Séminaire de Mathématiques Appliquées du CERMICS

(hypo)coercive schemes for the Fokker-Planck equation
Guillaume Dujardin (Inria Lille)
11 juin 2019

(hypo)coercive schemes for the Fokker-Planck equation

G. Dujardin

with F. Hérau (Univ. Nantes) and P. Lafitte (CentraleSupélec)

Inria Lille Nord-Europe
Laboratoire Paul Painlevé
CERMICS, Champs-sur-Marne - 12 juin 2019

Table of contents

(1) Introduction
2) Continuous inhomogeneous case
(3) Semi-discrete homogeneous case

4 Poincaré inequalities
(5) All cases
(6) Numerics

Introduction

We are interested in the study of the following inhomogeneous Fokker-Planck equation

$$
\partial_{t} F+v \partial_{x} F-\partial_{v}\left(\partial_{v}+v\right) F=0,\left.\quad F\right|_{t=0}=F^{0}
$$

where

$$
0 \leq F=F(t, x, v), \quad(t, x, v) \in \mathbb{R}^{+} \times \mathbb{T} \times \mathbb{R} \quad \iint F d x d v=1
$$

We focus in this talk on the case $d=1$.
The now rather standard hypocoercive methods give that

$$
F(t, x, v) \underset{t \rightarrow+\infty}{\longrightarrow} \mathcal{M}(x, v)
$$

exponentially fast (for a large family of similar kinetic equations), where here the Maxwellian is given by

$$
\mathcal{M}(x, v)=\mu(v)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-v^{2} / 2}
$$

A much simpler equation (homogeneous kinetic equation) is

$$
\partial_{t} F-\partial_{v}\left(\partial_{v}+v\right) F=0,\left.\quad F\right|_{t=0}=F^{0}
$$

where

$$
0 \leq F=F(t, v), \quad(t, v) \in \mathbb{R}^{+} \times \mathbb{R}, \quad \int F \mathrm{~d} v=1
$$

for which this is very easy to get (by "coercive" methods) that

$$
F(t, x, v) \underset{t \rightarrow+\infty}{\longrightarrow} \mu(v) .
$$

(This is just the heat equation for the harmonic oscillator.)

Functional framework and proof for the homogeneous problem :

- set $F=\mu+\mu f$,
- the equation is $\partial_{t} f+\left(-\partial_{v}+v\right) \partial_{v} f=0$ with $\left.f\right|_{t=0}=f^{0}$,
- consider $f \in L^{2}(\mathrm{~d} \mu) \subset L^{1}(\mathrm{~d} \mu)$ (strictly smaller),
- note that $\langle f\rangle \stackrel{\text { def }}{=} \int f \mathrm{~d} \mu=\int f_{0} \mathrm{~d} \mu=0$,
- note that $f \in L^{1}(\mathrm{~d} \mu) \Leftrightarrow F \in L^{1}(d v)$,
- compute

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|f\|_{L^{2}(\mathrm{~d} \mu)}^{2}=-2\left\langle\left(-\partial_{v}+v\right) \partial_{v} f, f\right\rangle_{L^{2}(\mathrm{~d} \mu)}=-2\left\|\partial_{v} f\right\|_{L^{2}(\mathrm{~d} \mu)}^{2},
$$

- use Poincaré inequality $\|f\|_{L^{2}(\mathrm{~d} \mu)}^{2} \leq\left\|\partial_{v} f\right\|_{L^{2}(\mathrm{~d} \mu)}^{2}$, so that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|f\|_{L^{2}(\mathrm{~d} \mu)}^{2} \leq-2\|f\|_{L^{2}(\mathrm{~d} \mu)}^{2}
$$

- use Gronwall inequality $\|f\|_{L^{2}(\mathrm{~d} \mu)} \leq e^{-t}\left\|f^{0}\right\|_{L^{2}(\mathrm{~d} \mu)}$,
- synthesis $\|F-\mathcal{M}\|_{L^{1}(\mathrm{~d} v)} \leq\|f\|_{L^{2}(\mathrm{~d} \mu)} \leq e^{-t}\left\|f^{0}\right\|_{L^{2}(\mathrm{~d} \mu)}$.

Many ingredients were involved in the short previous proof :
Hilbertian framework, coercivity, Poincaré inequality, Gronwall lemma, existence of a Maxwellian ...

