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Some generalizations

We consider of population of individuals, with a feature set Ω.
Each individual is susceptible (S) or infected (I ). For disease with
no immunity (ex: gonorrhea).

kpx , yq: Infection rate from feature y towards feature x .
γpxq: Recovery rate of feature x .

Let upt, xq be the probability that an individual of feature x is
infected at time t ě 0. We consider the following ODE (for
@t ě 0,@x P Ω):

Btupt, xq “ p1 ´ upt, xqq

ż

Ω
kpx , yqupt, yqdµpyq ´ γpxqupt, xq.
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We recall the ODE of evolution of a SIS model:

Btu “ p1 ´ uqTkpuq ´ γu (1)
up0, .q “ u0

We call equilibrium of Equation (1) any constant solution g so that
0 ď g ď 1, that is: γg “ p1 ´ gqTkpgq.

Let g P L8 with 0 ď g ď 1. Then g is an equilibrium if and only if:

Tp1´gqk{γpγgq “ γg

where we denote p1 ´ gqk{γpx , yq “ p1 ´ gpxqqkpx , yq{γpyq for
px , yq P Ω2.
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Irreducibility for matrices
Perron-Frobenius theorem
Upgrades of Perron-Frobenius theorem

Let M “ pMi ,jq1ďi ,jďn be a matrix with nonnegative entries. We
define the oriented weighted graph on t1, . . . , nu giving the weight
Mi ,j to the edge j Ñ i . Example:

ˆ

1 0
1 1

˙

(a) Matrix

1 2
1

1 1

(b) Graph

Figure: Example of a nonnegative matrix and its associated graph

Epidemics interpretation : We split our population into n groups of
features. Mi ,j represents the power of infection from inviduals of
feature j towards individuals of feature i .
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We call path from i to j on the graph any sequence
pi “ x0, . . . , xn “ jq so that @l ,Ml`1,l ą 0.

We say that A Ă t1, . . . , nu is invariant if there is no path starting
in A that goes outside of A. In epidemics terms, any infection
starting in A stays within A. A is co-invariant if Ac is invariant.

We say that the matrix M is irreducible if its only invariant sets are
H and t1, . . . , nu. It is equivalent to say that from all
i , j P t1, . . . , nu, there is a path from i to j .
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For any matrix M P MnpRq, we denote ρpMq “ sup
λPSppMq

|λ| its

spectral radius.

Theorem (Perron-Frobenius theorem (’07 P), (’12 F))

Let M P MnpRq be a non null matrix with nonnegative entries.
Then ρpMq is a eigenvalue of M, related to an eigenvector with
nonnegative entries.

We now assume that M is irreducible. We have:
(i) ρpMq ą 0.

(ii) dim

ˆ

Ť

nPN
kerpM ´ ρpMqInqn

˙

“ 1 (ρpMq is simple).

(iii) There exists a unique nonnegative eigenvector, and it has
positive entries.
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Irreducibility for matrices
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Two possibilities to upgrade Perron-Frobenius theorem:
(i) From finite-dimension to infinite dimension -> From matrices

to operators.
(ii) Without irreducibility -> Define irreducible components.
Our goal is to characterize nonnegative eigenfunctions for a positive
operator.
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Kernel operators on Lp

Infinite-dimensional Perron-Frobenius theorem

Let pΩ,F , µq be a finite measured space. A kernel is a measurable
function k : Ω2 Ñ R`.
When possible, we define, for f : Ω Ñ R measurable and x P Ω:

Tkpf qpxq “

ż

Ω
kpx , yqf pyqdµpyq.

Tk is a positive operator: @f ě 0 a.e.,Tkpf q ě 0 a.e..

Epidemics interpretation : Ω is a set of features, and kpx , yq the
power of infection from individuals of feature y towards individuals
of feature x . The operator Tk models a "one-step infection".
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Kernel operators on Lp

Infinite-dimensional Perron-Frobenius theorem

For any operator T on Lp, we denote ρpT q “ sup
λPSppT q

|λ|.

Theorem (Krein-Rutman theorem (’48), Schaefer (’74), de Pagter
(’86))

Let T be a compact positive operator on Lp for p P r1,`8s. If
ρpT q ą 0, then ρpT q is a eigenvalue of T , related to a nonnegative
eigenfunction.

If T is irreducible (we will define it later). We have:
(i) ρpT q ą 0.

(ii) dim

ˆ

Ť

nPN
kerpT ´ ρpT q Idqn

˙

“ 1 (ρpT q is simple).

(iii) There exists a unique nonnegative eigenfunction related to a
non-null eigenvalue, and it is positive.
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Infection power and invariance
Future and past of a measurable set
Restricted operator
3 definitions of "irreducible component"

Let k be a kernel and T the associated kernel operator.

Assumption

The operator T is a compact operator on Lp for some p P p1,`8q.

For A,B Ă F , we define the infection power from B towards A as:

kpA,Bq “

ż

AˆB
kpx , yqdµpxqdµpyq.

