoplus_{\lambda \in J_u} \mathcal{G}(\lambda).$$

- \mathbb{Z}_s sous espace engendré par les vecteurs propres généralisés stables de $A_S+\delta \mathbf{I},$
- On a la décomposition

$$\mathbb{H}_0 = \mathbb{Z}_u \bigoplus \mathbb{Z}_s.$$

- $\mathbf{z}_u = \Pi_u(e^{\delta t}\mathbf{z})$ partie instable de $e^{\delta t}\mathbf{z}$,
- Π_u est la projection sur \mathbb{Z}_u parallèlement à \mathbb{Z}_s ,

$$\begin{cases} \mathbf{z}'_u(t) = \mathbf{A}_u \mathbf{z}_u(t) + \delta \mathbf{z}_u(t) + e^{\delta t} B_u \mathbf{h}(t) & t > 0, \\ \mathbf{z}_u(0) = \Pi_u \mathbf{z}_0, \end{cases}$$

$$\begin{aligned} A_u &= \prod_u A_S, \\ B_u &= \prod_u B. \end{aligned}$$

• \mathcal{R}_{δ} la solution de l'équation de Riccati (critère de Kalman)

$$\begin{cases} \mathcal{R}_{\delta}(A_{u} + \delta \mathbf{I}) + (A_{u}^{*} + \delta \mathbf{I})\mathcal{R}_{\delta} + \mathbf{I} - \mathcal{R}_{\delta}B_{u}B_{u}^{*}\mathcal{R}_{\delta} = 0, \\ \mathcal{R}_{\delta} = \mathcal{R}_{\delta}^{T} > 0. \end{cases}$$

• \mathcal{K}_{δ} opérateur de feedback

$$\mathcal{K}_{\delta} = -B_u^* \mathcal{R}_{\delta} \Pi_u.$$

• On utilise le contrôle

 $\mathbf{h} = \mathcal{K}_{\delta} \mathbf{z}.$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• Système en boucle fermée

$$\begin{cases} \mathbf{z}'_u(t) = A_u \mathbf{z}_u(t) + \delta \mathbf{z}_u(t) + B \mathcal{K}_\delta \mathbf{z}_u(t) & t > 0, \\ \mathbf{z}_u(0) = \Pi_u \mathbf{z}_0, \end{cases}$$

Proposition

L'opérateur $A_S + \delta I + B K_\delta \Pi_u$ engendre un semigroupe analytique stable sur \mathbb{H}_0 .

Conséquence : $A_S + B\mathcal{K}_{\delta}$ est δ -exponentiellement stable.

- Sexistence d'une solution stable au problème semigroupe.
- Péécriture sous forme d'E.D.P.
- Théorème de point fixe pour contrôler les non-linéarités.

소리가 소리가 소문가 소문가 드문

Section 4:

Simulations numériques.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Les équations à simuler

