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Introduction

We are interested in the study of the following inhomogeneous

Fokker-Planck equation

@tF + v@xF � @v (@v + v)F = 0, F |t=0 = F
0,

where

0  F = F (t , x , v), (t , x , v) 2 R+
⇥ T⇥ R

ZZ
Fdxdv = 1.

We focus in this talk on the case d = 1.

The now rather standard hypocoercive methods give that

F (t , x , v) �!
t!+1

M(x , v),

exponentially fast (for a large family of similar kinetic equations),

where here the Maxwellian is given by

M(x , v) = µ(v) =
1

p

2⇡
e�v

2/2.
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A much simpler equation (homogeneous kinetic equation) is

@tF � @v (@v + v)F = 0, F |t=0 = F
0,

where

0  F = F (t , v), (t , v) 2 R+
⇥ R,

Z
Fdv = 1,

for which this is very easy to get (by "coercive" methods) that

F (t , x , v) �!
t!+1

µ(v).

(This is just the heat equation for the harmonic oscillator.)
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Functional framework and proof for the homogeneous problem :

set F = µ+ µf ,

the equation is @t f + (�@v + v)@v f = 0 with f |t=0 = f 0,

consider f 2 L2(dµ) ⇢ L1(dµ) (strictly smaller),

note that hf i
def
=
R

f dµ =
R

f0dµ = 0,

note that f 2 L1(dµ) , F 2 L1(dv),

compute

d
dt
kfk

2

L2(dµ) = �2 h(�@v + v)@v f , f i
L2(dµ) = �2 k@v fk

2

L2(dµ),

use Poincaré inequality kfk
2

L2(dµ)  k@v fk
2

L2(dµ), so that

d
dt

kfk
2

L2(dµ)  �2 kfk
2

L2(dµ) ,

use Gronwall inequality kfk
L2(dµ)  e�t

��f 0
��

L2(dµ),

synthesis kF �Mk
L1(dv)  kfk

L2(dµ)  e�t
��f 0
��

L2(dµ).
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Many ingredients were involved in the short previous proof :

Hilbertian framework, coercivity, Poincaré inequality, Gronwall lemma,

existence of a Maxwellian ...

Aim of this talk :

Explain how to adapt to the inhomogeneous case

⇤ well understood and robust theory

Explain how to discretize and numerically implement the

problems

⇤ new even in the homogeneous case
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The continuous inhomogeneous case

Perform the same change of variables

F = µ+ µf ,

and work in H1(dµdx) ,! L2(dµdx). The inhomogeneous equation

reads

@t f + v@x f + (�@v + v)@v f = 0, f |t=0 = f
0,

hf i
def
=

ZZ
f dµdx =

⌦
f

0
↵

elliptic biblio (Guo, Villani, Mouhot, Hérau, Nier, Dolbeault,

Mischler, Desvillettes, etc)

robust proof (Boltzmann, Landau, etc)
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The continuous inhomogeneous case

Perform the same change of variables

F = µ+ µf ,

and work in H1(dµdx) ,! L2(dµdx). The inhomogeneous equation

reads

@t f + v@x f + (�@v + v)@v f = 0, f |t=0 = f
0,

hf i
def
=

ZZ
f dµdx =

⌦
f

0
↵

commutator identity [@v , v@x ] = @x (hypoellipticity results by

Hörmander, Kohn, developped by Helffer, Nourrigat... ).

how to discretize such an equality and equation?

fundamental point : have the simplest proofs and techniques in

order to adapt them to the discretized cases.
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The modified entropy

We define the entropy functional for C > D > E > 1, to be defined

later on

H : f 7! C kfk
2 + D k@v fk

2 + E h@v f , @x f i+ k@x fk
2 .

Then for C,D,E well chosen, we will prove that t 7! H(f (t)) is

nonincreasing when f solves the rescaled equation with initial datum

f 0
2 H1(dµ).

