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Mayer’s Optimal Control Problem
Let T > 0. Consider the minimization problem

V (t0, x0) := inf
Ó

„(x(T )) : x(·) œ S[t0,T ](x0)
Ô

P(t0, x0)

where t0 œ [0, T ], „ : Rn æ R and S[t0,T ](x0) is the set of all
absolutely continuous solutions of the control system

I
ẋ = f (x , u(t)), u(t) œ U a.e. in [t0, T ]

x(t0) = x0

where f : Rn ◊ U æ Rn is continuous and U is a complete
separable metric space. V is called the value function.

Standard Hypothesis: „ is locally Lipschitz and
Y
_]

_[

(i) f (x , U) is compact for each x œ Rn

(ii) f (·, u) is locally Lipschitz uniformly in u œ U

(iii) ÷ “ > 0 so that max{|f (x , u)| : u œ U} Æ “(1 + |x |) ’x œ Rn
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Dynamic Programming
Value function is nondecreasing along trajectories of control system
and is constant along optimal trajectories (for the Mayer problem !)
A trajectory-control pair (x̄ , ū) : [t0, T ] æ Rn ◊ U is optimal i�

V (t, x̄(t)) = „(x̄(T )) ’ t œ [t0, T ]

Let K := epi(V ) = {(t, x , z) : z Ø V (t, x)} µ [0, T ] ◊ Rn ◊ R.
If f (x , U) is also convex ’ x œ Rn, then K is viable for the system

Y
_]

_[

ṫ(s) = 1
ẋ(s) œ f (x(s), U) a.e.
ż(s) = 0

in the sense that for any initial condition (t0, x0, z0) œ K , there
exists a solution of the above system starting at (t0, x0, z0) and
satisfying (t(s), x(s), z(s)) œ K for all s œ [0, T ≠ t0].
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Optimal Trajectories and Optimal Synthesis
A trajectory x̄ : [t0, T ] æ Rn ◊ U is optimal for the problem
P(t0, x0) i� s ‘æ (t0 + s, x̄(t0 + s), V (t0, x0)) is a solution of

Y
___]

___[

ṫ(s) = 1 t(0) = t0

ẋ(s) œ f (x(s), U) a.e. x(0) = x0

ż(s) = 0 z(0) = V (t0, x0)
(t(s), x(s), z(s)) œ K ’ s œ [0, T ≠ t0]

Let TK (t, x , V (t, x)) denote the contingent cone to K at
(t, x , V (t, x)). The optimal synthesis is given by

U(t, x) = {u œ U : (1, f (x , u), 0) œ TK (t, x , V (t, x))}

A trajectory x̄ : [t0, T ] æ Rn is optimal for the problem P(t0, x0)
if and only if it is a solution to

ẋ(s) œ f (x(s), U(s, x(s))) x(t0) = x0
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Viability Kernel
If W : [0, T ] ◊ Rn æ R, W (T , ·) = „(·) and epi(W ) is viable for
the system Y

_]

_[

ṫ(s) = 1
ẋ(s) œ f (x(s), U) a.e.
ż(s) = 0

then W Ø V .
Consider any lower semicontinuous W : [0, T ] ◊ Rn æ R satisfying
W Æ V and W (T , ·) = „(·). Let K be the largest closed subset of
epi(W ) such that for any initial condition (t0, x0, z0) œ K there
exists a viable in K solution ofY

_]

_[

ṫ(s) = 1 t(0) = t0

ẋ(s) œ f (x(s), U) a.e. x(0) = x0

ż(s) = 0 z(0) = V (t0, x0)
then K = epi(V ) .
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Generalized Di�erentials
Let � µ Rn be open and g : � æ R. For any x œ �, the sets

ˆ≠
g(x) =

;
p œ Rn : lim infyæx

g(y) ≠ g(x) ≠ Èp, y ≠ xÍ
| y ≠ x | Ø 0

<

ˆ+
g(x) =

I

p œ Rn : lim sup
yæx

g(y) ≠ g(x) ≠ Èp, y ≠ xÍ
| y ≠ x | Æ 0

J

are the (Fréchet) subdi�erential and superdi�erential of g at x ,
respectively. Denote by ˆg the (Clarke) generalized gradient of g .

p œ Rn is a proximal subgradient of g at x œ � if ÷ c, fl Ø 0

g(y) ≠ g(x) ≠ Èp, y ≠ xÍ Ø ≠c|y ≠ x |2 ’y œ B(x , fl).

