Atomic decomposition of a positive compact operator on L^p

Kacem Lefki (LAMA/CERMICS)

Under the supervision of Jean-François Delmas (CERMICS) and Pierre-André Zitt (LAMA)

22 Mars 2023

Kacem Lefki (LAMA/CERMICS)

We consider of population of individuals, with a feature set Ω . Each individual is susceptible (*S*) or infected (*I*). For disease with no immunity (ex: gonorrhea).

k(x, y): Infection rate from feature y towards feature x. $\gamma(x)$: Recovery rate of feature x.

Let u(t, x) be the probability that an individual of feature x is infected at time $t \ge 0$. We consider the following ODE (for $\forall t \ge 0, \forall x \in \Omega$):

$$\partial_t u(t,x) = (1 - u(t,x)) \int_{\Omega} k(x,y) u(t,y) \mathrm{d}\mu(y) - \gamma(x) u(t,x).$$

We recall the ODE of evolution of a SIS model:

$$\partial_t u = (1 - u) T_k(u) - \gamma u \tag{1}$$
$$u(0, .) = u_0$$

- 4 目 ト - 4 日 ト

We call equilibrium of Equation (1) any constant solution g so that $0 \le g \le 1$, that is: $\gamma g = (1 - g)T_k(g)$.

Let $g \in L^{\infty}$ with $0 \leq g \leq 1$. Then g is an equilibrium if and only if:

$$T_{(1-g)k/\gamma}(\gamma g) = \gamma g$$

where we denote $(1-g)k/\gamma(x,y) = (1-g(x))k(x,y)/\gamma(y)$ for $(x,y) \in \Omega^2$.

Irreducibility for matrices Perron-Frobenius theorem Upgrades of Perron-Frobenius theorem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $M = (M_{i,j})_{1 \le i,j \le n}$ be a matrix with nonnegative entries. We define the oriented weighted graph on $\{1, \ldots, n\}$ giving the weight $M_{i,j}$ to the edge $j \rightarrow i$. Example:

Figure: Example of a nonnegative matrix and its associated graph

Epidemics interpretation : We split our population into n groups of features. $M_{i,j}$ represents the power of infection from inviduals of feature j towards individuals of feature i.

Kacem Lefki (LAMA/CERMICS)

Irreducibility for matrices Perron-Frobenius theorem Upgrades of Perron-Frobenius theorem

We call *path* from *i* to *j* on the graph any sequence $(i = x_0, ..., x_n = j)$ so that $\forall I, M_{I+1,I} > 0$.

We say that $A \subset \{1, \ldots, n\}$ is *invariant* if there is no path starting in A that goes outside of A. In epidemics terms, any infection starting in A stays within A. A is co-invariant if A^c is invariant.

We say that the matrix M is *irreducible* if its only invariant sets are \emptyset and $\{1, \ldots, n\}$. It is equivalent to say that from all $i, j \in \{1, \ldots, n\}$, there is a path from i to j.

Irreducibility for matrices Perron-Frobenius theorem Upgrades of Perron-Frobenius theorem

For any matrix $M \in \mathcal{M}_n(\mathbb{R})$, we denote $\rho(M) = \sup_{\lambda \in Sp(M)} |\lambda|$ its spectral radius.

Theorem (Perron-Frobenius theorem ('07 P), ('12 F))

Let $M \in \mathcal{M}_n(\mathbb{R})$ be a non null matrix with nonnegative entries. Then $\rho(M)$ is a eigenvalue of M, related to an eigenvector with nonnegative entries.

We now assume that M is irreducible. We have:

(i) ρ(M) > 0.
 (ii) dim (∪_{n∈ℕ} ker(M − ρ(M)I_n)ⁿ) = 1 (ρ(M) is simple).
 (iii) There exists a unique nonnegative eigenvector, and it has positive entries.

Kacem Lefki (LAMA/CERMICS)

Irreducibility for matrices Perron-Frobenius theorem Upgrades of Perron-Frobenius theorem

Two possibilities to upgrade Perron-Frobenius theorem:

- (i) From finite-dimension to infinite dimension -> From matrices to operators.
- (ii) Without irreducibility -> Define irreducible components.

Our goal is to characterize nonnegative eigenfunctions for a positive operator.

Kernel operators on *L^p* Infinite-dimensional Perron-Frobenius theorem

Let $(\Omega, \mathcal{F}, \mu)$ be a finite measured space. A kernel is a measurable function $k : \Omega^2 \to \mathbb{R}_+$.