But : Simuler numériquement le système suivant

$$\begin{split} & \begin{pmatrix} \partial \mathbf{u} \\ \partial t(t, \mathbf{x}) + (\mathbf{u}(t, \mathbf{x}) \cdot \nabla) \mathbf{u}(t, \mathbf{x}) \\ & -\operatorname{div} \sigma_F(\mathbf{u}(t, \mathbf{x}), p(t, \mathbf{x})) = \mathbf{f}_{\mathscr{F}}(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \mathscr{F}(\theta_1(t), \theta_2(t)), \\ \operatorname{div} \mathbf{u}(t, \mathbf{x}) &= 0, & t \in (0, T), \quad \mathbf{x} \in \mathscr{F}(\theta_1(t), \theta_2(t)), \\ \mathbf{u}(t, \mathbf{x}) &= \sum_{j=1}^{2} \dot{\theta}_j(t) \partial_{\theta_j} \mathbf{X}(\theta_1(t), \theta_2(t), \mathbf{Y}(\theta_1(t), \theta_2(t), \mathbf{x})), & t \in (0, T), \quad \mathbf{x} \in \mathscr{F}(\theta_1(t), \theta_2(t)), \\ \mathbf{u}(t, \mathbf{x}) &= \mathbf{u}^i(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \partial S(\theta_1(t), \theta_2(t)), \\ \mathbf{u}(t, \mathbf{x}) &= \mathbf{u}^i(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \mathcal{F}(\mathbf{u}, t, \theta_2(t)), \\ \mathbf{u}(t, \mathbf{x}) &= \mathbf{u}^i(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \Gamma_{\mathbf{u}}, \\ \mathbf{u}(t, \mathbf{x}) &= 0, & t \in (0, T), \quad \mathbf{x} \in \Gamma_{\mathbf{u}}, \\ \mathbf{u}(t, \mathbf{x}) &= 0, & t \in (0, T), \quad \mathbf{x} \in \Gamma_{\mathbf{u}}, \\ \mathbf{u}(0, \mathbf{x}) &= \mathbf{u}_0(\mathbf{x}), & \mathbf{x} \in \mathscr{F}(\theta_{1,0}, \theta_{2,0}), \\ \mathbf{u}(0, \mathbf{x}) &= \mathbf{u}_0(\mathbf{x}), & \mathbf{x} \in \mathscr{F}(\theta_{1,0}, \theta_2, 0), \\ \mathcal{M}_{\theta_1, \theta_2}\left(\begin{array}{c} \dot{\theta}_1 \\ \dot{\theta}_2 \end{array} \right) &= \mathbf{M}_{\mathbf{I}}(\theta_1, \theta_2, -\sigma_F(\mathbf{u}, p)\mathbf{n}) + \mathbf{f}_{\mathbf{s}}, \quad t \in (0, T), \\ \theta_1(0) &= \theta_{1,0}, & \theta_2(0) = \theta_{2,0}, \\ \dot{\theta}_1(0) &= \omega_{1,0}, & \dot{\theta}_2(0) = \omega_{2,0}. \end{split}$$

Termes de couplages en rouge.

996

Différentes approches (1/2)

Notre cas : EDO pour la structure.

Difficulté :

• Le domaine fluide change au cours du temps.

Possibilités pour la gestion du domaine fluide :

- Méthode de type ALE (Arbitrary Lagrangian Eulerian) [San Martín, Smaranda, Takahashi, 2009], [Hou, Wang, Layton, 2012].
- Méthode de type domaine fictif. [Peskin, 2002], [Burman, Hansbo, 2014], [Burman, Fernández, 2014] (méthode de Nitsche).

Maillage conforme.

Maillage non conforme.

Contrôle d'un problème fluide-structure :

• Simulation dans le domaine de référence [Ndiaye, 2016].

Différentes approches (2/2)

Difficulté :

• 2 systèmes de nature différente (fluide et structure).

Possibilités pour simuler le système fluide-structure :

- Approche monolytique. [Richter, 2015]
- Approche partitionnée. [Fernández, Mullaert, 2016]

Approche monolytique.

Approche partitionnée. (E) (E) ()

La formulation variationnelle utilisée pour le fluide

- Les conditions de Dirichlet sont imposées par multiplicateur de Lagrange.
- On introduit le multiplicateur de Lagrange λ .

Trouver
$$(\mathbf{u}, p, \boldsymbol{\lambda}) \in V \times Q \times \Lambda$$
 vérifiant