The set of all proximal subgradients of g at x is denoted by
ˆ≠,pr

g(x).
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HJB and Characteristics
Define the Hamiltonian H : Rn ◊ Rn æ R by

H(x , p) = sup
uœU

Èf (x , u), pÍ ’ (x , p) œ Rn ◊ Rn

V is the unique solution, in a suitable sense, of the
Hamilton-Jacobi equation

I
≠vt(t, x) + H(x , ≠vx (t, x)) = 0 in [0, T ] ◊ Rn

v(T , x) = „(x) x œ Rn

Characteristic system : p(t) = ≠vx (t, x(t))
I

ẋ(t) = ÒpH(x(t), p(t)) x(T ) = xT
≠ṗ(t) = ÒxH(x(t), p(t)) ≠ p(T ) = Ò„(xT )

where ÒxH is the gradient of H(·, p), similarly for ÒpH whenever
p(·) ”= 0
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Hamilton-Jacobi equation

I
≠vt(t, x) + H(x , ≠vx (t, x)) = 0 in [0, T ] ◊ Rn

v(T , x) = „(x) x œ Rn

Characteristic system : p(t) ”= ≠vx (t, x(t)), in general,
I

ẋ(t) œ ˆ≠
p H(x(t), p(t)) x(T ) = xT

≠ṗ(t) œ ˆ≠
x H(x(t), p(t)) ≠ p(T ) œ ˆ„(xT )

where ˆ≠
x H is the subdi�erential of H(·, p), similarly for ˆ≠

p H
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Maximum Principle
The maximum principle states that if (x̄ , ū) is optimal, then the
solution p of the adjoint system

I
≠ṗ(t) = p(t)fx (x̄(t), ū(t)) a.e.
≠p(T ) = Ò„(x̄(T ))

satisfies the maximality condition :

Èp(t), f (x̄(t), ū(t))Í = max
uœU

Èp(t), f (x̄(t), u)Í

(Pontryagin and al., 1956)
If H is di�erentiable at (x̄(t), p(t)), then

ÒxH(x̄(t), p(t)) = p(t)fx (x̄(t), ū(t)),
ÒpH(x̄(t), p(t)) = f (x̄(t), ū(t))
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Sensitivity Relations for Smooth Control Systems

Let x̄(·) be an optimal solution for P(t0, x0).

If f and „ are su�ciently smooth and V is di�erentiable, then the
adjoint state p(·) (of the maximum principle) satisfies
the partial sensitivity relation

≠p(t) = Vx (t, x̄(t)) ’t œ [t0, T ]

and the full sensitivity relation

(H(x̄(t), p(t)), ≠p(t)) = ÒV (t, x̄(t)) ’t œ [t0, T )

The maximum principle + the last relation imply a necessary and
su�cient condition for optimality.
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Sensitivity Relations for Smooth Control Systems

Let x̄(·) be an optimal solution for P(t0, x0).

In general, V is merely locally Lipschitz. By Clarke, Vinter 1987
there exists an adjoint state p(·) (co-state from the maximum
principle) satisfying

≠p(t) œ ˆxV (t, x̄(t)) a.e. in [t0, T ]

and by Vinter 1988 there exists an adjoint state q(·) satisfying

(H(x(t), q(t)), ≠q(t)) œ ˆV (t, x(t)) for all t œ (t0, T )

This relations do not imply su�cient conditions for optimality.
They also hold true in the state constrained case.
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Let x̄(·) be an optimal solution for P(t0, x0).