Aim of this talk :

- Explain how to adapt to the inhomogeneous case \triangleright well understood and robust theory
- Explain how to discretize and numerically implement the problems
\triangleright new even in the homogeneous case

The continuous inhomogeneous case

Perform the same change of variables

$$
F=\mu+\mu f
$$

and work in $H^{1}(\mathrm{~d} \mu d x) \hookrightarrow L^{2}(\mathrm{~d} \mu \mathrm{~d} x)$. The inhomogeneous equation reads

$$
\begin{gathered}
\partial_{t} f+v \partial_{x} f+\left(-\partial_{v}+v\right) \partial_{v} f=0,\left.\quad f\right|_{t=0}=f^{0}, \\
\langle f\rangle \stackrel{\text { def }}{=} \iint f \mathrm{~d} \mu d x=\left\langle f^{0}\right\rangle
\end{gathered}
$$

- elliptic biblio (Guo, Villani, Mouhot, Hérau, Nier, Dolbeault, Mischler, Desvillettes, etc)
- robust proof (Boltzmann, Landau, etc)

The continuous inhomogeneous case

Perform the same change of variables

$$
F=\mu+\mu f,
$$

and work in $H^{1}(\mathrm{~d} \mu d x) \hookrightarrow L^{2}(\mathrm{~d} \mu \mathrm{~d} x)$. The inhomogeneous equation reads

$$
\begin{gathered}
\partial_{t} f+v \partial_{x} f+\left(-\partial_{v}+v\right) \partial_{v} f=0,\left.\quad f\right|_{t=0}=f^{0}, \\
\langle f\rangle \stackrel{\text { def }}{=} \iint f \mathrm{~d} \mu d x=\left\langle f^{0}\right\rangle
\end{gathered}
$$

- commutator identity $\left[\partial_{v}, v \partial_{x}\right]=\partial_{x}$ (hypoellipticity results by Hörmander, Kohn, developped by Helffer, Nourrigat...).
- how to discretize such an equality and equation?
- fundamental point : have the simplest proofs and techniques in order to adapt them to the discretized cases.

The modified entropy

We define the entropy functional for $C>D>E>1$, to be defined later on

$$
\mathcal{H}: f \mapsto C\|f\|^{2}+D\left\|\partial_{v} f\right\|^{2}+E\left\langle\partial_{v} f, \partial_{x} f\right\rangle+\left\|\partial_{x} f\right\|^{2} .
$$

Then for C, D, E well chosen, we will prove that $t \mapsto \mathcal{H}(f(t))$ is nonincreasing when f solves the rescaled equation with initial datum $f^{0} \in H^{1}(\mathrm{~d} \mu)$.
First note that if $E^{2}<D, \mathcal{H}$ is equivalent to the $H^{1}(\mathrm{~d} \mu \mathrm{~d} x)$-norm :

$$
\frac{1}{2}\|f\|_{H^{1}}^{2} \leq \mathcal{H}(f) \leq 2 C\|f\|_{H^{1}}^{2}
$$

We have modified the norm in H^{1}.

Δ First term

$$
\frac{d}{d t}\|f\|^{2}=2\left\langle\partial_{t} f, f\right\rangle=-2\left\langle v \partial_{x} f, f\right\rangle-2\left\langle\left(-\partial_{v}+v\right) \partial_{v} f, f\right\rangle=-2\left\|\partial_{v} f\right\|^{2}
$$

\triangleright Second term

$$
\begin{aligned}
\frac{d}{d t}\left\|\partial_{v} f\right\|^{2} & =2\left\langle\partial_{v}\left(\partial_{t} f\right), \partial_{v} f\right\rangle \\
& =-2\left\langle\partial_{v}\left(v \partial_{x} f+\left(-\partial_{v}+v\right) \partial_{v} f\right), \partial_{v} f\right\rangle \\
& =-2\left\langle v \partial_{x} \partial_{v} f, \partial_{v} f\right\rangle-2\left\langle\left[\partial_{v}, v \partial_{x}\right] f, \partial_{v} f\right\rangle-2\left\langle\partial_{v}\left(-\partial_{v}+v\right) \partial_{v} f, \partial_{v} f\right\rangle \\
& =-2\left\langle\partial_{x} f, \partial_{v} f\right\rangle-2\left\|\left(-\partial_{v}+v\right) \partial_{v} f\right\|^{2}
\end{aligned}
$$

\triangleright Last term

$$
\frac{d}{d t}\left\|\partial_{x} f\right\|^{2}=-2\left\|\partial_{\nu} \partial_{x} f\right\|^{2}
$$