$$\begin{cases}
\int_{\mathscr{F}(\theta_1, \theta_2)} \frac{\partial \mathbf{u}}{\partial t} \cdot \mathbf{v} + (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} + \frac{\nu}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T) : (\nabla \mathbf{v} + \nabla \mathbf{v}^T) - p \operatorname{div} \mathbf{v} \, \mathrm{dx} \\
+ \int_{\Gamma_D \cup \partial S(\theta_1, \theta_2)} \mathbf{\lambda} \cdot \mathbf{v} \, \mathrm{d}\gamma_x = 0, \\
\int_{\mathscr{F}(\theta_1, \theta_2)} q \operatorname{div} \mathbf{u} \, \mathrm{dx} = 0, \\
\int_{\Gamma_D \cup \partial S(\theta_1, \theta_2)} \mathbf{u} \cdot \boldsymbol{\mu} \, \mathrm{d}\gamma_x = \int_{\Gamma_i} \mathbf{u}^i \cdot \boldsymbol{\mu} \, \mathrm{d}\gamma_x \\
+ \int_{\partial S(\theta_1, \theta_2)} \sum_j \omega_j \partial_{\theta_j} \mathbf{X}(\theta_1, \theta_2, \mathbf{Y}(\theta_1, \theta_2, \gamma_x)) \cdot \boldsymbol{\mu} \, \mathrm{d}\gamma_x, \\
\text{pour tout } (\mathbf{v}, q, \boldsymbol{\mu}) \in V \times Q \times \Lambda \text{ et } \mathbf{u}(0) = \mathbf{u}_0.
\end{cases}$$

L'algorithme de calcul partitionné

2 La méthode utilisée pour calculer l'état du fluide

- Présentation des éléments liés au domaine fictif
- Initialisation de la vitesse dans le domaine fictif
- La méthode d'intégration sur les cellules coupées
- L'utilisation d'une fonction 'level-set'

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

L'algorithme de partitionnement

On se donne $(\mathbf{u}_h^n, p_h^n, \boldsymbol{\lambda}_h^n)$ et $(\theta_1^{n-1}, \theta_2^{n-1}, \theta_1^n, \theta_2^n, \omega_1^n, \omega_2^n)$.

$$\begin{cases} \begin{pmatrix} \theta_1^{n+1} \\ \theta_2^{n+1} \end{pmatrix} = 2 \begin{pmatrix} \theta_1^n \\ \theta_2^n \end{pmatrix} - \begin{pmatrix} \theta_1^{n-1} \\ \theta_2^{n-1} \end{pmatrix} \\ + (\Delta t)^2 \mathcal{M}_{\theta_1^n, \theta_2^n}^{-1} \left(\mathbf{M}_{\mathbf{A}}(\theta_1^n, \theta_2^n, \boldsymbol{\lambda}_h^n) + \mathbf{M}_{\mathbf{I}}(\theta_1^n, \theta_2^n, \omega_1^n, \omega_2^n) \right), \\ \begin{pmatrix} \omega_1^{n+1} \\ \omega_2^{n+1} \end{pmatrix} = \begin{pmatrix} \omega_1^n \\ \omega_2^n \end{pmatrix} + \Delta t \mathcal{M}_{\theta_1^n, \theta_2^n}^{-1} \left(\mathbf{M}_{\mathbf{A}}(\theta_1^n, \theta_2^n, \boldsymbol{\lambda}_h^n) + \mathbf{M}_{\mathbf{I}}(\theta_1^n, \theta_2^n, \omega_1^n, \omega_2^n) \right). \end{cases}$$

3 Mise à jour du domaine fluide $\mathscr{F}(\theta_1^{n+1}, \theta_2^{n+1})$.

9 Fluide : calcul de
$$(\mathbf{u}_h^{n+1}, p_h^{n+1}, \boldsymbol{\lambda}_h^{n+1})$$
.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Les degrés de liberté considérés pour le fluide

Représentation 2D des ddl.

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つくぐ

Espaces fonctionnels

- XFEM adapté au problème d'interaction fluide-structure → éléments finis coupés.
- $\mathbf{u}_h, p_h, \boldsymbol{\lambda}_h : \mathbb{P}_2 \mathbb{P}_1 \mathbb{P}_1$ (éléments de Taylor-Hood).