If f (·, u) and „ are di�erentiable, then the adjoint state p(·)
satisfies

≠p(t) œ ˆ+

x V (t, x̄(t)) ’t œ [t0, T ]

and

(H(x̄(t), p(t)), ≠p(t)) œ ˆ+
V (t, x̄(t)) a.e. in [t0, T ]

Subbotina 1989, Cannarsa and HF 1990.
This leads to necessary and su�cient conditions for optimality.
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Semiconcave and Semiconvex Functions

Let � µ Rn, c Ø 0, g : � æ R is c≠semiconcave if

g(⁄x + (1 ≠ ⁄)y) Ø ⁄g(x) + (1 ≠ ⁄)g(y) ≠ ⁄(1 ≠ ⁄)c|x ≠ y |2

for all x , y œ � such that [x , y ] µ � and ⁄ œ [0, 1].
g is called c≠semiconvex on � if ≠g is c≠semiconcave on �.
Any locally C

1,1 function is locally semiconvex.

If f is su�ciently smooth in x and „ is C
2, then the value function

is locally semiconcave.

Hence it has directional derivatives and if the subdi�erential of V

is nonempty at some (t, x), then V is di�erentiable at this point.
V is then the unique locally Lipschitz solution of HJB equation in
the classical sense.
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Maximum Principle

Theorem

Assume ’ r > 0 ÷ c Ø 0 such that ’ p œ S
n≠1, x ‘æ H(·, p) is

c≠semiconvex on B(0, r).
If x̄(·) is optimal for P(t0, x0), then there exists an arc

p : [t0, T ] æ Rn
which, together with x̄(·), satisfies

I
ẋ(s) œ ˆ≠

p H(x(s), p(s)),
≠ṗ(s) œ ˆ≠

x H(x(s), p(s)), for a.e. s œ [t0, T ]

and ≠p(T ) œ ˆ„(x(T )).
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Su�cient Conditions for Optimality

Theorem

Let x(·) œ S[t0,T ](x0). If, for almost every t œ [t0, T ], ÷ p(t) œ Rn

Èp(t), ẋ(t)Í = H(x(t), p(t))
(H(x(t), p(t)), ≠p(t)) œ ˆ+

V (t, x(t))

then x is optimal for P(t0, x0).

Regularity Assumptions: ’ r > 0, ÷ c Ø 0, ’ p œ S
n≠1

I
(i) x ‘æ H(x , p) is c-semiconvex on B(0, r)
(ii) ÒpH(x , p) exists and is c-Lipschitz continuous in x on B(0, r)

If „ is locally semiconcave, then V is also locally semiconcave
Cannarsa and Wolenski, 2011
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Sensitivity Relations Involving Superdi�erentials

Theorem

Let x(·) be optimal for P(t0, x0) and consider any arc p(·) such

that (x , p) solves the system

I
≠ṗ(t) œ ˆ≠

x H(x(t), p(t))
ẋ(t) œ ˆ≠

p H(x(t), p(t)) ≠ p(T ) œ ˆ+„(x(T ))

Then p(·) satisfies the full sensitivity relation

(H(x(t), p(t)), ≠p(t)) œ ˆ+
V (t, x(t)) for all t œ (t0, T )

and the partial sensitivity relation

≠p(t) œ ˆ+

x V (t, x(t)) for all t œ [t0, T ]
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Sensitivity Relations Involving Subdi�erentials

Theorem

Assume ˆ≠
x V (t0, x0) ”= ÿ. Let x(·) be optimal for P(t0, x0) and

consider any arc p(·) such that (x , p) solves the system

I
ẋ(s) œ ˆ≠

p H(x(s), p(s)), x(t0) = x0

≠ṗ(s) œ ˆ≠
x H(x(s), p(s)), ≠p(t0) œ ˆ≠

x V (t0, x0)

Then ≠p(t) œ ˆ≠
x V (t, x(t)) for all t œ [t0, T ].

Furthermore, if ˆ+„(x(T )) ”= ÿ, then for all t œ [t0, T ], V (t, ·) is

di�erentiable at x(t) and ÒxV (t, x(t)) = ≠p(t).
If „ is also locally semiconcave, then V (·, ·) is di�erentiable at

(t, x(t)) and ÒV (t, x(t)) = (H(x(t), p(t)), ≠p(t)) ’ t œ [t0, T ).
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Second Order Superjets and Subjets

S(n) is the set of symmetric n ◊ n matrices.
Let g : Rn æ [≠Œ, +Œ] and x œ dom(g).

