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Motivation: conformation dynamics of biomolecules

Given a Markov process X = (Xt)t�0, discrete or continuous in
time, we want to estimate probabilities p ⌧ 1, such as

p = P (⌧ < T ) ,

or rates
k = (E[⌧ ])�1

with ⌧ some random first passage time and E[·] the expectation
with respect to the probability P .



Motivation: conformation dynamics of biomolecules

More specifically, we want to estimate free energies

F = � logE
⇥
e
�W

⇤
,

where W is some functional of X .

For example, with W = ↵⌧ and su�ciently small ↵ > 0, we have

�↵�1
F = E[⌧ ] +O(↵)



Illustrative example: bistable system

I Overdamped Langevin equation

dXt = �rV (Xt)dt +
p

2✏dBt .

I MC estimator of  = E[e�↵⌧C ]

 ̂N

✏ =
1

N

NX

i=1

e
�↵⌧ i

C .

I Small noise asymptotics (Kramers)

lim
✏!0

✏ logE[⌧C ] = �V .
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[Freidlin & Wentzell, 1984], [Berglund, Markov Processes Relat Fields 2013]



Illustrative example, cont’d

I Relative error of the MC estimator

�✏ =

q
Var[ ̂✏

N
]

E
⇥
 ̂✏
N

⇤

I Varadhan’s large deviations principle

E
⇥
( ̂N

✏ )
2
⇤
� (E

⇥
 ̂N

✏

⇤
)2 , ✏ small.

I Unbounded relative error as ✏! 0

lim sup
✏!0

�✏ = 1
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[Dupuis & Ellis, 1997]
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Optimal change of measure: zero variance

Pick another probability measure Q with likelihood ratio

' =
dQ

dP
> 0 ,

under which the rare event is no longer rare, such that

E[exp(�↵⌧C )] = EQ

⇥
exp(�↵⌧C )'

�1
⇤
.

Zero-variance change of measure exists and is given by

'⇤ =
dQ

⇤

dP
=

exp(�↵⌧C )

E[exp(�↵⌧C )]
,

but it depends on the quantity of interest, E[exp(�↵⌧C )].



Approaching zero variance (non-exhaustive list)

I Exponential tilting based on large deviations statistics:

dQ
⇤
⇡ exp(� � ↵⌧C )dP as ✏! 0,

where � is related to the large deviations rate function.
Siegmund, Glasserman & Kou, Dupuis & Wang, Vanden-Eijnden & Weare, Spiliopoulos, ...

I Kullback-Leibler or cross-entropy minimisation:

Q
⇤
⇡ argmin

Q2M
KL(Q,Q⇤) ,

with Q from some suitable ansatz space M.
Rubinstein & Kroese, Zhang & H, Kappen & Ruiz, Opper, Quer, ...

I Mean square and work-normalised variance minimisation
Glynn & Whitt, Jourdain & Lelong, Su & Fu, Vázquez-Abad & Dufresne, ...



Another idea . . .



Exponential tilting from nonequilibrium forcing

Single molecule pulling experiments, figure courtesy of G. Hummer, MPI Frankfurt

In vitro/in silico free energy calculation from forcing:

F = � logE
⇥
e
�W

⇤
.

Forcing generates a “nonequilibrium” path space measure Q with
typically suboptimal likelihood quotient ' = dQ/dP .

[Schlitter, J Mol Graph, 1994], [Hummer & Szabo, PNAS, 2001], Schulten & Park, JCP, 2004], ...
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Variational characterization of free energy

Theorem (Gibbs, Donsker & Varadhan, . . . )

For any bounded and measurable function W it holds

� logE
⇥
e
�W

⇤
= min

Q⌧P

{EQ [W ] + KL(Q,P)}

where KL(Q,P) � 0 is the relative entropy between Q and P :

KL(Q,P) =

8
<

:

Z
log

✓
dQ

dP

◆
dQ if Q ⌧ P

1 otherwise

Sketch of proof: Let ' = dQ/dP. Then

� log

Z
e�W dP = � log

Z
e�W�log'dQ 

Z
(W + log') dQ

[Boué & Dupuis, LCDS Report #95-7, 1995], [Dai Pra et al, Math Control Signals Systems, 1996]



Same same, but di↵erent. . .



