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1/6 FPT introduction

1. Introduction to the first-passage time (FPT) for a diffusion

Modeling biological or physical stochastic systems often requires to handle
with diffusion processes.

Two types of information:

1 the marginal probability distribution function at a fixed time t.

2 the description of the whole paths (financial derivatives with barriers,
ruin probability of an insurance fund, optimal stopping problems,
neuronal sciences...)

Some Integrate and Fire models define the spiking times as the first hitting
time of a threshold by the membrane potential. If the membrane potential
v(t) is described by a stochastic differential equation, the spiking times
are the first hitting times of the threshold v th by such a diffusion.

S.Herrmann (UBFC) Dijon December 6↪ 2018 3 / 24



1/6 FPT introduction

S.Herrmann (UBFC) Dijon December 6↪ 2018 4 / 24



1/6 FPT introduction

First-passage time τL

Let (Xt , t ≥ 0) be a one-dimensional diffusion process satisfying

dXt = σ(Xt)dBt + b(Xt)dt, X0 = x < L.

Aim: simulation of the FPT defined by τL := inf{t ≥ 0 : Xt = L}.

Different tools for simulation purposes: explicit expression of the pdf,
approximation of the stochastic process, rejection sampling...

Standard Brownian case (B0 = 0):

The optional stopping thm applied to Mt = exp{λBt − 1
2λ

2t} leads to

E[e−λτL ] = e−
√

2λL, λ ≥ 0.

Inversion of the Laplace transform:

P(τL ∈ dt) =
1√
2πt3

e−
L2

2t dt, t > 0.

Hence τL ∼ L2/G 2

where G ∼ N (0, 1).

Easy and exact simulation !
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1/6 FPT introduction

General one-dimensional diffusion processes:

We define the generator associated to the diffusion (Xt , t ≥ 0) by

Lf (x) =
σ2(x)

2

d2f

dx2
(x) + b(x)

df

dx
(x), for x ∈ R.

Then the Laplace transform of the FPT is the unique solution of the
following Sturm-Liouville boundary value problem on ]−∞, L[:

⎧

⎨

⎩

Lu(x) = λu(x),
u |x=L = 1
limx→−∞ u(x) = 0.

The following property holds:

Ex [e−λτL ] =
ψλ(x)
ψλ(L)

Here ψλ stands for the unique increasing positive solution of Lu = λu.
Approximation of the pdf:

by inversion of the Laplace transform

by solving a Voltera-type integral equation when the transition
probabilities of (Xt) have an explicit expression (see Buonocore,
Nobile, Ricciardi).
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1/6 FPT introduction

General method: time discretization

Instead of considering the approximation of the pdf, it is possible to deal
directly with an approximation of the diffusion process (Euler scheme).

X(n+1)∆ = Xn∆ +∆b(Xn∆) +
√
∆σ(Xn∆)Gn, n ≥ 0,

where (Gn) stands for a sequence of independent Gaussian distributed r.v.

Let τ∆L be the FPT of the discrete-time process.

Overestimation of the FPT: τL ≤
st
τ∆L

Important to improve the algorithm:

1 a shift of the boundary (Broadie-Glasserman-Kou, Gobet-Menozzi)

2 computation of the probability for a Brownian bridge to hit the
boundary during a small time interval (Giraudo-Saccerdote-Zucca)

Advantage: rough description the paths. But: bounded time interval !
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2/6. FPT Iterative approach

2. Simulation of the FPT: an iterative approach

Let us assume that Xt (solution of the SDE) satisfies Xt = f (t,Bρ(t))

then τL is related to τBϕ := inf{t ≥ 0 : Bt = ϕ(t)}.
Examples: linear or geometric diffusions.

Approximate sequentially τBϕ for non decreasing functions ϕ.

Simulate simple random variables (Gn standard gaussian r.v.)

Stop the algorithm with an ϵ layer procedure
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2/6. FPT Iterative approach

Initialization:

T1 = 0

T2 = (ϕ(0)/G0)2

N ϵ = 1

Evolution

T1 ← T2

T2 ← T2 + (ϕ(T2)− ϕ(T1))2/G 2
Nϵ

Nϵ ← Nϵ + 1

Stopping condition:

ϕ(T2)− ϕ(T1) ≤ ϵ
Outcome:

τ ϵ,Bϕ ← T2 and Nϵ.