(q, Q) œ Rn ◊ S(n) is a superjet of g at x if ÷ ” > 0, ’ y œ B(x , ”)

g(y) Æ g(x) + Èq, y ≠ xÍ + 1
2ÈQ(y ≠ x), y ≠ xÍ + o(| y ≠ x |2)

The set of all the superjets of g at x is denoted by J
2,+

g(x).

(q, Q) œ Rn ◊ S(n) is a subjet of g at x if ÷ ” > 0, ’ y œ B(x , ”)

g(y) Ø g(x) + Èq, y ≠ xÍ + 1
2ÈQ(y ≠ x), y ≠ xÍ + o(| y ≠ x |2).

The set of all the subjets of g at x is denoted by J
2,≠

g(x).
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Properties of Superjets

Proposition

Let g : Rn æ [≠Œ, +Œ] be an extended real-valued function and

let x œ dom(g). Then the following properties hold:

(i) J
2,+

g(x) is a convex subset of Rn ◊ S(n),
(ii) for any q œ Rn

, the set {Q œ S(n) : (q, Q) œ J
2,+

g(x)} is a

closed convex subset of S(n),
(iii) if g

Õ Æ g and g(‚x) = g
Õ(‚x) for some ‚x œ Rn

, then

J
2,+

g(‚x) µ J
2,+

g
Õ(‚x).

(iv) if (q, Q) œ J
2,+

g(x), then (q, Q
Õ) œ J

2,+
g(x) for all

Q
Õ œ S(n) such that Q

Õ Ø Q. Thus, the set J
2,+

g(x) is either

empty or unbounded.
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Matrix Riccati Equation
Assume H œ C

2(Rn ◊ (Rn \ {0})) and ˆ+„(z) ”= ÿ for all z œ Rn.

Let x be an optimal solution of P(t0, x0) and consider a dual arc p

satisfying 0 ”= p(T ) œ ≠ˆ+„(x(T )).

From now on set Hpx [t] := Ò2
pxH(x(t), p(t)), and let

Hxp[t], Hpp[t], Hxx [t] be defined analogously.

Riccati Equation : R(T ) = ≠Ò2„(x̄(T ))

Ṙ(t) + Hpx [t]R(t) + R(t)Hxp[t] + R(t)Hpp[t]R(t) + Hxx [t] = 0

If V (t, ·) is C
2 in a neighborhood of x̄(t) for all t œ [t0, T ], then

(ÒxV (t, x̄(t)), Ò2

xxV (t, x̄(t)) = (≠p̄(t), ≠R(t))

This is a second order sensitivity relation.
H. Frankowska Sensitivity relations in optimal control
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Matrix Riccati Equation
Assume H œ C

2(Rn ◊ (Rn \ {0})) and ˆ+„(z) ”= ÿ for all z œ Rn.

Let x be an optimal solution of P(t0, x0) and consider a dual arc p

satisfying 0 ”= p(T ) œ ≠ˆ+„(x(T )).

From now on set Hpx [t] := Ò2
pxH(x(t), p(t)), and let

Hxp[t], Hpp[t], Hxx [t] be defined analogously.

Riccati Equation : R(T ) = ≠Ò2„(x̄(T ))

Ṙ(t) + Hpx [t]R(t) + R(t)Hxp[t] + R(t)Hpp[t]R(t) + Hxx [t] = 0

If V (t, ·) is C
2 in a neighborhood of x̄(t) for all t œ [t0, T ], then

(ÒxV (t, x̄(t)), Ò2

xxV (t, x̄(t)) = (≠p̄(t), ≠R(t))

This is a second order sensitivity relation.
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Sensitivity Relations Involving Superjets

Theorem

Let (q, Q) œ J
2,+„(x(T )), q ”= 0 and p(·) be the dual arc such

that p(T ) = ≠q. Consider the solution R(·) of

I
Ṙ(t) + Hpx [t]R(t) + R(t)Hxp[t] + R(t)Hpp[t]R(t) + Hxx [t] = 0
R(T ) = ≠Q,

defined on [a, T ] for some a œ [t0, T ). Then

(≠p(t), ≠R(t)) œ J
2,+
x V (t, x(t)) for all t œ [a, T ].