Notice that kpA,Bq “ 0 if and only if kpx , yq “ 0 a.e. on A ˆ B .
We say that A is invariant if kpAc ,Aq “ 0, and that A is
co-invariant if Ac is invariant.
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Let A P F be a measurable set. We define the future of A, denoted
F pAq as the minimal invariant set that contains A, and the past of
A, denoted PpAq as the minimal co-invariant set that contains A.
We denote AF “ F pAqzA.

The future of A is the set of all the features that might be infected
by an epidemics starting in A. The past of A is the set of all the
features that might infect A if an epidemics starts there.
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For Ω1 P F a measurable set with µpΩ1q ą 0, we define the
restricted operator T |Ω1 on LppΩ1q by @f P Lp,@x P Ω1:

T |Ω1pf qpxq “

ż

Ω1

kpx , yqf pyqdµpyq.

Notice that A Ă Ω1 is a T |Ω1-invariant set if and only if
kpΩ1zA,Aq “ 0.
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Infection power and invariance
Future and past of a measurable set
Restricted operator
3 definitions of "irreducible component"

We say T is an irreducible operator if the only T -invariant sets are
H or Ω. We say that A is an irreducible set if T |A is a irreducible
operator, that is, the only T |A-invariant sets are H and A.

Let A be the σ-field generated by the invariant sets. We call atom
(in the sense of Schwartz) any minimal element of A with positive
measure. That is, A is an atom if µpAq ą 0, A P A and for any set
B P A with B Ă A, we have B “ A of B “ H.

We say that A is a convex set if F pAqzA is an invariant set.
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Theorem (Equivalent definitions of atoms)

Let A P F be a measurable set with µpAq ą 0. We have
equivalence between:
(i) A is an atom.
(ii) A is a minimal convex set.
(iii) A is a maximal irreducible set.
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Infection power and invariance
Future and past of a measurable set
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Pros and cons of each definition:

Pros Cons
Atom Good for theory Hard to use in practice
Min convex Easy to use Not general enough
Max irr Easy to generalize Maximal instead of minimal
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Distinguished eigenvalues

For λ P C and A P F a measurable set with µpAq ą 0, we define
the algebraic multiplicity of λ of T restricted to A by:

mpλ,A,T qpor mpλ,Aqq “ dim

˜

ď

nPN

kerpT |A ´ λ Idqn

¸

.

When mpλ,Ωq “ 1, we say that λ is simple. The algebraic
multiplicity, for a compact operator and for λ ‰ 0, satisfies the
following properties:
(i) mpλ,Ωq ă `8.
(ii) mpλ,Aq ą 0 if and only if λ is an eigenvalue of T |A.
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Theorem (Schwartz (’61))

Let λ ą 0. Then we have:

mpλ,Ωq “
ÿ

A atom

mpλ,Aq.
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Distinguished atoms
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For any A P F with µpAq ą 0, we denote ρpAq :“ ρpT |Aq. We
remind that if A is an atom with ρpAq ą 0, by Krein-Rutman
theorem we have mpρpAq,Aq “ 1.

Here are some important consequences of Schwartz’s theorem:

Corollary

(i) If λ ą 0, there exists a finite amount of atoms with a spectral
radius ě λ.

(ii) ρpT q “ max
A atom

ρpAq.

(iii) If I is an invariant set, ρpI q “ max
A atom,AĂI

ρpAq.
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Algebraic multiplicity and Schwartz’s theorem
Distinguished atoms
Distinguished eigenvalues

Question: How can we "distinguish" an atom using nonnegative
eigenfunction "related" to the atom ?

Idea: Find a nonnegative eigenfunction v so that
supppvq :“ tv ą 0u is "close enough" to A. For instance
A X supppvq ‰ H. As A is an atom and supppvq an invariant set,
we have in this case F pAq Ă supppvq. Can we have it with
supppvq “ F pAq ?

Definition (Distinguished atom)

We say that an atom A is distinguished if there exists a
nonnegative eigenfunction v P Lp so that supppvq “ F pAq.
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Proposition (Characterization of distinguished atoms)

Let A be an atom. We have the following:
(i) A is distinguished if and only if ρpAq ą ρpAF q.
(i) If A is distinguished, there exists a unique nonnegative

eigenfunction v P Lp with supppvq “ F pAq, and it is related to
the eigenvalue ρpAq.
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Algebraic multiplicity and Schwartz’s theorem
Distinguished atoms
Distinguished eigenvalues

Idea of proof of the previous proposition:

Let v P Lp and λ P C with supppvq “ F pAq. We have Tv “ λv if
and only if:

λ1Av “ 1AT p1Avq (2)
λ1AF

v “ 1AF
T p1Avq ` 1AF

T p1AF
vq (3)

Then by Equation (2), 1Av is a nonnegative eigenfunction of T |A.
Therefore by Krein-Rutman theorem, 1Av is uniquely defined and
λ “ ρpAq.
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Does Equation (3): ρpAq1AF
v “ 1AF

T p1Avq ` 1AF
T p1AF

vq have
a nonnegative solution 1AF

v ?