\triangleright Third important term

$$
\begin{aligned}
& \frac{d}{d t} \\
& \left\langle\partial_{x} f, \partial_{v} f\right\rangle \\
& =- \\
& =-\left\langle\partial_{x}\left(v \partial_{x} f+\left(-\partial_{v}+v\right) \partial_{v} f\right), \partial_{v} f\right\rangle-\left\langle\partial_{x} f\left(\partial_{x} f\right), \partial_{v} f\right\rangle+\left\langle\left(-\partial_{v}+v\right) \partial_{v} f, \partial_{x} \partial_{v} f\right\rangle \\
& \quad-\left\langle\partial_{x} f,\left[\partial_{v}, v \partial_{x}\right] f\right\rangle-\left\langle\partial_{x} f, v \partial_{x} \partial_{v} f\right\rangle \\
& \left.\quad-\left\langle\partial_{x} f,\left[\partial_{v},\left(-\partial_{v}+v\right)\right] \partial_{v} f\right)\right\rangle \\
& \left.\quad \partial_{v} f\right\rangle+\left\langle\left(-\partial_{v}+v\right) \partial_{v} f, \partial_{x} \partial_{v} f\right\rangle .
\end{aligned}
$$

we have

$$
\left\langle v \partial_{x} \partial_{x} f, \partial_{v} f\right\rangle+\left\langle\partial_{x} f, v \partial_{x} \partial_{v} f\right\rangle=0
$$

and

$$
\left[\partial_{v},\left(-\partial_{v}+v\right)\right]=1
$$

so that

$$
\frac{d}{d t}\left\langle\partial_{x} f, \partial_{v} f\right\rangle=-\left\|\partial_{x} f\right\|^{2}+2\left\langle\left(-\partial_{v}+v\right) \partial_{v} f, \partial_{x} \partial_{v} f\right\rangle-\left\langle\partial_{x} f, \partial_{v} f\right\rangle .
$$

\triangleright Entropy dissipation inequality

$$
\begin{aligned}
& \frac{d}{d t} \mathcal{H}(f)=-2 C\left\|\partial_{v} f\right\|^{2}-2 D\left\|\left(-\partial_{v}+v\right) \partial_{v} f\right\|^{2}-E\left\|\partial_{x} f\right\|^{2}-2\left\|\partial_{x} \partial_{v} f\right\|^{2} \\
&-2(D+E)\left\langle\partial_{x} f, \partial_{v} f\right\rangle-2 E\left\langle\left(-\partial_{v}+v\right) \partial_{v} f, \partial_{x} \partial_{v} f\right\rangle .
\end{aligned}
$$

Therefore, using Cauchy-Schwarz : for $1<E<D<C$ well chosen,

$$
\frac{d}{d t} \mathcal{H}(f) \leq-C\left\|\partial_{v} f\right\|^{2}-(E-1 / 2)\left\|\partial_{x} f\right\|^{2} \leq-\frac{E}{2}\left(\left\|\partial_{v} f\right\|^{2}+\left\|\partial_{x} f\right\|^{2}\right)
$$

Using the Poincaré inequality in space and velocity

$$
\frac{d}{d t} \mathcal{H}(f) \leq-\frac{E}{4}\left(\left\|\partial_{\nu} f\right\|^{2}+\left\|\partial_{\chi} f\right\|^{2}\right)-\frac{E}{4} c_{p}\|f\|^{2} \leq-\frac{E}{4} \frac{c_{p}}{2 C} \mathcal{H}(f) .
$$

\triangleright Synthesis
We pose $2 \kappa=\frac{E}{4} \frac{c_{p}}{2 C}$ and we get by Gronwall lemma

Theorem

For all $f^{0} \in H^{1}$ with $\left\langle f^{0}\right\rangle=0$, the solution f to the rescaled inhomogeneous Fokker-Planck equation satisifies for all $t \geq 0$,

$$
\frac{1}{2}\|f\|_{L^{2}}^{2} \leq \frac{1}{2}\|f\|_{H^{1}}^{2} \leq \mathcal{H}(f(t)) \leq e^{-2 \kappa t} \mathcal{H}(0) \leq 2 C e^{-2 \kappa t}\left\|f^{0}\right\|_{H^{1}}^{2}
$$

We want to discretize the equation in space, velocity and time, with preservation of the long time behavior, (hypo)coercivity, the notion of Maxwellian.

Keywords and the discrete case
Equation? derivative? Hilbert space? Maxwellian? Gronwall? Poincaré? commutators? local?

Nothing in literature...