When possible, we define, for $f : \Omega \to \mathbb{R}$ measurable and $x \in \Omega$:

$$T_k(f)(x) = \int_{\Omega} k(x, y) f(y) \mathrm{d}\mu(y).$$

 T_k is a *positive* operator: $\forall f \ge 0$ a.e., $T_k(f) \ge 0$ a.e..

Epidemics interpretation : Ω is a set of features, and k(x, y) the power of infection from individuals of feature y towards individuals of feature x. The operator T_k models a "one-step infection".

Kernel operators on L^p Infinite-dimensional Perron-Frobenius theorem

For any operator T on L^p , we denote $\rho(T) = \sup_{\lambda \in Sp(T)} |\lambda|$.

Theorem (Krein-Rutman theorem ('48), Schaefer ('74), de Pagter ('86))

Let T be a compact positive operator on L^p for $p \in [1, +\infty]$. If $\rho(T) > 0$, then $\rho(T)$ is a eigenvalue of T, related to a nonnegative eigenfunction.

If T is irreducible (we will define it later). We have: (i) $\rho(T) > 0$. (ii) dim $\left(\bigcup_{n \in \mathbb{N}} \ker(T - \rho(T) \operatorname{Id})^n\right) = 1$ ($\rho(T)$ is simple). (iii) There exists a unique nonnegative eigenfunction related to a non-null eigenvalue, and it is positive.

Infection power and invariance Future and past of a measurable set Restricted operator 3 definitions of "irreducible component"

Let k be a kernel and T the associated kernel operator.

Assumption

The operator T is a compact operator on L^p for some $p \in (1, +\infty)$.

For $A, B \subset \mathcal{F}$, we define the *infection power* from *B* towards *A* as:

$$k(A,B) = \int_{A \times B} k(x,y) \mathrm{d}\mu(x) \mathrm{d}\mu(y).$$

Notice that k(A, B) = 0 if and only if k(x, y) = 0 a.e. on $A \times B$. We say that A is *invariant* if $k(A^c, A) = 0$, and that A is *co-invariant* if A^c is invariant.

Infection power and invariance Future and past of a measurable set Restricted operator 3 definitions of "irreducible component"

Let $A \in \mathcal{F}$ be a measurable set. We define the *future* of A, denoted F(A) as the minimal invariant set that contains A, and the *past* of A, denoted P(A) as the minimal co-invariant set that contains A. We denote $A_F = F(A) \setminus A$.

The future of A is the set of all the features that might be infected by an epidemics starting in A. The past of A is the set of all the features that might infect A if an epidemics starts there.

Infection power and invariance Future and past of a measurable set **Restricted operator** 3 definitions of "irreducible component"

For $\Omega' \in \mathcal{F}$ a measurable set with $\mu(\Omega') > 0$, we define the restricted operator $\mathcal{T}|_{\Omega'}$ on $L^p(\Omega')$ by $\forall f \in L^p, \forall x \in \Omega'$:

$$T|_{\Omega'}(f)(x) = \int_{\Omega'} k(x,y)f(y) \mathrm{d}\mu(y).$$

Notice that $A \subset \Omega'$ is a $T|_{\Omega'}$ -invariant set if and only if $k(\Omega' \setminus A, A) = 0$.

Infection power and invariance Future and past of a measurable set Restricted operator 3 definitions of "irreducible component"

We say T is an *irreducible operator* if the only T-invariant sets are \emptyset or Ω . We say that A is an *irreducible set* if $T|_A$ is a irreducible operator, that is, the only $T|_A$ -invariant sets are \emptyset and A.

Let \mathcal{A} be the σ -field generated by the invariant sets. We call *atom* (in the sense of Schwartz) any minimal element of \mathcal{A} with positive measure. That is, A is an atom if $\mu(A) > 0$, $A \in \mathcal{A}$ and for any set $B \in \mathcal{A}$ with $B \subset A$, we have B = A of $B = \emptyset$.

We say that A is a *convex* set if $F(A) \setminus A$ is an invariant set.

Infection power and invariance Future and past of a measurable set Restricted operator 3 definitions of "irreducible component"

Theorem (Equivalent definitions of atoms)

Let $A \in \mathcal{F}$ be a measurable set with $\mu(A) > 0$. We have equivalence between:

(i) A is an atom.

(ii) A is a minimal convex set.

(iii) A is a maximal irreducible set.

