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Outline

1 Spectral clustering.
2 Geometry of spectral embeddings.
3 Discrete to continuum limit of graph-based procedures of

machine learning.

Nicolás García Trillos Brown University Geometric Structure of Graph Laplacian Embeddings.



This presentation mostly based on:
1 Error estimates for spectral convergence of the graph

Laplacian on random geometric graphs towards the
Laplace–Beltrami operator (2018) with M. Gerlach, M. Hein,
D. Slepcev.

2 Geometric structure of graph Laplacian embeddings (In
preparation) with F. Ho�man and B. Hosseini.
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What is clustering and what is
spectral clustering?
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Given a data set X = {x1, . . . , xn}:

Nicolás García Trillos Brown University Geometric Structure of Graph Laplacian Embeddings.



find meaningful clusters A1, . . . , AN in the data set:

One may have a similarity matrix W to achieve this.
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What is spectral clustering?

1 Input: Similarity graph (X , W ).
2 Output: Clusters A1, . . . , AN

Two steps:
1 Embedding step Fn : X æ RN

2 N-means on Fn(x1), . . . , Fn(xn).
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Embedding step

Consider the discrete di�erential operator:

�n := D ≠ W ,

i.e. graph Laplacian.
Self-adjoint with respect to È·, ·Í‹n and with associated Dirichlet
energy

ÿ

ij
Wij |un(xi) ≠ un(xj)|2
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Let u1,n, . . . , uN,n be first N eigenfunctions of �n.

Fn : xi œ M ‘≠æ

Q

ca
u1,n(xi)

...
uN,n(xi)

R

db
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In this talk:

x1, . . . , xn i.i.d. draws from some distribution d‹ = fldx on
M ™ Rd .
Wij obtained as follows:

W̃ij := ÷
3 |xi ≠ xj |

Án

4

Wij := W̃ijÒ
d̃i

Ò
d̃j
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Why not using N-means directly?
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Why not using N-means directly?
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Geometry of spectral embeddings

Motivating trivial example: Suppose M has N connected
components:

M = M1 fi · · · fi MN

For a well chosen value of Án, (X , W ) will have N connected
components A1,n, . . . , AN,n.
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Geometry of spectral embeddings

In more generality: let us assume that x1, . . . , xn are samples
from mixture model:

fl(x) :=
Nÿ

k=1
wkflk(x), x œ M.

Goal: Describe the geometry of the spectral embedding Fn˘‹n
when the components of mixture model are well separated.

Nicolás García Trillos Brown University Geometric Structure of Graph Laplacian Embeddings.



Informal main result

Provided mixture model is well separated, with very high
probability, there are numbers (–, ”, r) s.t:

Fn˘‹n

Q

a
N€

j=1
C(ej , –, r)

R

b Ø 1 ≠ ”,

where C(ej , –, r) is the set

C(ej , –, r) :=
;

z œ RN : z · ej
|z | > cos(–), |z | > r

<
.
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First, look at the continuum setting.
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Consider the di�erential operator:

�fl(u) := ≠1
fl

div(flÒu)

Self-adjoint with respect to È·, ·Ífl and with associated Dirichlet
energy

M
|Òu|2fldx
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Let u1, . . . , uN be first N eigenfunctions of �fl.

F : x œ M ‘≠æ

Q

ca
u1(x)

...
uN(x)

R

db

We will show that when fl mixture model is well separated then
F˘‹ has an orthogonal cone structure.
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Orthogonal cone structure

Definition

µ œ P(RN) has orthogonal cone structure with parameters (–, ”, r)
if

µ

Q

a
N€

j=1
C(ej , –, r)

R

b Ø 1 ≠ ”,

where C(ej , –, r) is the set

C(ej , –, r) :=
;

z œ RN : z · ej
|z | > cos(–), |z | > r

<
.
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Well separated mixture models

This notion is defined in terms of three quantities:
1 S: overlapping parameter.
2 C: coupling parameter.
3 �: indivisibility parameter.
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Overlapping parameter:

S := max
i ”=j M

fliflj
fl

dx , (1)

Nicolás García Trillos Brown University Geometric Structure of Graph Laplacian Embeddings.



Coupling parameter:

C := max
k

Ck

where

Ck := 1
4 M

----
Òflk
flk

≠ Òfl

fl

----
2

flkdx = 1
4Fisherfl(flk), k = 1, . . . , N.
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Indivisibility parameter:

� := min
k=1,...,N

�k , (2)

where
�k := min

u‹
M|Òu|2flk(x)

Èu, uÍflk
.
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Definition well separated mixture model:

Informally,

fl(x) :=
Nÿ

k=1
wkflk(x), x œ M.

is a well separated mixture model if:

C, S π �

S π 1
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Example 1: Mixture of Gaussians

fl1(x) := 1Ô
2fi

e≠x2/2, fl2(x) := 1Ô
2fi

e≠(x≠“)2/2.
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Example 2: Dumbbell
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Introduce the functions:

qk(x) :=
Û

flk(x)
fl(x) , x œ M

And consider the map F Q:

FQ : x œ M ‘≠æ

Q

ca
q1(x)

...
qN(x)

R

db
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If S is small then FQ
˘ ‹ has orthogonal cone structure.

If � is much larger than C and S, and if S is su�ciently small
then F˘‹ also has an orthogonal cone structure.

Nicolás García Trillos Brown University Geometric Structure of Graph Laplacian Embeddings.