Set-up: uncontrolled (“equilibrium”) di↵usion process

Let X = (Xs)s�0 be a di↵usion process on Rn,

dXs = b(Xs)ds + �(Xs)dBs , X0 = x ,

and

W (X ) =

Z ⌧

0

f (Xs) ds + g(X⌧ ) ,

for suitable functions f , g and a a.s. finite stopping time ⌧ < 1.

Aim: Estimate the path functional

 (x) = E
⇥
e
�W (X )

⇤



Set-up: controlled (“nonequilibrium”) di↵usion process

Now given a controlled di↵usion process X
u = (X u

s )s�0,

dX
u

s = (b(X u

s ) + �(X u

s )us)ds + �(X u

s )dBs , X
u

0 = x ,

and a probability Q ⌧ P on C ([0,1)) with likelihood ratio

'(X u) =
dQ

dP

����
F⌧

= exp

✓
�

Z ⌧

0

us · dBs �
1

2

Z ⌧

0

|us |
2
ds

◆
.

Now: Estimate the reweigthed path functional

E
⇥
e
�W (X )

⇤
= E

⇥
e
�W (X

u
)('(X u))�1

⇤



Variational characterization of free energies, cont’d

Theorem (H, 2012/2017)

Technical details aside, let u⇤ be a minimiser of the cost functional

J(u) = E

W (X u) +

1

2

Z ⌧

0

|us |
2
ds

�

under the controlled dynamics

dX
u

s = (b(X u

s ) + �(X u

s )us)ds + �(X u

s )dBs , X
u

0 = x .

The minimiser is unique with J(u⇤) = � log . Moreover,

 (x) = e
�W (X

u
⇤
)('(X u

⇤
))�1 (a.s.) .

[H & Schütte, JSTAT, 2012], [H et al, Entropy, 2017]



Illustrative example, cont’d

I Exit problem: f = ↵, g = 0, ⌧ = ⌧C :

J(u⇤) = min
u

E

↵⌧u

C
+

1

4✏

Z ⌧u
C

0

|us |
2
ds

�
,

under the tilted dynamics

dX
u

t = (ut �rV (X u

t )) dt +
p

2✏dBt

I Optimally tilted potential

U
⇤(x , t) = V (x)� u

⇤
t x

with stationary feedback u
⇤
t = c(X u

⇤
t ).
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Sketch of proof: Fleming’s log transformation

By the Feynman-Kac theorem,

 (x) = E

exp

✓
�

Z ⌧

0

f (Xt)dt � g(X⌧ )

◆ ����X0 = x

�

solves a linear BVP on an open and bounded set O ⇢ Rn:

(L� f ) = 0 ,  |@⌦+
= exp(�g) (L generator)

The corresponding semilinear BVP for F = � log reads

LF �
1

2
|rF |

2

a + f = 0 , F |@⌦+
= g with a = ��T

[H et al, JSTAT, 2012]; cf. [Fleming, SIAM J Control, 1978], [Boué & Dupuis, Ann Probab., 1998]



Sketch of proof, cont’d

The semilinear Hamilton-Jacobi-Bellmann PDE

LF �
1

2
|rF |

2

a + f = 0 , F |@⌦+
= g (a = ��T )

is the dynamic programming equation for our stochastic control
problem; it solution is the value function

F (x) = min{J(u) : X u

0 = x}

If F 2 C
2(O) \ C (O), the optimal control has gradient form, i.e.

u
⇤
t = ��(X u

⇤
t )TrF (X u

⇤
t ) ,

Generalizations: degenerate di↵usions, Markov chains, . . . .

[Schütte et al, Math Prog, 2012], [Banisch & Hartmann, MCRF, 2016], [H et al, Entropy, 2017]
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From dynamic programming to a pair of SDE

The semilinear HJB equation

LF + h(x ,F ,�TrF ) = 0 , F |@⌦+
= g

is equivalent to the uncoupled forward-backward SDE

dXs = b(Xs)ds + �(Xs)dBs , Xt = x

dYs = �h(Xs ,Ys ,Zs)ds + Zs · dBs , Y⌧ = g(X⌧ ) ,

on a random time horizon [0, ⌧ ] ⇢ [0,1) where

Ys = F (Xs) , Zs = �(Xs)
T
rF (Xs).