Infection power and invariance Future and past of a measurable set Restricted operator 3 definitions of "irreducible component"

Pros and cons of each definition:

	Pros	Cons
Atom	Good for theory	Hard to use in practice
Min convex	Easy to use	Not general enough
Max irr	Easy to generalize	Maximal instead of minimal

Algebraic multiplicity and Schwartz's theorem Distinguished atoms Distinguished eigenvalues

For $\lambda \in \mathbb{C}$ and $A \in \mathcal{F}$ a measurable set with $\mu(A) > 0$, we define the *algebraic multiplicity* of λ of T restricted to A by:

$$m(\lambda, A, T)(\text{or } m(\lambda, A)) = \dim \left(\bigcup_{n \in \mathbb{N}} \ker(T|_A - \lambda \operatorname{Id})^n \right).$$

When $m(\lambda, \Omega) = 1$, we say that λ is *simple*. The algebraic multiplicity, for a compact operator and for $\lambda \neq 0$, satisfies the following properties:

- (i) $m(\lambda, \Omega) < +\infty$.
- (ii) $m(\lambda, A) > 0$ if and only if λ is an eigenvalue of $T|_A$.

Algebraic multiplicity and Schwartz's theorem Distinguished atoms Distinguished eigenvalues

- ● ● ●

Theorem (Schwartz ('61))

Let $\lambda > 0$. Then we have:

$$m(\lambda, \Omega) = \sum_{A \text{ atom}} m(\lambda, A).$$

Algebraic multiplicity and Schwartz's theorem Distinguished atoms Distinguished eigenvalues

For any $A \in \mathcal{F}$ with $\mu(A) > 0$, we denote $\rho(A) := \rho(\mathcal{T}|_A)$. We remind that if A is an atom with $\rho(A) > 0$, by Krein-Rutman theorem we have $m(\rho(A), A) = 1$.

Here are some important consequences of Schwartz's theorem:

Corollary

(i) If λ > 0, there exists a finite amount of atoms with a spectral radius ≥ λ.

(ii) $\rho(T) = \max_{A \text{ atom}} \rho(A).$ (iii) If I is an invariant set, $\rho(I) = \max_{A \text{ atom}, A \subset I} \rho(A).$

Algebraic multiplicity and Schwartz's theorem Distinguished atoms Distinguished eigenvalues

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\underline{Question:}$ How can we "distinguish" an atom using nonnegative eigenfunction "related" to the atom ?

<u>Idea</u>: Find a nonnegative eigenfunction v so that $supp(v) := \{v > 0\}$ is "close enough" to A. For instance $A \cap supp(v) \neq \emptyset$. As A is an atom and supp(v) an invariant set, we have in this case $F(A) \subset supp(v)$. Can we have it with supp(v) = F(A)?

Definition (Distinguished atom)

We say that an atom A is distinguished if there exists a nonnegative eigenfunction $v \in L^p$ so that supp(v) = F(A).

Algebraic multiplicity and Schwartz's theorem Distinguished atoms Distinguished eigenvalues

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition (Characterization of distinguished atoms)

Let A be an atom. We have the following:

(i) A is distinguished if and only if $\rho(A) > \rho(A_F)$.

(i) If A is distinguished, there exists a unique nonnegative eigenfunction $v \in L^p$ with supp(v) = F(A), and it is related to the eigenvalue $\rho(A)$.

Algebraic multiplicity and Schwartz's theorem Distinguished atoms Distinguished eigenvalues

Idea of proof of the previous proposition:

Let $v \in L^p$ and $\lambda \in \mathbb{C}$ with supp(v) = F(A). We have $Tv = \lambda v$ if and only if:

$$\lambda \mathbb{1}_{A} v = \mathbb{1}_{A} T(\mathbb{1}_{A} v) \tag{2}$$

$$\lambda \mathbb{1}_{A_F} v = \mathbb{1}_{A_F} T(\mathbb{1}_A v) + \mathbb{1}_{A_F} T(\mathbb{1}_{A_F} v)$$
(3)

Then by Equation (2), $\mathbb{1}_A v$ is a nonnegative eigenfunction of $T|_A$. Therefore by Krein-Rutman theorem, $\mathbb{1}_A v$ is uniquely defined and $\lambda = \rho(A)$.

Algebraic multiplicity and Schwartz's theorem Distinguished atoms Distinguished eigenvalues

- 4 目 ト - 4 日 ト

Does Equation (3): $\rho(A)\mathbb{1}_{A_F}v = \mathbb{1}_{A_F}T(\mathbb{1}_Av) + \mathbb{1}_{A_F}T(\mathbb{1}_{A_F}v)$ have a nonnegative solution $\mathbb{1}_{A_F}v$?

<u>Answer:</u> If and only if $\rho(A_F) < \rho(A)$.