Theorem (H.-Tanré)

1. Assumptions:
ϕ(0) > 0 and lim supt→∞

ϕ(t)√
2t log log t

< 1 ⇒ τϕ is a.s. finite.

2. Convergence:
Let ϕ be an increasing C1-function
+ suitable conditions.

Then τ ϵ,Bϕ ⇒ τBϕ as ϵ→ 0.
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2/6. FPT Iterative approach

Theorem (H.-Tanré).

Rate of convergence. Let F (resp. Fϵ be the cumulative distribution

function of τϕ (resp. τ ϵϕ). Then Fϵ(t − ϵ)− 3
√
ϵ√

2π
≤ F (t) ≤ Fϵ(t), t ≥ ϵ.

Number of steps: E[Nϵ] ≤ C
√

| log ϵ|.

Example: ϕ(t) =
√

1 + t

Extention to general curved boundaries ϕ.
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2/6. FPT Iterative approach

Application:
Ornstein-Uhlenbeck
process
(LIF neuron model)

⎧

⎨

⎩

dXt = dBt − λXt dt,
X0 = x0.
L(t) = α+ β cos(ωt).

We use the classical transformation to link both the O-U process and the
Brownian motion: the same distribution as

Yt := e−λt(x0 + Bρ(t)) with ρ(t) :=
1

λ
(e2λt − 1).

Here ϕ(t) = L( 1
2λ log(1 + λt))

√
1 + λt − x0.

Quite restrictive method: linear or geometric diffusion
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3/6. FPT Exact simulation

3. Exact simulation of a diffusion FPT (acceptance-rejection method)

Principal idea: Let f and g two probability distribution functions, such
that h(x) := f (x)/g(x) is upper-bounded by a constant c > 0.
Aim: simulation of X with pdf f .

1 Generate a rv Y with pdf g .

2 Generate U uniformly distributed (independent from Y ).

3 If U ≤ h(Y )/c , then set X = Y ; otherwise go back to 1.

Important: h should be bounded and have an explicit expression !
Application to the FPT: Girsanov’s transformation permits to

link the distribution of (Xt , t ≥ 0) to (Bt , t ≥ 0).

give an expression of the function h.

Girsanov’s transformation was already used for simulation purposes by
Beskos and Roberts (exact simulation on some fixed interval [0,T ]).
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3/6. FPT Exact simulation

From now on, σ = 1 (diffusion coefficient). We assume that the drift

term b ∈ C1(]−∞, L]) and introduce β(x) =
∫ x
0 b(y)dy and γ := b2+b′

2 .

Girsanov’s transformation

For any bounded measurable function ψ : R→ R, we obtain

EP[ψ(τL)1{τL<∞}] = EQ[ψ(τL)η(τL)] exp
{

β(L)− β(x)
}

,

where P (resp. Q) corresponds to X (resp. B) and

η(t) := E
[

exp−
∫ t

0
γ(L− Rs)ds

∣

∣

∣
Rt = L− x

]

.

Here (Rt , t ≥ 0) stands for a 3-dimensional Bessel process with R0 = 0.

Under Q, it is easy to generate τL.

An appropriate situation for a rejection method, if τL <∞ under P.

difficulties: we assume 0 ≤ γ(x) ≤ κ since η is not explicit.
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3/6. FPT Exact simulation

Algorithm

Step 1: Simulate a r.v. T = (L− x)2/G 2 with G ∼ N (0, 1).

Step 2: Simulate a 3-dimensional Bessel process (Rt) on the time
interval [0,T ] with endpoint RT = L− x and define

DR,T :=
{

(t, v) ∈ [0,T ] × R+ : v ≤ γ(L− Rt)
}

.

Step 3: Simulate a Poisson point process N on the state space
[0,T ]× R+, independent of the Bessel process, whose intensity
measure is the Lebesgue one.