Formal derivation: Itô’s Lemma

[Pardoux & Peng, LNCIS 176, 1992], [Kobylanski, Ann Probab, 2000]



Some remarks

I The solution of the forward-backward SDE (FBSDE)

dXs = b(Xs)ds + �(Xs)dBs , X0 = x

dYs = �h(Xs ,Ys ,Zs)ds + Zs · dBs , Y⌧ = g(X⌧ ) ,

is a triplet (X ,Y ,Z ) where (Ys ,Zs) is adapted to (Xu)us .

I Hence Y0 = F (x) is a
deterministic function of the
initial data X0 = x , and Z

controls this property.
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I Existence and uniqueness of (Y ,Z ) is guaranteed for
terminal conditions g that are bounded & Lipschitz.

[Pardoux & Peng, LNCIS 176, 1992], [Kobylanski, Ann Probab, 2000]



Some remarks, cont’d

I A BSDE is not a time-reversed SDE; for example, the SDE

dYs = Zs · dBs , YT = XT

has two possible formal solutions

(Ys ,Zs) = (Xs , 1) and (Ỹs , Z̃s) = (XT , 0) ,

only one of which is adapted, namely (Ys ,Zs).

I A fix: project Ỹs onto the filtration generated by (Xt)t�0,

Ys = E[XT |Fs ] .

I Then, by the martingale representation theorem, there is a
unique, predictable process Z 2 L

2 such that

Yt = E[XT ] +

Z
t

0

Zs · dBs =) Yt = XT �

Z
t

t

Zs · dBs .



Numerical discretisation of FBSDE

The FBSDE is decoupled and an explicit scheme can be based on

X̂n+1 = X̂n +�t b(X̂n) +
p

�t �(X̂n)⇠n+1

Ŷn+1 = Ŷn ��t h(X̂n, Ŷn, Ẑn) +
p

�t Ẑn · ⇠n+1

with boundary values

X̂0 = x , Ŷn⌧ = g(X̂n⌧ )

Solution to stochastic two-point boundary value problem:

I least-squares Monte Carlo Gobet & Turkedjev, Bender et al.

I deep neural network approach E, Han & Jentzen



Solution by least-squares Monte-Carlo



Numerical discretisation of FBSDE, con’t

Since Ŷn is adapted we have Ŷn = E
⇥
Ŷn|Fn

⇤
and thus

Ŷn = E
⇥
Ŷn+1 +�t h(X̂n, Ŷn, Ẑn)|Fn

⇤

⇡ E
⇥
Ŷn+1 +�t h(X̂n, Ŷn+1, Ẑn+1)|Fn

⇤

where Fn = �(X̂0, . . . , X̂n) using that Ẑn is independent of ⇠n+1.

The conditional expectation

Ŷn := E
⇥
Ŷn+1 +�t h(X̂n, Ŷn+1, Ẑn+1)|Fn

⇤

can be computed by least-squares:

E
⇥
S |Fn

⇤
= argmin

Y2L2,Fn-measurable

E[|Y � S |
2] .

[Gobet et al, AAP, 2005], [Bender & Steiner, Num Meth F, 2012], [Kebiri et al, Proc IHP, 2018]



Deep learning based approximation



Numerical discretisation of FBSDE, con’t

Now consider the forward iteration

Yn+1 = Yn ��t h(X̂n,Yn,Zn) +
p

�t Zn · ⇠n+1 ,

with Yn = Yn(x ; ✓) and Zn = Zn(X̂n; ✓) being the (non-adapted?)
deep neural net approximation of (Ŷn, Ẑn), so that

Y0 ⇡ F (x) , Zn ⇡ (�TrF )(X̂n)

The corresponding loss function is given by

`(✓) = E
⇥
|Yn⌧ � g(X̂n⌧ )|

2
⇤

(Note that E
⇥
|Y⌧ � g(X⌧ )|2

⇤
= 0 for the exact solution.)

[E et al, Commun Math Stat, 2017], [H. et al, Preprint, 2018]



More remarks

I The LSMC scheme is strongly convergent of order 1/2 in
�t ! 0 as M,K ! 1 (M: sample size, K : # basis fcts.).