Answer: If and only if ρpAF q ă ρpAq.

If ρpAF q ă ρpAq, then we have
1AF

v “ pρpAq Id´T |AF
q´1p1AF

T p1Avqq therefore Equations (2),
(3) have a unique solution.
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We say that λ ě 0 is a distinguished eigenvalue if there exists a
nonnegative eigenfunction v P Lp so that λv “ Tv .

Proposition (Jang-Lewis, Victory (’93))

A number λ ě 0 is a distinguished eigenvalue if and only if there
exists a distinguished atom A with ρpAq “ λ.

Theorem (Characterization of nonnegative eigenfunctions)

Let λ ą 0 be a distinguished eigenvalue and A1, . . . ,An be all the
distinguished atoms with spectral radius λ. Let vi be the unique
eigenfunction so that supppvi q “ F pAi q. Then v P Lp is a

nonnegative eigenfunction related to λ if and only if v “
n
ř

i“1
civi

with ci ě 0.
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SIS model
Basic reproduction number
Equilibria when R0 ą 1 with no irreducibility

We consider the set of feature pΩ,F , µq with µ a finite measure.
We recall the ODE of evolution of a SIS model:

Btu “ p1 ´ uqTkpuq ´ γu

up0, .q “ u0

We call equilibrium of Equation (1) any constant solution g so that
0 ď g ď 1, that is: γg “ p1 ´ gqTkpgq.

When g˚ ‰ 0̃, it corresponds to an endemic equilibrium.
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SIS model
Basic reproduction number
Equilibria when R0 ą 1 with no irreducibility

We denote k{γ :

"

Ω2 Ñ R`

px , yq ÞÑ kpx , yq{γpyq
and Tk{γ the kernel

operator associated to the kernel k{γ.

Assumption

(i) γ is bounded
(ii) Tk{γ is a compact operator on Lp with p P p1,`8q.
(iii) Tk{γpLpq Ă L8 and Tk{γ : pLp, ||.||pq Ñ pL8, ||.||8q is an

operator.

Definition (Basic reproduction number)

We call basic reproduction number the quantity R0 “ ρpTk{γq.
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Basic reproduction number
Equilibria when R0 ą 1 with no irreducibility

Theorem (Delmas, Dronnier, Zitt (’21))

Let u0 be an initial condition so that 0 ď u0 ď 1. We have:
(i) Any maximal solution of Equation (1) is global, and verifies

@t P R`, 0 ď upt, .q ď 1.
(ii) Equation (1) admits a maximal equilibrium g˚. It satisfies

g˚ “ lim upt, .q where u is the solution of Equation (1) with
an initial condition u0 “ 1, for the a.e. convergence.

(iii) According to the value of R0, we have the different behaviors:
a If R0 ď 1, then g˚ “ 0 and for any initial condition u0,

we have upt, .q Ñ 0 for the a.e. convergence.
b If R0 ą 1, then g˚ ‰ 0̃. If Tk is irreducible, then g˚ ą 0

and for any initial condition u0 ‰ 0̃, we have upt, .q Ñ g˚

for the a.e. convergence.
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SIS model
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Equilibria when R0 ą 1 with no irreducibility

Question: What would happen if R0 ą 1 but with no irreduciblity ?

Let g P L8 with 0 ď g ď 1. Then g is an equilibrium if and only if:

Tp1´gqk{γpγgq “ γg

where we denote p1 ´ gqk{γpx , yq “ p1 ´ gpxqqkpx , yq{γpyq for
px , yq P Ω2.

When g is an equilibrium, then g ă 1 therefore the operators Tk

and Tp1´gqk{γ have the same invariants, therefore the same atoms.
So the study of equilibria becomes a study of nonnegative
eigenfunctions.
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SIS model
Basic reproduction number
Equilibria when R0 ą 1 with no irreducibility

We say that a family of atoms tAiuiPI is an antichain if for i ‰ j ,
we have Ai X F pAjq “ H. Informally, if means that no atom among
the family tAiuiPI infects another atom of the family.

Theorem
(i) Let g be an equilibrium. There exists a unique antichain

tA1, . . . ,Anu of atoms with R0pAi q ą 1 so that

supppgq “
n
Ť

i“1
F pAi q.

(ii) Let tA1, . . . ,Anu be an antichain of atoms with R0pAi q ą 1.
There exists a unique equilibrium g so that

supppgq “
n
Ť

i“1
F pAi q.
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There are some difficulties and possible generalizations of our
results:
(i) Everything also works by remplacing Tk by any power compact

operator T . Except for the application, one can replace "finite
measure" by "σ-finite measure".

(ii) If p “ 1 or p “ `8, there are some issues about the dual of
Lp.

(iii) General framework of Banach lattices: Irreducibility is easy to
generalize on more general spaces that Lp, but not atoms and
convex sets.
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Thank you for your attention !
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