Proof is an adaptation of the one in Caro� and HF, TAMS 1996
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Sensitivity Relations Involving Subjets

Theorem

Let H œ C
2,1
loc (Rn ◊ (Rn r {0})) and for some R0 œ S(n)

(≠p(t0), ≠R0) œ J
2,≠
x V (t0, x0).

If the solution R(·) of the Riccati equation

I
Ṙ(t) + Hpx [t]R(t) + R(t)Hxp[t] + R(t)Hpp[t]R(t) + Hxx [t] = 0
R(t0) = R0

is well defined on [t0, a] for some a œ (t0, T ], then

(≠p(t), ≠R(t)) œ J
2,≠
x V (t, x(t)) for all t œ [t0, a].
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Forward Propagation of Twice Di�erentiability

Theorem

If V (t0, ·) is twice di�erentiable at x0 and the solution R(·) of

I
Ṙ(t) + Hpx [t]R(t) + R(t)Hxp[t] + R(t)Hpp[t]R(t) + Hxx [t] = 0
R(t0) = ≠ÒxxV (t0, x0)

is well defined on [t0, a], then V (t, ·) is twice di�erentiable at x(t)
for any t œ [t0, a] and R(t) = ≠ÒxxV (t, x(t)).

If „ is locally semiconcave, then the interval [t0, a] can be taken

equal to [t0, T ].

A similar result holds true also backward in time.
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Avoiding Conjugate Times
Assume „ œ C

2(Rn) and consider the Riccati equation
I

Ṙ + Hpx [t]R + RHxp[t] + RHpp[t]R + Hxx [t] = 0,
R(T ) = ≠Ò2„(x̄(T )).

If for some tc œ [t0, T ], R(·) is well defined on (tc , T ] and
limt√tc Î R(t) Î= +Œ, then tc is the conjugate time for x̄(T ).

Theorem

Let x be optimal for P(t0, x0) with Ò„(x(T )) ”= 0. If

ˆ≠,pr
x V (t0, x0) ”= ÿ, then R(·) is well defined on [t0, T ] and V (t, ·)

is of class C
2

in a neighborhood of x(t) for all t œ [t0, T ].

ˆ≠,pr
x V (t, x) ”= ÿ on a dense subset of x œ Rn.
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Mayer’s Problem under State Constraints

Consider the minimization problem

V (t0, x0) := min
Ó

„(x(T )) : x(·) œ S[t0,T ](x0), x([t0, T ]) µ K

Ô

where K µ Rn is nonempty and closed.

Inward Pointing Condition (IPC):

co f (y , U) fl int CK (y) ”= ÿ ’ y œ ˆK

where CK (y) denotes the Clarke tangent cone to K at y .

If „ is locally Lipschitz, then V is locally Lipschitz on [0, T ] ◊ K .
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Generalized Gradients on Closed Sets

Define partial generalized gradient of V

ˆxV (t, y) := co Limsupy ÕæIntK y {ÒxV (t, y
Õ)}

and generalized gradient of V

ˆV (t, y) := co Limsup(tÕ,y Õ)æ[0,T ]◊IntK (t,y) {ÒV (t Õ, y
Õ) }

In the next result NK (y) denotes Clarke’s normal cone to K at y

and ‚V : Rn æ R fi {+Œ} is given by

‚V (y) =
I

≠V (t0, y) if y œ K

+Œ otherwise.
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Necessary Optimality Conditions

Theorem (Bettiol, Frankowska, Vinter, AMO 2015)
Let x̄(.) be optimal for the initial condition (t0, x0).
Then there exist an arc p(·), a finite positive Borel measure µ(·) on

[t0, T ] and a Borel measurable selection ‹(t) œ NK (x̄(t)) fl B

µ-a.e. in [t0, T ] such that for q(s) := p(s) +
s

[t0,s]
‹(·)dµ(·)

(≠ṗ(t), ˙̄x(t)) œ ˆH(x̄(t), q(t)) a.e. in [t0, T ]

≠q(T ) œ ˆ„(x̄(T )), p(t0) œ ˆ ‚V (x̄(t0)) and the following

sensitivity relations hold true for a.e. t œ [t0, T ]:

≠q(t) œ ˆxV (t, x̄(t))

(H(x̄(t), q(t)), ≠q(t)) œ ˆV (t, x̄(t))
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