• Les espaces de fonctions habituels

$$\widetilde{V_h} = \{ \mathbf{u}_h \in \mathscr{C}^0(\Omega) \text{ avec } \mathbf{u}_{h|T} \in (\mathbb{P}_2(T))^2, \quad \forall T \in \mathcal{T}_h \},$$

 $\widetilde{Q_h} = \{ p_h \in \mathscr{C}^0(\Omega) \text{ avec } p_{h|T} \in \mathbb{P}_1(T), \quad \forall T \in \mathcal{T}_h \},$
 $\widetilde{W_h} = \{ \boldsymbol{\lambda}_h \in \mathscr{C}^0(\Omega) \text{ avec } \boldsymbol{\lambda}_{h|T} \in (\mathbb{P}_1(T))^2, \quad \forall T \in \mathcal{T}_h \}.$

• Les espaces de fonctions que nous utiliserons $V_h^n = \{ \mathbf{u}_{h|\mathscr{F}(\theta_1^n, \theta_2^n)} \text{ avec } \mathbf{u}_h \in \widetilde{V_h} \},$ $Q_h^n = \{ p_{h|\mathscr{F}(\theta_1^n, \theta_2^n)} \text{ avec } p_h \in \widetilde{Q_h} \},$ $W_h^n = \{ \lambda_{h|\partial S(\theta_1^n, \theta_2^n)} \text{ avec } \lambda_h \in \widetilde{W_h} \}.$

◆ロト ◆掃 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Utilisation d'un terme de stabilisation

<u>Difficulté</u> : Convergence non optimale de λ_h .

• Le terme de stabilisation

$$-\gamma_0 h \int_{\partial S(\theta_1,\theta_2)} (\boldsymbol{\lambda}_h + \sigma_F(\mathbf{u}_h,p_h)\mathbf{n}) \cdot (\boldsymbol{\mu}_h + \sigma_F(\mathbf{v}_h,q_h)\mathbf{n}) \, \mathrm{d}\gamma_x,$$

améliore le taux de convergence du multiplicateur de Lagrange.

• Cas d'un mauvais élément (T)

r

$$-\gamma_0 h \int_{\partial S(\theta_1,\theta_2)} (\boldsymbol{\lambda}_h + \sigma_F(\widehat{\mathbf{u}_h},\widehat{p_h})\mathbf{n}) \cdot (\boldsymbol{\mu}_h + \sigma_F(\widehat{\mathbf{v}_h},\widehat{q_h})\mathbf{n}) \, \mathrm{d}\gamma_x.$$

[Fournié, Lozinski, 2017] : condition inf-sup.

5900

On résout le problème linéaire

$$\frac{1}{\Delta t} \begin{pmatrix} M_{\mathbf{u}\mathbf{u}} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \left(\mathbf{U}^{n+1} \\ \mathbf{P}^{n+1} \\ \mathbf{\Lambda}^{n+1} \right) - \begin{pmatrix} \mathbf{U}^{n} \\ \mathbf{P}^{n} \\ \mathbf{\Lambda}^{n} \end{pmatrix} + \begin{pmatrix} A_{\mathbf{u}\mathbf{u}} & A_{\mathbf{u}p} & A_{\mathbf{u}\lambda} \\ A_{\mathbf{u}\mathbf{\lambda}}^{T} & A_{p\mathbf{\lambda}}^{T} & A_{\lambda\lambda} \end{pmatrix} \begin{pmatrix} \mathbf{U}^{n+1} \\ \mathbf{P}^{n+1} \\ \mathbf{\Lambda}^{n+1} \end{pmatrix} \\ = \begin{pmatrix} \mathbf{F}^{n+1} \\ 0 \\ \mathbf{G}^{n+1} \end{pmatrix}$$

- \mathbf{F}^{n+1} : termes source du fluide,
- \mathbf{G}^{n+1} : données de Dirichlet.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

L'initialisation de la vitesse du fluide sur les nœuds fictifs

• On assigne la vitesse de la structure aux degrés de liberté fictifs.

La méthode d'intégration

Difficulté : Intégrations à mener sur le domaine fluide.