The semi-discrete homogeneous case

We want to discretize (and implement) the equation

$$
\partial_{t} F-\partial_{v}\left(\partial_{v}+v\right) F=0
$$

We look for a discretization only in velocity.
\triangleright The velocity derivative : for $F \in \ell^{1}(\mathbb{Z})$, define $D_{v} F \in \ell^{1}\left(\mathbb{Z}^{*}\right)$ by

$$
\left(D_{v} F\right)_{i}=\frac{F_{i}-F_{i-1}}{h} \text { for } i>0, \quad\left(D_{v} F\right)_{i}=\frac{F_{i+1}-F_{i}}{h} \text { for } i<0
$$

\triangleright The Maxwellian : solving equation $\left(D_{v}+v\right) \mu^{h}=0$ yields

$$
\mu_{i}^{h}=\frac{c_{h}}{\prod_{l=0}^{i i}\left(1+h v_{i}\right)}, \quad i \in \mathbb{Z}
$$

Then μ^{h} is even, positive, in ℓ^{1}.
Proof by direct computation : $\left(D_{v}+v\right) \mu^{h}=0$ writes

$$
\begin{cases}\frac{\mu_{i}^{h}-\mu_{i-1}^{h}}{h}+v_{i} \mu_{i}^{h}=0 & \text { for } i>0 \\ \frac{\mu_{i+1}^{h}-\mu_{i}^{h}}{h}+v_{i} \mu_{i}^{h}=0 & \text { for } i<0\end{cases}
$$

which gives the expression of $\mu^{h} \in \ell^{1}$.
\triangleright The "adjoint" : for $G \in \ell^{1}\left(\mathbb{Z}^{*}\right)$, define $D_{V}^{\sharp} F \in \ell^{1}(\mathbb{Z})$

$$
\begin{gathered}
\left(D_{v}^{\sharp} G\right)_{i}=\frac{G_{i+1}-G_{i}}{h} \text { for } i>0, \quad\left(D_{v}^{\sharp} G\right)_{i}=\frac{G_{i}-G_{i-1}}{h} \text { for } i<0, \\
\left(D_{v}^{\sharp} G\right)_{0}=\frac{G_{1}-G_{-1}}{h} .
\end{gathered}
$$

\triangleright The Hilbert spaces : we pose $F=\mu^{h}+\mu^{h} f$ and consider

$$
f \in \ell^{2}\left(\mu^{h}\right) \Leftrightarrow \sum_{i} f_{i}^{2} \mu_{i}^{h}<+\infty
$$

then denoting $\mu_{i}^{\sharp}=\mu_{i-1}^{h}$ for $i>0$ and $\mu_{i}^{\sharp}=\mu_{i+1}^{h}$ for $i<0$

$$
-D_{v}^{\sharp}\left(\left(D_{v}+v\right) \mu^{h} f\right)=D_{v}^{\sharp}\left(\mu^{\sharp}\left(D_{v} f\right)_{i}\right)=\mu_{i}^{h}\left(-D_{v}^{\sharp}+v\right) D_{v} f .
$$

The discrete equation is then

$$
\partial_{t} F-D_{v}^{\sharp}\left(D_{v}+v\right) F=0,\left.\quad F\right|_{t=0}=F^{0}
$$

With $F=\mu^{h}+\mu^{h} f$, we have

Proposition

The equation satisfied by f is the following

$$
\partial_{t} f+\left(-D_{v}^{\sharp}+v\right) D_{v} f=0,\left.\quad f\right|_{t=0}=f^{0}
$$

The operator $\left(-D_{v}^{\sharp}+v\right) D_{v}$ is selfadjoint non-negative in $\ell^{2}\left(\mu^{h}\right)$:

$$
\left\langle\left(-D_{v}^{\sharp}+v\right) D_{v} f, g\right\rangle=\left\langle D_{v} f, D_{v} g\right\rangle_{\sharp}=\left\langle f,\left(-D_{v}^{\sharp}+v\right) D_{v} g\right\rangle,
$$

where

$$
\varphi \in \ell^{2}\left(\mu^{\sharp}\right) \Leftrightarrow\|\varphi\|_{\sharp}^{2}=\sum_{i \neq 0} \varphi_{i}^{2} \mu_{i}^{\sharp}<\infty .
$$

Constant sequences are the equilibrium states of the equation.

We can do the same proof as in the continuous case

- note that $\langle f\rangle \stackrel{\text { def }}{=} \sum f_{i} \mu_{i}^{h}=\sum f_{i}^{0} \mu_{i}^{h}=0$,
- compute $\frac{\mathrm{d}}{\mathrm{d} t}\|f\|^{2}=-2\left\langle\left(-D_{v}^{\sharp}+v\right) D_{v} f, f\right\rangle=-2\left\|D_{v} f\right\|_{\sharp}^{2}$,
- use Poincaré inequality $\|f\|^{2} \leq\left\|D_{v} f\right\|_{\sharp}^{2}$,
- use Gronwall inequality $\|f\| \leq e^{-t}\left\|f^{0}\right\|$,
- synthesis $\left\|F-\mu^{h}\right\|_{\ell^{1}} \leq\|f\| \leq e^{-t}\left\|f^{0}\right\|$.