I A zero-variance change of measure is given by

dQ

dP

����
F⌧

= exp

✓Z ⌧

0

Zs · dBs �
1

2

Z ⌧

0

|Zs |
2
ds

◆
,

for ⌧ < 1 (a.s.) and the discretisation bias can be further
reduced by using importance sampling.

I Under mild assumptions, the variance of the importance
sampling estimator is no worse than for crude MC.

I Generalisations include bounded & deterministic ⌧ , singular
terminal condition, least-squares w/ change of drift.

[Turkedjiev, PhD thesis, 2013], [Kruse & Popier, SPA, 2016], [Kebiri & H, Preprint, 2018]
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Example I: hitting probabilities

Probability of hitting the set C ⇢ R before time T :

� logP(⌧  T ) = min
u

E

1

4

Z ⌧^T

0

|ut |
2
dt � log 1@C (X

u

⌧^T )

�
,

with ⌧ denoting the first hitting time of C under the dynamics

dX
u

t = (ut �rV (X u

t )) dt +
p

2✏ dBt

.
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[Zhang et al, SISC, 2014], [Richter, MSc thesis, 2016], [H et al, Nonlinearity, 2016]



Example I, cont’d

Probability of hitting C ⇢ R before time T , starting from x = �1:

� logP(⌧  T ) = min
u

E

1

4

Z ⌧^T

0

|ut |
2
dt � log 1@C (X

u

⌧^T )

�
,

(BSDE with singular terminal condition and random stopping time)

Simulation parameters F
✏
ref

(0, x) F̄
✏
(0, x) Var

K = 8, M = 300, T = 5, �t = 10
�3, ✏ = 1 0.3949 0.3748 10

�3

K = 5, M = 300, T = 1, �t = 10
�3, ✏ = 1 1.7450 1.6446 0.0248

K = 5,M = 400, T = 1,�t = 10
�4, ✏ = 0.6 4.3030 4.5779 10

�3

K = 6,M = 450, T = 1,�t = 10
�4, ✏ = 0.5 4.5793 4.6044 5 · 10�4

with K the number of Gaussians and M the number of realisations of the forward SDE.

[Ankirchner et al, SICON, 2014], [Kruse & Popier, SPA, 2016], [Kebiri et al, Proc IHP, 2018]



Example II: High-dimensional PDE

First exit time of a Brownian motion from an n-sphere of radius r :

⌧ = inf{t > 0: x + Bt /2 S
n

r }

Cumulant generating function of first exit time satisfies

� logE[exp(�↵⌧)] = min
u

E

↵⌧u +

1

2

Z ⌧u

0

|ut | dt

�

I BSDE on random time horizon with
homogeneous terminal condition

I mean first exit time E[⌧ ] = r
2�|x |2
n

I Least-squares MC w/ K = 3,M ⇠ 102

n = 3 n = 10 n = 100 n = 1000

exact 1.00 1.00 1.00 1.00

CMC 0.98 0.99 1.08 1.04

LSMC 0.99 1.01 0.96 0.98

[Kebiri & H, Preprint, 2018]



Discussion: Markovian approximations

I The fact that the FBSDE is uncoupled implies that every
approximation of X gives rise to an approximation of (Y ,Z ).

I Slow-fast systems: Strong error bound for limit BSDE

sup{|Y �
t � Ȳt | : 0  t  T}  C

p

� � =
⌧fast
⌧slow

as � ! 0, analogously for Z �
t (implies IS error bound).

I Reversible metastable systems: Approximation of X by
s-state Markov jump process (jt)t�0 implies that

k �  ̄k2  C inf
v2H

k � vk2

with C ⇡ 1 and basis dependent best-approximation error.

[Banisch & H, MCRF, 2016], [H et al, PTRF, 2018], [Kebiri & H, Proc IHP, 2018]



Discussion: approximation by DNN

[H et al, Preprint, 2018]



Conclusions & outlook

I Adaptive importance sampling scheme based on dual

variational formulation; resulting control problem features
short trajectories with minimum variance estimators.

I Variational problem boils down to an uncoupled FBSDE
with only one additional spatial dimension.

I Error analysis for unbounded stopping time & singular
terminal condition is open, least-squares algorithm requires
some fine-tuning (ansatz functions, change of drift, . . . ).

I Clever choice of ansatz functions should be combined with
dimension reduction (cf. results for slow-fast systems).



Thank you for your attention!
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