First note that if E2 < D, H is equivalent to the H1(dµdx)-norm :

1

2
kfk

2

H1  H(f )  2C kfk
2

H1

We have modified the norm in H1.
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⇤ First term

d

dt
kfk

2 = 2 h@t f , f i = �2 hv@x f , f i � 2 h(�@v + v)@v f , f i = �2 k@v fk
2

⇤ Second term

d

dt
k@v fk

2 = 2 h@v (@t f ), @v f i

= �2 h@v (v@x f + (�@v + v)@v f ), @v f i

= �2 hv@x@v f , @v f i � 2 h[@v , v@x ] f , @v f i � 2 h@v (�@v + v)@v f , @v f i .

= �2 h@x f , @v f i � 2 k(�@v + v)@v fk
2

⇤ Last term
d

dt
k@x fk

2 = �2 k@v@x fk
2
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⇤ Third important term

d

dt
h@x f , @v f i

= �h@x(v@x f + (�@v + v)@v f ), @v f i � h@x f , @v (v@x f + (�@v + v)@v f )i

= �hv@x(@x f ), @v f i+ h(�@v + v)@v f , @x@v f i

� h@x f , [@v , v@x ] f i � h@x f , v@x@v f i

� h@x f , [@v , (�@v + v)] @v f i+ h(�@v + v)@v f , @x@v f i .

we have

hv@x@x f , @v f i+ h@x f , v@x@v f i = 0.

and

[@v , (�@v + v)] = 1

so that

d

dt
h@x f , @v f i = �k@x fk

2 + 2 h(�@v + v)@v f , @x@v f i � h@x f , @v f i .
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⇤ Entropy dissipation inequality

d

dt
H(f ) = �2C k@v fk

2
� 2D k(�@v + v)@v fk

2
� E k@x fk

2
� 2 k@x@v fk

2

� 2(D + E) h@x f , @v f i � 2E h(�@v + v)@v f , @x@v f i .

Therefore, using Cauchy–Schwarz : for 1 < E < D < C well chosen,

d

dt
H(f )  �C k@v fk

2
� (E � 1/2) k@x fk

2
 �

E

2
(k@v fk

2 + k@x fk
2).

Using the Poincaré inequality in space and velocity

d

dt
H(f )  �

E

4
(k@v fk

2 + k@x fk
2)�

E

4
cp kfk

2
 �

E

4

cp

2C
H(f ).

2
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⇤ Synthesis

We pose 2 =
E

4

cp

2C
and we get by Gronwall lemma

Theorem

For all f 0
2 H1 with

⌦
f 0
↵
= 0, the solution f to the rescaled

inhomogeneous Fokker-Planck equation satisifies for all t � 0,

1

2
kfk

2

L2 
1

2
kfk

2

H1  H(f (t))  e
�2t

H(0)  2Ce
�2t

��f
0
��2

H1
.
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We want to discretize the equation in space, velocity and time, with

preservation of the long time behavior, (hypo)coercivity, the notion of

Maxwellian.

Keywords and the discrete case

Equation? derivative? Hilbert space? Maxwellian? Gronwall ?

Poincaré? commutators? local ?

Nothing in literature...
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The semi-discrete homogeneous case

We want to discretize (and implement) the equation

@tF � @v (@v + v)F = 0.

We look for a discretization only in velocity.

⇤ The velocity derivative : for F 2 `1(Z), define Dv F 2 `1(Z⇤) by

(Dv F )i =
Fi � Fi�1

h
for i > 0, (Dv F )i =

Fi+1 � Fi

h
for i < 0.
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⇤ The Maxwellian : solving equation (Dv + v)µh = 0 yields

µh

i =
ch

Q|i|
l=0

(1 + hvi)
, i 2 Z.

Then µh is even, positive, in `1.

Proof by direct computation : (Dv + v)µh = 0 writes

8
><

>:

µh

i
� µh

i�1

h
+ viµh

i
= 0 for i > 0

µh

i+1
� µh

i

h
+ viµh

i
= 0 for i < 0,

which gives the expression of µh
2 `1.
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⇤ The "adjoint" : for G 2 `1(Z⇤), define D
]
v F 2 `1(Z)

(D]
v G)i =

Gi+1 � Gi

h
for i > 0, (D]

v G)i =
Gi � Gi�1

h
for i < 0,

(D]
v G)0 =

G1 � G�1

h
.