We can do the same proof as in the continuous case

- note that $\langle f\rangle \stackrel{\text { def }}{=} \sum f_{i} \mu_{i}^{h}=\sum f_{i}^{0} \mu_{i}^{h}=0$,
- compute $\frac{\mathrm{d}}{\mathrm{d} t}\|f\|^{2}=-2\left\langle\left(-D_{v}^{\sharp}+v\right) D_{v} f, f\right\rangle=-2\left\|D_{v} f\right\|_{\sharp}^{2}$,
- use Poincaré inequality $\|f\|^{2} \leq\left\|D_{v} f\right\|_{\sharp}^{2}$,
- use Gronwall inequality $\|f\| \leq e^{-t}\left\|f^{0}\right\|$,
- synthesis $\left\|F-\mu^{h}\right\|_{\ell^{1}} \leq\|f\| \leq e^{-t}\left\|f^{0}\right\|$.
?? Poincaré inequality??

Poincaré inequality

Lemma (adapted proof of that by H. Poincare (1912))

For all $f \in H^{1}(\mu)$ with $\langle f\rangle=0$, we have $\|f\|_{L^{2}(\mathrm{~d} \mu)}^{2} \leq\left\|\partial_{v} f\right\|_{L^{2}(\mathrm{~d} \mu)}^{2}$.

Proof. Denote $f(v)=f, f\left(v^{\prime}\right)=f^{\prime}, \mathrm{d} \mu=\mu(v) \mathrm{d} v$ and $\mathrm{d} \mu^{\prime}=\mu\left(v^{\prime}\right) \mathrm{d} v^{\prime}$ to obtain

$$
\int_{\mathbb{R}} f^{2} \mathrm{~d} \mu=\frac{1}{2} \iint_{\mathbb{R}^{2}}\left(f^{\prime}-f\right)^{2} \mathrm{~d} \mu \mathrm{~d} \mu^{\prime}=\frac{1}{2} \iint_{\mathbb{R}^{2}}\left(\int_{V}^{v^{\prime}} \partial_{v} f(w) \mathrm{d} w\right)^{2} \mathrm{~d} \mu \mathrm{~d} \mu^{\prime} .
$$

From Cauchy-Schwarz inequality, we infer

$$
\int_{\mathbb{R}} f^{2} \mathrm{~d} \mu \leq \frac{1}{2} \iint_{\mathbb{R}^{2}}\left(\int_{v}^{v^{\prime}}\left|\partial_{v} f(w)\right|^{2} \mathrm{~d} w\right)\left(v^{\prime}-v\right) \mathrm{d} \mu \mathrm{~d} \mu^{\prime}
$$

Denote $F(v)=\int_{a}^{v}\left|\partial_{v} f(w)\right|^{2} d w$. Then

$$
\begin{aligned}
& \int_{\mathbb{R}} f^{2} \mathrm{~d} \mu \leq \frac{1}{2} \iint_{\mathbb{R}^{2}}\left(F^{\prime}-F\right)\left(v^{\prime}-v\right) \mathrm{d} \mu \mathrm{~d} \mu^{\prime} \\
& =\frac{1}{2}\left(\iint_{\mathbb{R}^{2}} F^{\prime} v^{\prime} \mathrm{d} \mu \mathrm{~d} \mu^{\prime}+\iint_{\mathbb{R}^{2}} F v \mathrm{~d} \mu \mathrm{~d} \mu^{\prime}-\iint_{\mathbb{R}^{2}} F v^{\prime} \mathrm{d} \mu \mathrm{~d} \mu^{\prime}-\iint_{\mathbb{R}^{2}} F^{\prime} v \mathrm{~d} \mu \mathrm{~d} \mu^{\prime}\right) \\
& =\int_{\mathbb{R}} F v \mathrm{~d} \mu .
\end{aligned}
$$

Note that $\partial_{v} \mu=-v \mu$ and perform an integration by parts

$$
\int_{\mathbb{R}} f^{2} \mathrm{~d} \mu \leq \int_{\mathbb{R}} F \nu \mu \mathrm{~d} v=-\int_{\mathbb{R}} F \partial_{v} \mu \mathrm{~d} v=\int_{\mathbb{R}} \partial_{v} F \mu \mathrm{~d} v=\int_{\mathbb{R}}\left|\partial_{v} f\right|^{2} \mathrm{~d} \mu
$$

Discrete Poincaré inequality

Proposition (Discrete Poincaré inequality)