Step 4: If N(DR,T ) = 0 then set Y = T otherwise go to Step 1.

Theorem (theoretical viewpoint) H.-Zucca

Y and the FPT of the diffusion process τL are identically distributed.
Moreover the number of iterations satisfies E[I] ≤ exp((L − x)

√
2κ).
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4/6. Brownian exit problem: introduction

4. Introduction to the Brownian exit problem

Let D be a bounded domain in Rd . We denote by τD the first exit time of
the Brownian motion from the domain.
Aim: to simulate (τD,BτD). Application to Initial-Boundary Value
Problem (IBVP) for the heat equation.

Historical background: studies based on the Dirichlet problem for
Laplace’s equation:

{

∆u(x) = 0, ∀x ∈ D
u(x) = f (x), ∀x ∈ ∂D,

with the representation u(x) = Ex [f (BτD)].

Idea: use the Monte-Carlo method and an accurate simulation of the
exit location in order to approximate u(x).

Simulation of BτD : Walk on Spheres algorithms WoS (Müller ’56,

Mascagni & Hwuang ’03, Villa-Moralès ’12 ’16, Binder & Braverman ’12)

based on the mean-value formula and the martingale theory.
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5/6. Brownian exit problem: WOS

5. Exit problem: the classical walk on spheres (WoS)

1 Construct a random walk (Xn)n≥0 starting from X0 = x which
represents a simple squeleton of the Brownian paths

2 Find a martingale in order to prove the convergence of the WoS:
limn→∞ Xn = BτD in distribution.

3 Describe the rate of convergence.

A simple remark:
in order to exit from the domain D, the
Brownian paths needs to exit from any
smaller domain D′ containing x .

The best choice:
the sphere centred in x (rotational invari-
ance of BM). The exit location is then uni-
formly distributed on ∂D′.
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5/6. Brownian exit problem: WOS

The procedure is then the following:

Let S1 the bigest sphere centred in x

and included in D, let X1 the exit lo-
cation of S1 for the BM. This point is
then the new initial point and so on...
We construct a MC: (Xn, n ≥ 0).
V harmonic ⇒ (V (Xn))n≥0 defines a
martingale (mean-value formula).

x0

x1
x2

x3
x4

D

Xn converges towards X∞ ∈ ∂D (same distribution as BτD)

An algorithm based on the chain (Xn) with a stopping procedure:

Stop as soon as δ(Xn,∂D) < ε (Euclidian distance)

We denote by Nε the number of steps of the algorithm

Rate of convergence (Binder & Braverman ’12) E[Nε] = O(| log ε|).
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6/6 Brownian exit problem: WOMS

6. Exit problem: the walk on spheroids.

1 Construct a simple random walk (Tn,Xn)n≥0 starting from
(T0,X0) = (0, x) which represents a squeleton of the Brownian paths

2 Find a martingale in order to prove the convergence of the WoHB:
limn→∞(Tn,Xn) = (τD,BτD) in distribution.

3 Describe the rate of convergence

Exit time and position for a general domain R+ ×D: too difficult !

A good idea: find a sequence of particular subdomains D′
n ⊂ R+×D

whose exit problem turns out to be simple !

Let us start the random walk with (T0,X0) = (0, x) and consider
(T1,X1) the time and location of the exit problem associated to
D′

1 ⊂ R+ ×D and construct the Random Walk step by step.

Aim: choose D′
1 in order to obtain a simple expression for (T1,X1).
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6/6 Brownian exit problem: WOMS

First idea: the generic form of D′ could be a cylinder R+ × S.

P(τS > s) =
1

2ν−1Γ(ν + 1)

∞
∑

k=1

jν−1
ν,k

Jν+1(jν,k)
e−

j2ν,k
2 s , x > 0, ν = d/2− 1

J· is the Bessel function (first kind) and j·,k its positive zeros.

One other choice for D′ is the heat ball with the generic form:

Γt,x :=
{

(s, y) : ∥y − x∥ ≤ 2
√

(s − t) log((s − t)−d/2) = 2ψd (s − t)
}

Result (method of images):

1 p.d.f. of the exit time τΓ: pd(s) =
1

Γ(d/2)
ψd
d (s)
s 1[0,1](s),

thus τΓ ∼ e−G where G ∼ Γ((d + 2)/2, 2/d).