⇤ The Hilbert spaces : we pose F = µh + µhf and consider

f 2 `2(µh) ,
X

i

f
2

i µ
h

i < +1

then denoting µ]
i
= µh

i�1
for i > 0 and µ]

i
= µh

i+1
for i < 0

�D
]
v ((Dv + v)µh

f ) = D
]
v (µ

](Dv f )i) = µh

i (�D
]
v + v)Dv f .
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The discrete equation is then

@tF � D
]
v (Dv + v)F = 0, F |t=0 = F

0.

With F = µh + µhf , we have

Proposition

The equation satisfied by f is the following

@t f + (�D
]
v + v)Dv f = 0, f |t=0 = f

0.

The operator (�D
]
v + v)Dv is selfadjoint non-negative in `2(µh) :

D
(�D

]
v + v)Dv f , g

E
= hDv f ,Dv gi] =

D
f , (�D

]
v + v)Dv g

E
,

where

' 2 `2(µ]) , k'k2

] =
X

i 6=0

'2

i µ
]
i
< 1.

Constant sequences are the equilibrium states of the equation.
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We can do the same proof as in the continuous case

note that hf i
def
=
P

fiµh

i
=
P

f 0

i
µh

i
= 0,

compute
d
dt
kfk

2 = �2

D
(�D

]
v + v)Dv f , f

E
= �2 kDv fk

2

] ,

use Poincaré inequality kfk
2
 kDv fk

2

] ,

use Gronwall inequality kfk  e�t
��f 0
��,

synthesis
��F � µh

��
`1
 kfk  e�t

��f 0
��.

?? Poincaré inequality??
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We can do the same proof as in the continuous case

note that hf i
def
=
P

fiµh

i
=
P

f 0

i
µh

i
= 0,

compute
d
dt
kfk

2 = �2

D
(�D

]
v + v)Dv f , f

E
= �2 kDv fk

2

] ,

use Poincaré inequality kfk
2
 kDv fk

2

] ,

use Gronwall inequality kfk  e�t
��f 0
��,

synthesis
��F � µh

��
`1
 kfk  e�t

��f 0
��.

?? Poincaré inequality??
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Poincaré inequality

Lemma (adapted proof of that by H. Poincare (1912))

For all f 2 H1(µ) with hf i = 0, we have kfk
2

L2(dµ)  k@v fk
2

L2(dµ) .

Proof. Denote f (v) = f , f (v 0) = f 0, dµ = µ(v)dv and dµ0 = µ(v 0)dv
0

to obtain

Z

R
f

2dµ =
1

2

ZZ

R2

(f 0 � f )2dµdµ0 =
1

2

ZZ

R2

 Z v
0

v

@v f (w)dw

!2

dµdµ0.

From Cauchy–Schwarz inequality, we infer

Z

R
f

2dµ 
1

2

ZZ

R2

 Z v
0

v

|@v f (w)|2 dw

!
(v 0

� v)dµdµ0.
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Denote F (v) =
R v

a
|@v f (w)|2 dw . Then

Z

R
f

2dµ 
1

2

ZZ

R2

(F 0
� F ) (v 0

� v)dµdµ0

=
1

2

✓ZZ

R2

F
0
v
0dµdµ0 +

ZZ

R2

Fvdµdµ0
�

ZZ

R2

Fv
0dµdµ0

�

ZZ

R2

F
0
vdµdµ0

◆

=

Z

R
Fvdµ.

Note that @vµ = �vµ and perform an integration by parts

Z

R
f

2dµ 

Z

R
Fvµdv = �

Z

R
F@vµdv =

Z

R
@v Fµdv =

Z

R
|@v f |

2dµ.

2
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Discrete Poincaré inequality

Proposition (Discrete Poincaré inequality)

Let f be a sequence in H1. Then,

kf � hf ik
2

`2(µh)  kDv fk
2

`2(µ]) .