Let f be a sequence in H^{1}. Then,

$$
\|f-\langle f\rangle\|_{\ell^{2}\left(\mu^{n}\right)}^{2} \leq\left\|D_{v} f\right\|_{\ell^{2}\left(\mu^{\sharp}\right)}^{2} .
$$

Proof. Assume $\langle f\rangle=0$ and write

$$
\sum_{i} f_{i}^{2} \mu_{i}=\frac{1}{2} \sum_{i, j}\left(f_{j}-f_{i}\right)^{2} \mu_{i} \mu_{j}=\sum_{i<j}\left(f_{j}-f_{i}\right)^{2} \mu_{i} \mu_{j}
$$

\cdots computations using an antiderivative of f defined by

$$
F_{j}=\sum_{l=-j_{a}}^{j}\left(f_{l}-f_{l-1}\right)^{2}
$$

and use the integration by part in the discrete weighted space :

$$
\sum_{i \neq 0} F_{i} \mu_{i}=-\sum_{i>0} \frac{F_{i}-F_{i+1}}{h^{2}} \mu_{i}+\frac{F_{1}}{h^{2}} \mu_{0}-\sum_{i<0} \frac{F_{i-1}-F_{i}}{h^{2}} \mu_{i}-\frac{F_{-1}}{h^{2}} \mu_{0}
$$

Poincaré inequality in space

The two preceding objects and proofs can be adapted to the inhomogeneous cases under the following assumption

Hypothesis

The operator D_{x} is skew adjoint, commutes with velocity and satisfies the Poincaré inequality in space

$$
c_{p}\|\phi-\langle\phi\rangle\|_{L_{x}^{2}}^{2} \leq\left\|D_{x} \phi\right\|_{L_{x}^{2}}^{2} .
$$

For example,

- centered discrete derivative

$$
\left(D_{x} \phi\right)_{j}=\frac{\phi_{j+1}-\phi_{j-1}}{\delta x}, \quad j \in \mathbb{Z} / N \mathbb{Z}
$$

- continuous derivative (on the torus).

All cases

The two preceding objects and proofs can be adapted to the inhomogeneous cases (we give the f version) on $\ell^{2}\left(\mu^{h} \mathrm{~d} v \mathrm{~d} x\right)$:

- semi-discrete case

$$
\partial_{t} f+v D_{x} f+\left(-D_{v}^{\sharp}+v\right) D_{v} f=0,\left.\quad f\right|_{t=0}=f^{0},
$$

- the fully discrete Euler implicit case

$$
\frac{f^{n+1}-f^{n}}{\delta t}+v D_{x} f^{n+1}+\left(-D_{v}^{\sharp}+v\right) D_{v} f^{n+1}=0,\left.\quad f\right|_{t=0}=f^{0}
$$

- the fully discrete Euler explicit with Neumann on $v \in[-b, b]$

$$
\frac{f^{n+1}-f^{n}}{\delta t}+v D_{x} f^{n}+\left(-D_{v}^{\sharp}+v\right) D_{v} f^{n}=0,\left.\quad f\right|_{t=0}=f^{0}, \quad D_{v} f_{ \pm b}=0 .
$$

An example of theorem

Theorem

Assume $C>D>E>1$ well chosen. There exists $k, t_{0}, h_{0}>0$ such that for all $f^{0} \in H^{1}$ with $\left\langle f^{0}\right\rangle=0$, all $\delta t \in\left(0, t_{0}\right)$, and all $h \in\left(0, h_{0}\right)$ the sequence defined by the implicit Euler scheme satisfies for all $n \in \mathbb{N}$,

$$
\frac{1}{2}\left\|f^{n}\right\|_{H^{1}}^{2} \leq \mathcal{H}\left(f^{n}\right) \leq \mathcal{H}\left(f^{0}\right) e^{-k n \delta t} \leq 2 C\left\|f^{0}\right\|_{H^{1}}^{2} e^{-k n \delta t}
$$

Elements of proof

Consider

$$
\mathcal{H}(f)=C\|f\|^{2}+D\left\|D_{v} f\right\|_{\sharp}^{2}+E\left\langle D_{v} f, S D_{x} f\right\rangle_{\sharp}+\left\|D_{x} f\right\|^{2} .
$$

with $S=\left[D_{v}, v\right]$ and therefore $S D_{x}=\left[D_{v}, v D_{x}\right]$:

$$
(S g)_{i}=g_{i-1} \text { for } i \geq 1 \quad(S g)_{i}=g_{i+1} \text { for } i \leq-1
$$

We have for example

$$
D_{v}\left(-D_{v}^{\sharp}+v\right) S-S\left(-D_{v}^{\sharp}+v\right) D_{v}=S+\delta,
$$

where δ is the singular operator from ℓ^{2} to ℓ_{\sharp}^{2} defined for $f \in \ell^{2}$ by
$(\delta f)_{j}=0$ if $|j| \geq 2$,
$(\delta f)_{-1}=\frac{f_{1}-f_{0}}{h^{2}}$,
$(\delta f)_{1}=-\frac{f_{0}-f_{-1}}{h^{2}}$.