- Redécoupage pas remaillage, juste pour intégration (assemblage).
- Position précise de l'interface donnée par une fonction 'level-set'.

nan

La fonction 'level-set'

• La fonction 'level-set' est calculée comme étant la distance à un polygone s'appuyant sur une liste de points.

- Erreur contrôlée par le nombre de points.
- Géométries complexes possibles.

Э

Les équations à simuler

But : Simuler numériquement le système suivant

$$\begin{split} & \begin{pmatrix} \partial \mathbf{u} \\ \partial t(t, \mathbf{x}) + (\mathbf{u}(t, \mathbf{x}) \cdot \nabla) \mathbf{u}(t, \mathbf{x}) \\ & -\operatorname{div} \sigma_F(\mathbf{u}(t, \mathbf{x}), p(t, \mathbf{x})) = \mathbf{f}_{\mathscr{F}}(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \mathscr{F}(\theta_1(t), \theta_2(t)), \\ \operatorname{div} \mathbf{u}(t, \mathbf{x}) &= 0, & t \in (0, T), \quad \mathbf{x} \in \mathscr{F}(\theta_1(t), \theta_2(t)), \\ \mathbf{u}(t, \mathbf{x}) &= \sum_{j=1}^2 \dot{\theta}_j(t) \partial_{\theta_j} \mathbf{X}(\theta_1(t), \theta_2(t), \mathbf{Y}(\theta_1(t), \theta_2(t), \mathbf{x})), & t \in (0, T), \quad \mathbf{x} \in \partial S(\theta_1(t), \theta_2(t)), \\ \mathbf{u}(t, \mathbf{x}) &= \mathbf{u}^i(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \partial S(\theta_1(t), \theta_2(t)), \\ \mathbf{u}(t, \mathbf{x}) &= \mathbf{u}^i(t, \mathbf{x}), & t \in (0, T), \quad \mathbf{x} \in \Gamma_i, \\ \mathbf{u}(t, \mathbf{x}) &= 0, & t \in (0, T), \quad \mathbf{x} \in \Gamma_w, \\ \sigma_F(\mathbf{u}(t, \mathbf{x}), p(t, \mathbf{x})) \mathbf{n}(\mathbf{x}) &= 0, & t \in (0, T), \quad \mathbf{x} \in \Gamma_N, \\ \mathbf{u}(0, \mathbf{x}) &= \mathbf{u}_0(\mathbf{x}), & \mathbf{x} \in \mathscr{F}(\theta_1, \theta_2, \dot{\theta}_1, \dot{\theta}_2) \\ & + \mathbf{M}_{\mathbf{A}}(\theta_1, \theta_2, -\sigma_F(\mathbf{u}, p)\mathbf{n}) + \mathbf{f_s} + \mathbf{h}, & t \in (0, T), \\ \theta_1(0) &= \theta_{1,0}, & \theta_2(0) = \theta_{2,0}, \\ \dot{\theta}_1(0) &= \omega_{1,0}, & \dot{\theta}_2(0) = \omega_{2,0}. \end{split}$$

Termes de couplages en rouge.

Le contrôle en bleu.

L'algorithme de partitionnement

On se donne $(\mathbf{u}_h^n, p_h^n, \boldsymbol{\lambda}_h^n)$ et $(\theta_1^{n-1}, \theta_2^{n-1}, \theta_1^n, \theta_2^n, \omega_1^n, \omega_2^n)$.