Proof. Assume hf i = 0 and write

X

i

f
2

i µi =
1

2

X

i,j

(fj � fi)
2µiµj =

X

i<j

(fj � fi)
2µiµj ,

· · · computations using an antiderivative of f defined by

Fj =
jX

l=�ja

(fl � fl�1)
2,

and use the integration by part in the discrete weighted space :

X

i 6=0

Fi iµi = �

X

i>0

Fi � Fi+1

h2
µi +

F1

h2
µ0 �

X

i<0

Fi�1 � Fi

h2
µi �

F�1

h2
µ0.
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Poincaré inequality in space

The two preceding objects and proofs can be adapted to the

inhomogeneous cases under the following assumption

Hypothesis

The operator Dx is skew adjoint, commutes with velocity and satisfies

the Poincaré inequality in space

cp k�� h�ik2

L2
x

 kDx�k
2

L2
x

.

For example,

centered discrete derivative

(Dx�)j =
�j+1 � �j�1

�x
, j 2 Z/NZ,

continuous derivative (on the torus).
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All cases

The two preceding objects and proofs can be adapted to the

inhomogeneous cases (we give the f version) on `2(µhdvdx) :

semi-discrete case

@t f + vDx f + (�D
]
v + v)Dv f = 0, f |t=0 = f

0,

the fully discrete Euler implicit case

f n+1
� f n

�t
+ vDx f

n+1 + (�D
]
v + v)Dv f

n+1 = 0, f |t=0 = f
0,

the fully discrete Euler explicit with Neumann on v 2 [�b, b]

f n+1
� f n

�t
+vDx f

n+(�D
]
v +v)Dv f

n = 0, f |t=0 = f
0, Dv f±b = 0.



Introduction Continuous inhomogeneous case Semi-discrete homogeneous case Poincaré inequalities All cases Numerics

An example of theorem

Theorem

Assume C > D > E > 1 well chosen. There exists k , t0, h0 > 0 such

that for all f 0
2 H1 with

⌦
f 0
↵
= 0, all �t 2 (0, t0), and all h 2 (0, h0) the

sequence defined by the implicit Euler scheme satisfies for all n 2 N,

1

2
kf

n
k

2

H1  H(f n)  H(f 0)e�kn�t
 2C

��f
0
��2

H1
e
�kn�t .
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Elements of proof

Consider

H(f ) = C kfk
2 + D kDv fk

2

] + E hDv f ,SDxf i] + kDxfk
2 .

with S = [Dv , v ] and therefore SDx = [Dv , vDx ] :

(Sg)i = gi�1 for i � 1 (Sg)i = gi+1 for i  �1.

We have for example

Dv (�D
]
v + v)S � S(�D

]
v + v)Dv = S + �,

where � is the singular operator from `2 to `2

] defined for f 2 `2 by

(�f )j = 0 if |j | � 2, (�f )�1 =
f1 � f0

h2
, (�f )1 = �

f0 � f�1

h2
.
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Especially for the singular term involving �, we have for all " > 0,

���h�Dxf ,Dv f i]

��� 
1

"

���(�D
]
v + v)Dv f

���
2

+ " kDv Dx fk
2

] .
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So, when it comes to computing the derivative (time-continuous case)

of the discrete entropy

H(f ) = C kfk
2 + D kDv fk

2

] + E hDv f ,SDxf i] + kDxfk
2 ,

we have for the first, second and fourth terms

d
dt

kfk
2 = �2 kDv fk

2

] .
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So, when it comes to computing the derivative (time-continuous case)

of the discrete entropy

H(f ) = C kfk
2 + D kDv fk

2

] + E hDv f ,SDxf i] + kDxfk
2 ,

we have for the first, second and fourth terms

d
dt

kfk
2 = �2 kDv fk

2

] .

d

dt
kfk

2 = �2 k@v fk
2



Introduction Continuous inhomogeneous case Semi-discrete homogeneous case Poincaré inequalities All cases Numerics