Especially for the singular term involving δ, we have for all $\varepsilon>0$,

$$
\left|\left\langle\delta D_{x} f, D_{v} f\right\rangle_{\sharp}\right| \leq \frac{1}{\varepsilon}\left\|\left(-D_{v}^{\sharp}+v\right) D_{v} f\right\|^{2}+\varepsilon\left\|D_{v} D_{x} f\right\|_{\sharp}^{2} .
$$

So, when it comes to computing the derivative (time-continuous case) of the discrete entropy

$$
\mathcal{H}(f)=C\|f\|^{2}+D\left\|D_{v} f\right\|_{\sharp}^{2}+E\left\langle D_{v} f, S D_{x} f\right\rangle_{\sharp}+\left\|D_{x} f\right\|^{2},
$$

we have for the first, second and fourth terms

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|f\|^{2}=-2\left\|D_{v} f\right\|_{\sharp}^{2}
$$

So, when it comes to computing the derivative (time-continuous case) of the discrete entropy

$$
\mathcal{H}(f)=C\|f\|^{2}+D\left\|D_{v} f\right\|_{\sharp}^{2}+E\left\langle D_{v} f, S D_{x} f\right\rangle_{\sharp}+\left\|D_{x} f\right\|^{2},
$$

we have for the first, second and fourth terms

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t}\|f\|^{2}=-2\left\|D_{v} f\right\|_{\sharp}^{2} . \\
\frac{d}{d t}\|f\|^{2}=-2\left\|\partial_{v} f\right\|^{2}
\end{gathered}
$$

So, when it comes to computing the derivative (time-continuous case) of the discrete entropy

$$
\mathcal{H}(f)=C\|f\|^{2}+D\left\|D_{v} f\right\|_{\sharp}^{2}+E\left\langle D_{v} f, S D_{x} f\right\rangle_{\sharp}+\left\|D_{x} f\right\|^{2},
$$

we have for the first, second and fourth terms

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|D_{v} f\right\|_{\sharp}^{2} & =2\left\langle D_{v}\left(-v D_{x}-\left(-D_{v}^{\sharp}+v\right) D_{v}\right) f, D_{v} f\right\rangle_{\sharp} \\
& \left.=-2\left\langle D_{v}\left(v D_{x}\right) f, D_{v} f\right\rangle_{\sharp}-2\left\langle D_{v}\left(-D_{v}^{\sharp}+v\right) D_{v}\right) f, D_{v} f\right\rangle_{\sharp} \\
& =-2 \underbrace{\left\langle\left[D_{v}, v D_{x}\right] f, D_{v} f\right\rangle_{\sharp}}_{=\left[D_{v}, v\right] D_{x}=S D_{x}}-2 \underbrace{\left\langle v D_{x} D_{v} f, D_{v} f\right\rangle_{\sharp}}_{=0}-2 \underbrace{\left\|\left(-D_{v}^{\sharp}+v\right) D_{v} f\right\|^{2}} \\
& =-2\left\langle S D_{x} f, D_{v} f\right\rangle_{\sharp}-2\left\|\left(-D_{v}^{\sharp}+v\right) D_{v} f\right\|^{2} .
\end{aligned}
$$

So, when it comes to computing the derivative (time-continuous case) of the discrete entropy

$$
\mathcal{H}(f)=C\|f\|^{2}+D\left\|D_{v} f\right\|_{\sharp}^{2}+E\left\langle D_{v} f, S D_{x} f\right\rangle_{\sharp}+\left\|D_{x} f\right\|^{2},
$$