$$\begin{cases} \begin{pmatrix} \theta_1^{n+1} \\ \theta_2^{n+1} \end{pmatrix} = 2 \begin{pmatrix} \theta_1^n \\ \theta_2^n \end{pmatrix} - \begin{pmatrix} \theta_1^{n-1} \\ \theta_2^{n-1} \end{pmatrix} \\ + (\Delta t)^2 \mathcal{M}_{\theta_1^n, \theta_2^n}^{-1} \left(\mathbf{M}_{\mathbf{A}}(\theta_1^n, \theta_2^n, \boldsymbol{\lambda}_h^n) + \mathbf{M}_{\mathbf{I}}(\theta_1^n, \theta_2^n, \omega_1^n, \omega_2^n) + \mathbf{h}^n \right), \\ \begin{pmatrix} \omega_1^{n+1} \\ \omega_2^{n+1} \end{pmatrix} = \begin{pmatrix} \omega_1^n \\ \omega_2^n \end{pmatrix} + \Delta t \mathcal{M}_{\theta_1^n, \theta_2^n}^{-1} \left(\mathbf{M}_{\mathbf{A}}(\theta_1^n, \theta_2^n, \boldsymbol{\lambda}_h^n) + \mathbf{M}_{\mathbf{I}}(\theta_1^n, \theta_2^n, \omega_1^n, \omega_2^n) + \mathbf{h}^n \right).$$

② Mise à jour du domaine fluide $\mathscr{F}(\theta_1^{n+1}, \theta_2^{n+1})$.

9 Fluide : calcul de
$$(\mathbf{u}_h^{n+1}, p_h^{n+1}, \boldsymbol{\lambda}_h^{n+1})$$
.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Calcul du difféomorphisme $\mathbf{\Phi}^0$ et de l'opérateur de feedback

Construction du contrôle

- Méthode indépendante de XFEM.
- On suit l'approche de la section 3 \longrightarrow calculs dans \mathscr{F}_0 .
- Le contrôle est obtenu à partir de l'opérateur de feedback K_δ calculé dans le domaine de référence (voir diapositive suivante).
- Le difféomorphisme Φ^0 est calculé par la résolution d'un problème de Poisson (dans une petite zone).

Calculs dans le domaine de référence

• On calcule le contrôle dans le domaine de référence,

$$\mathbf{h}^n = \mathbf{K}_{\delta} \begin{pmatrix} \widetilde{\mathbf{U}}^n - \mathbf{W} \\ heta_1^n \\ heta_2^n \\ heta_1^n \\ heta_2^n \end{pmatrix},$$

où $\widetilde{\mathbf{U}}^n$ sont les coordonées dans \mathscr{F}_0 de $\widetilde{\mathbf{u}}_h(\mathbf{y}) = \operatorname{cof}(\mathbf{\Phi}^0(\theta_1, \theta_2, \mathbf{y}))^T \mathbf{u}_h(\mathbf{\Phi}^0(\theta_1^n, \theta_2^n, \mathbf{y})).$ • $\widetilde{\mathbf{U}}^n$ est calculé par interpolation.

э

- Décomposition spectrale du système linéaire en domaine fixe discrétisé et de son adjoint (calcul précis).
- Sélection des modes "instables" (construction de \mathbb{Z}_u).
- Résolution d'une équation de Riccati de petite dimension correspondant au système projeté sur Z_u.
- Calcul de K_δ à partir de la solution du problème de Riccati en petite dimension.

イロト 不得下 イヨト イヨト ヨー ろくつ

Simulations numériques (1/2)

- Bibliothèque GetFEM++ (libre).
- Paramètres : $\mathcal{R}e = 120$, $\rho = 5$, k = 12, (XFEM-stab $\gamma_0 = 0.05$).
- 153880 ddl.

Maillage utilisé.

Solution stationnaire.

Simulations numériques (2/2)

Le paramètre θ_1 .

Le paramètre θ_2 .

Le système sans contrôle. Le système avec contrôle.

イロト イポト イヨト イヨト

Travail accompli :

- Un modèle original traité théoriquement et numériquement.
- Utilisation de méthodes numériques avancées, facilement adaptables à d'autres géométries.

Perspectives :

- Obtenir numériquement une convergence exponentielle vers l'état d'équilibre.
- Étude d'une géométrie présentant une pointe (profil NACA).
- Affaiblir les hypothèses sur X.
- Construire le contrôle à partir d'une observation partielle.
- Traitement d'un cas 3D.
- Parallélisation du code.

イロト 不得下 イヨト イヨト 二日

Spectre du fluide seul.

Spectre du problème FS.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○