So, when it comes to computing the derivative (time-continuous case)

of the discrete entropy

H(f ) = C kfk
2 + D kDv fk

2

] + E hDv f ,SDxf i] + kDxfk
2 ,

we have for the first, second and fourth terms

d
dt

kDv fk
2

] = 2

D
Dv (�vDx � (�D

]
v + v)Dv )f ,Dv f

E

]

= �2 hDv (vDx)f ,Dv f i] � 2

D
Dv (�D

]
v + v)Dv )f ,Dv f

E

]

= �2 h[Dv , vDx ] f ,Dv f i]| {z }
=[Dv ,v ]Dx=SDx

�2 hvDxDv f ,Dv f i]| {z }
=0

�2

���(�D
]
v + v)Dv f

���
2

| {z }

= �2 hSDxf ,Dv f i] � 2

���(�D
]
v + v)Dv f

���
2

.



Introduction Continuous inhomogeneous case Semi-discrete homogeneous case Poincaré inequalities All cases Numerics

So, when it comes to computing the derivative (time-continuous case)

of the discrete entropy

H(f ) = C kfk
2 + D kDv fk

2

] + E hDv f ,SDxf i] + kDxfk
2 ,

we have for the first, second and fourth terms

d
dt

kDv fk
2

] = 2

D
Dv (�vDx � (�D

]
v + v)Dv )f ,Dv f

E

]

= �2 hDv (vDx)f ,Dv f i] � 2

D
Dv (�D

]
v + v)Dv )f ,Dv f

E

]

= �2 h[Dv , vDx ] f ,Dv f i]| {z }
=[Dv ,v ]Dx=SDx

�2 hvDxDv f ,Dv f i]| {z }
=0

�2

���(�D
]
v + v)Dv f

���
2

| {z }

= �2 hSDxf ,Dv f i] � 2

���(�D
]
v + v)Dv f

���
2

.

d

dt
k@v fk

2 = �2 h@x f , @v f i � 2 k(�@v + v)@v fk
2
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So, when it comes to computing the derivative (time-continuous case)

of the discrete entropy

H(f ) = C kfk
2 + D kDv fk

2

] + E hDv f ,SDxf i] + kDxfk
2 ,

we have for the first, second and fourth terms

d
dt

kDxfk
2 = �2 kDv Dx fk

2

] . (1)
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So, when it comes to computing the derivative (time-continuous case)

of the discrete entropy

H(f ) = C kfk
2 + D kDv fk

2

] + E hDv f ,SDxf i] + kDxfk
2 ,

we have for the first, second and fourth terms

d
dt

kDxfk
2 = �2 kDv Dx fk

2

] . (1)

d

dt
k@x fk

2 = �2 k@v@x fk
2
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So, when it comes to computing the derivative (time-continuous case)

of the discrete entropy

H(f ) = C kfk
2 + D kDv fk

2

] + E hDv f ,SDxf i] + kDxfk
2 ,

we have for the third term

d
dt

hSDxf ,Dv f i]

= �kSDxfk
2

] + h

D
S

[
Dxf ,Dv Dx f

E

]

+ 2

D
(�D

]
v + v)Dv f ,S]

DxDv f

E
� hSDxf ,Dv f i] � h�Dxf ,Dv f i] .
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So, when it comes to computing the derivative (time-continuous case)

of the discrete entropy

H(f ) = C kfk
2 + D kDv fk

2

] + E hDv f ,SDxf i] + kDxfk
2 ,

we have for the third term

d
dt

hSDxf ,Dv f i]

= �kSDxfk
2

] + h

D
S

[
Dxf ,Dv Dx f

E

]

+ 2

D
(�D

]
v + v)Dv f ,S]

DxDv f

E
� hSDxf ,Dv f i] � h�Dxf ,Dv f i] .

d

dt
h@x f , @v f i = �k@x fk

2 + 2 h(�@v + v)@v f , @x@v f i � h@x f , @v f i

(obtained with [@v , (�@v + v)] = 1)
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Numerics
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Thank you !