we have for the first, second and fourth terms

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|D_{v} f\right\|_{\sharp}^{2}= & 2\left\langle D_{v}\left(-v D_{x}-\left(-D_{v}^{\sharp}+v\right) D_{v}\right) f, D_{v} f\right\rangle_{\sharp} \\
= & \left.-2\left\langle D_{v}\left(v D_{x}\right) f, D_{v} f\right\rangle_{\sharp}-2\left\langle D_{v}\left(-D_{v}^{\sharp}+v\right) D_{v}\right) f, D_{v} f\right\rangle_{\sharp} \\
= & -2 \underbrace{\left\langle\left[D_{v}, v D_{x}\right] f, D_{v} f\right\rangle_{\sharp}}_{=\left[D_{v}, v\right] D_{x}=S D_{x}}-2 \underbrace{\left\langle v D_{x} D_{v} f, D_{v} f\right\rangle_{\sharp}}_{=0}-2 \underbrace{\left\|\left(-D_{v}^{\sharp}+v\right) D_{v} f\right\|^{2}} \\
= & -2\left\langle S D_{x} f, D_{v} f\right\rangle_{\sharp}-2\left\|\left(-D_{v}^{\sharp}+v\right) D_{v} f\right\|^{2} . \\
& \frac{d}{d t}\left\|\partial_{v} f\right\|^{2}=-2\left\langle\partial_{x} f, \partial_{v} f\right\rangle-2\left\|\left(-\partial_{v}+v\right) \partial_{v} f\right\|^{2}
\end{aligned}
$$

So, when it comes to computing the derivative (time-continuous case) of the discrete entropy

$$
\mathcal{H}(f)=C\|f\|^{2}+D\left\|D_{v} f\right\|_{\sharp}^{2}+E\left\langle D_{v} f, S D_{x} f\right\rangle_{\sharp}+\left\|D_{x} f\right\|^{2},
$$

we have for the first, second and fourth terms

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|D_{x} f\right\|^{2}=-2\left\|D_{v} D_{x} f\right\|_{\sharp}^{2} . \tag{1}
\end{equation*}
$$

So, when it comes to computing the derivative (time-continuous case) of the discrete entropy

$$
\mathcal{H}(f)=C\|f\|^{2}+D\left\|D_{v} f\right\|_{\sharp}^{2}+E\left\langle D_{v} f, S D_{x} f\right\rangle_{\sharp}+\left\|D_{x} f\right\|^{2},
$$

we have for the first, second and fourth terms

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|D_{x} f\right\|^{2} & =-2\left\|D_{v} D_{x} f\right\|_{\sharp}^{2} . \tag{1}\\
\frac{d}{d t}\left\|\partial_{x} f\right\|^{2} & =-2\left\|\partial_{v} \partial_{x} f\right\|^{2}
\end{align*}
$$

So, when it comes to computing the derivative (time-continuous case) of the discrete entropy

$$
\mathcal{H}(f)=C\|f\|^{2}+D\left\|D_{v} f\right\|_{\sharp}^{2}+E\left\langle D_{v} f, S D_{x} f\right\rangle_{\sharp}+\left\|D_{x} f\right\|^{2},
$$

we have for the third term

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\langle S D_{x} f, D_{v} f\right\rangle_{\sharp} \\
& =-\left\|S D_{x} f\right\|_{\sharp}^{2}+h\left\langle S^{b} D_{x} f, D_{v} D_{x} f\right\rangle_{\sharp} \\
& \quad+2\left\langle\left(-D_{v}^{\sharp}+v\right) D_{v} f, S^{\sharp} D_{x} D_{v} f\right\rangle-\left\langle S D_{x} f, D_{v} f\right\rangle_{\sharp}-\left\langle\delta D_{x} f, D_{v} f\right\rangle_{\sharp} .
\end{aligned}
$$

So, when it comes to computing the derivative (time-continuous case) of the discrete entropy

$$
\mathcal{H}(f)=C\|f\|^{2}+D\left\|D_{v} f\right\|_{\sharp}^{2}+E\left\langle D_{v} f, S D_{x} f\right\rangle_{\sharp}+\left\|D_{x} f\right\|^{2},
$$

we have for the third term

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\langle S D_{x} f, D_{v} f\right\rangle_{\sharp} \\
& =-\left\|S D_{x} f\right\|_{\sharp}^{2}+h\left\langle S^{b} D_{x} f, D_{v} D_{x} f\right\rangle_{\sharp} \\
& \quad+2\left\langle\left(-D_{v}^{\sharp}+v\right) D_{v} f, S^{\sharp} D_{x} D_{v} f\right\rangle-\left\langle S D_{x} f, D_{v} f\right\rangle_{\sharp}-\left\langle\delta D_{x} f, D_{v} f\right\rangle_{\sharp} . \\
& \quad \frac{d}{d t}\left\langle\partial_{x} f, \partial_{v} f\right\rangle=-\left\|\partial_{x} f\right\|^{2}+2\left\langle\left(-\partial_{v}+v\right) \partial_{v} f, \partial_{x} \partial_{v} f\right\rangle-\left\langle\partial_{x} f, \partial_{v} f\right\rangle
\end{aligned}
$$

(obtained with $\left[\partial_{v},\left(-\partial_{v}+v\right)\right]=1$)

Numerics

Thank you!