Analysis for Fn˘‹n
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Fn : xi ‘≠æ

Q

ca
u1,n(xi)

...
uN,n(xi)

R

db , F : x œ M ‘≠æ

Q

ca
u1(x)

...
uN(x)

R

db

To show that
d2(Fn˘‹n, F˘‹) π 1

would like to show that as n æ Œ, ui ,n converges to ui in a
convenient sense...
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Fn : xi ‘≠æ

Q

ca
u1,n(xi)

...
uN,n(xi)

R

db , F : x œ M ‘≠æ

Q

ca
u1(x)

...
uN(x)

R

db

To show that
d2(Fn˘‹n, F˘‹) π 1

would like to show that as n æ Œ, ui ,n converges to ui in a
convenient sense...
in what sense?
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TL2
space

L2(‹)L2(‹n)

un
u

‹n

‹

P(M)
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TL2 = {(◊, v) : ◊ œ P(M), v œ L2(◊)}.

with distance between (◊1, v1) and (◊2, v2):

inf
Ëœ�(◊1,◊2) M◊M

d2
M(x , y)dË(x , y) +

M◊M
|v1(x) ≠ v2(y)|2dË(x , y).

Nicolás García Trillos Brown University Geometric Structure of Graph Laplacian Embeddings.



Theorem (NGT, Gerlach , Hein , Slepcev 18’)
With very high probability, there exists a transport map
Tn : M æ Xn with Tn˘‹ = ‹n such that

sup
xœM

dM(x , Tn(x)) ≥ (log(n))pm

n1/m

Moreover, for i = 1, . . . , N

M
|ui(x) ≠ ui ,n(Tn(x))|2d‹(x) . C

A
Ánn1/m

(log(n))pm
+ Án

B

,

Notice that:

d2(F˘‹, Fn˘‹n) Æ
M

|F(x) ≠ Fn(Tn(x))|2d‹(x).
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If S is small then FQ
˘ ‹ has orthogonal cone structure.

If � is much larger than C and S, and if S is su�ciently small
then F˘‹ also has an orthogonal cone structure.
If there is a theorem providing rates of convergence of ui ,n
towards ui , then Fn˘‹n also has orthogonal cone structure.
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Some references studying convergence of discrete to

continuum eigenfunctions

M. Belkin and P. Niyogi, Convergence of Laplacian
eigenmaps, Advances in Neural Information Processing
Systems (NIPS), 19 (2007), p. 129.
L. Hagen and A. Kahng, New spectral methods for ratio cut
partitioning and clustering., IEEE Trans. Computer-Aided
Design, 11 (1992), pp. 1074-1085
J. Shi and J. Malik, Normalized Cuts and Image
Segmentation, IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 22(8) (2000), pp. 888-905.
D. Ting, L. Huang, and M. I. Jordan, An analysis of the
convergence of graph Laplacians, in Proceedings of the 27th
International Conference on Machine Learning, 2010.
U. von Luxburg, A tutorial on spectral clustering, Statistics
and computing, 17 (2007), pp. 395-416.
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U. von Luxburg, M. Belkin, and O. Bousquet, Consistency of
spectral clustering, Ann. Statist., 36 (2008), pp. 555-586.
X. Wang, Spectral convergence rate of graph laplacian, arXiv
preprint arXiv:1510.08110, (2015).
N. Garcia Trillos and D. Slepcev, A variational approach to
the consistency of spectral clustering, ACHA (2016).
G. Schiebinger, M. J. Wainwright, and B. Yu, The

geometry of kernelized spectral clustering, Ann. Statist.,

43 (2015), pp. 819-846.
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Some questions for further related research

Stronger results for convergence rates of graph Laplacians.
Explore other graph constructions : e.g.

Wij = W̃ij
d̃–

i d̃–
j

Lafon & Coi�man (2008) Di�usion maps.
PDE and calculus of variations ideas for Graph-based learning:
a rapidly growing field ...
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N. Garcia Trillos and D. Slepcev, Continuum limit of total
variation on point clouds, Archive for Rational Mechanics and
Analysis, (2015), pp. 1-49
E. Davis, S. Sethuraman, Consistency of modularity clustering
on random geometric graphs. AAP. 2017.
B. Oosting, T. Reeb, Consistency of Dirichlet Partitions.
SIMA. 2017
N. Garciaa Trillos and R. Murray, A new analytical approach
to consistency and over
tting in regularized empirical risk minimization. EJAM, 2017.
D. Slepcev and M. Thorpe, Analysis of p-Laplacian
Regularization in Semi-Supervised Learning. Preprint, 2017.
J. Calder, The game theoretic p-Laplacian and
semi-supervised learning with few labels. Preprint, 2017.
N. Garcia Trillos and D. Sanz-Alonso, Continuum limit of
posteriors in graph bayesian inverse prob lems. Preprint, 2017.
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N. Garcia Trillos, Z. Kaplan, T. Samakhoana, and D.
Sanz-Alonso, On the consistency of graph-based Bayesian
learning and the scalability of sampling algorithms. Preprint,
2017.
N. Garcia Trillos, Gromov-Hausdor� limit of Wasserstein
spaces on point clouds. Preprint 2017.
T. Muller, M. D. Penrose, Optimal Cheeger cuts and
bisections of random geometric graphs, Preprint (2018).
M. Dunlop, D. Slepcev, A. Stuart, M. Thorpe, Large data and
zero noise limits of graph-based semi supervised learning
algorithms, Preprint (2018).
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Thank you for your attention!
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