2 The location BτΓ is uniformly distributed on ∂B(x , 2ψd (τΓ)).

Using scaling prop., we define a r.w. on the boundaries of the heat balls.
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6/6 Brownian exit problem: WOMS

At each step we choose the biggest heat ball which belongs to [t,∞]×D.
Similar algorithms: Haji-Sheikh and Sparrow ’66 introduced the Floating
Random Walk (spheres), Sipin introduced the random walk on balloïds.

Consequences (Deaconu-H.)

If h belongs to C1,2(]0,∞[×D) and if it is a temperature in
]0,∞[×D, then Mn := h(Tn,Xn) is a bounded martingale.

The process Mn = (Tn,Xn) converges almost surely as n→∞ to a
limit (T∞,X∞) (same distribution as (τD,BτD)).

For numerical purposes, we need a ε-stopping procedure.

Efficiency result (Deaconu-H.).

Let D be a 0-thick domain (convex domains, domains with any cone
condition, domains bounded by a smooth hypersurface). ∃C > 0 and
ε0 > 0 both independent of (t, x) such that the number of steps satisfies

E[Nε] ≤ C | log ε|, for all ε ≤ ε0.
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6/6 Brownian exit problem: WOMS

Application to the Initial-Boundary Value Problem (Deaconu - H.)

We consider the parabolic PDE:
⎧

⎨

⎩

∂tu(t, x) = ∆xu(t, x), ∀(t, x) ∈ R+ ×D,
u(t, x) = f (t, x), ∀(t, x) ∈ R+ × ∂D,
u(0, x) = f0(x) ∀ x ∈ D,

f and f0 being continuous functions.

Generic procedure

1 Probabilistic representation: We introduce τt = τD ∧ t then

u(t, x) = Ex

[

f (t − τt ,Bτt )1{Bτt∈∂D}

]

+ Ex

[

f0(Bτt )1{Bτt /∈∂D}

]

.

2 Monte-Carlo method:
A sequence of i.i.d r.v. (τn,Yn)n≥0 (distributed as (τt ,Bτt )) leads to

u(t, x) ≈ uN(t, x) :=
1

N

N
∑

n=1

f (t− τn,Yn)1{Yn∈∂D}+ f0(Yn)1{Yn /∈∂D}.

S.Herrmann (UBFC) Dijon December 6↪ 2018 21 / 24



6/6 Brownian exit problem: WOMS

The hypercube D =]0, L[d

⎧

⎨

⎩

∂tu(t, x)−∆xu(t, x) = 0,
u(t, x) = f (t, x), on R+ × ∂D,
u(0, x) = f0(x),∀ x ∈ D.

We choose

f (t, x) = e−dπ2t/L
d
∏

i=1

sin(πxi/L
2),

and f0(x) = f (0, x) for the com-
patibility assumptions.
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6/6 Brownian exit problem: WOMS
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6/6 Brownian exit problem: WOMS

Summary and open questions

Description of the efficiency for the Random Walk on Moving
Spheres algorithm in order to simulate the Brownian exit time and
location from a bounded domain in Rd (in order to solve the IBVP of
the heat equation).

General diffusions processes (application to IBVP for parabolic
equations) ?
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6/6 Brownian exit problem: WOMS

Let us define:

Rn+1 :=
(

ΠU
n+1

)2/d
exp

{

− (1− 2

d
⌊d
2
⌋)G 2

n+1

}

ALGORITHM

Initialisation: (T0,X0) = (t, x).
Step n: The sequence is defined step by step as follows: for n ≥ 0,

{

Tn+1 = Tn − δ2(Xn, ∂D)Rn+1,

Xn+1 = Xn + 2δ(Xn, ∂D)ψd (Rn+1)Vn+1,

Stop If δ(Xn, ∂D) ≤ ε then Nε = n. Outcome (Tε,Xε) := (XNε ,TNε).
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