If $\rho(A_F) < \rho(A)$, then we have $\mathbb{1}_{A_F} v = (\rho(A) \operatorname{Id} - T|_{A_F})^{-1} (\mathbb{1}_{A_F} T(\mathbb{1}_A v))$ therefore Equations (2), (3) have a unique solution.

Algebraic multiplicity and Schwartz's theorem Distinguished atoms Distinguished eigenvalues

We say that $\lambda \ge 0$ is a *distinguished* eigenvalue if there exists a nonnegative eigenfunction $v \in L^p$ so that $\lambda v = Tv$.

Proposition (Jang-Lewis, Victory ('93))

A number $\lambda \ge 0$ is a distinguished eigenvalue if and only if there exists a distinguished atom A with $\rho(A) = \lambda$.

Theorem (Characterization of nonnegative eigenfunctions)

Let $\lambda > 0$ be a distinguished eigenvalue and A_1, \ldots, A_n be all the distinguished atoms with spectral radius λ . Let v_i be the unique eigenfunction so that $supp(v_i) = F(A_i)$. Then $v \in L^p$ is a nonnegative eigenfunction related to λ if and only if $v = \sum_{i=1}^{n} c_i v_i$ with $c_i \ge 0$.

SIS model Basic reproduction number Equilibria when $R_0 > 1$ with no irreducibility

We consider the set of feature $(\Omega, \mathcal{F}, \mu)$ with μ a finite measure. We recall the ODE of evolution of a SIS model:

$$\partial_t u = (1-u) T_k(u) - \gamma u$$

 $u(0,.) = u_0$

We call equilibrium of Equation (1) any constant solution g so that $0 \le g \le 1$, that is: $\gamma g = (1 - g)T_k(g)$.

When $g^* \neq \tilde{0}$, it corresponds to an endemic equilibrium.

SIS model Basic reproduction number Equilibria when $R_0 > 1$ with no irreducibility

We denote
$$k/\gamma : \begin{cases} \Omega^2 \longrightarrow \mathbb{R}_+ \\ (x, y) \longmapsto k(x, y)/\gamma(y) \end{cases}$$
 and $T_{k/\gamma}$ the kernel operator associated to the kernel k/γ .

Assumption

(i) γ is bounded (ii) $T_{k/\gamma}$ is a compact operator on L^p with $p \in (1, +\infty)$. (iii) $T_{k/\gamma}(L^p) \subset L^\infty$ and $T_{k/\gamma} : (L^p, ||.||_p) \to (L^\infty, ||.||_\infty)$ is an operator.

Definition (Basic reproduction number)

We call basic reproduction number the quantity $R_0 = \rho(T_{k/\gamma})$.

SIS model Basic reproduction number Equilibria when $R_0 > 1$ with no irreducibility

Theorem (Delmas, Dronnier, Zitt ('21))

Let u_0 be an initial condition so that $0 \le u_0 \le 1$. We have:

- (i) Any maximal solution of Equation (1) is global, and verifies $\forall t \in \mathbb{R}_+, 0 \leq u(t, .) \leq 1.$
- (ii) Equation (1) admits a maximal equilibrium g^* . It satisfies $g^* = \lim u(t, .)$ where u is the solution of Equation (1) with an initial condition $u_0 = 1$, for the a.e. convergence.

(iii) According to the value of R_0 , we have the different behaviors:

- a If $R_0 \leq 1$, then $g^* = 0$ and for any initial condition u_0 , we have $u(t, .) \rightarrow 0$ for the a.e. convergence.
- b If $R_0 > 1$, then $g^* \neq \tilde{0}$. If T_k is irreducible, then $g^* > 0$ and for any initial condition $u_0 \neq \tilde{0}$, we have $u(t, .) \rightarrow g^*$ for the a.e. convergence.

SIS model Basic reproduction number Equilibria when $R_0 > 1$ with no irreducibility

Question: What would happen if $R_0 > 1$ but with no irreduciblity ? Let $g \in L^{\infty}$ with $0 \leq g \leq 1$. Then g is an equilibrium if and only if:

 $T_{(1-g)k/\gamma}(\gamma g) = \gamma g$

where we denote $(1-g)k/\gamma(x,y) = (1-g(x))k(x,y)/\gamma(y)$ for $(x,y) \in \Omega^2$.

When g is an equilibrium, then g < 1 therefore the operators T_k and $T_{(1-g)k/\gamma}$ have the same invariants, therefore the same atoms. So the study of equilibria becomes a study of nonnegative eigenfunctions.

SIS model Basic reproduction number Equilibria when $R_0 > 1$ with no irreducibility

We say that a family of atoms $\{A_i\}_{i \in I}$ is an *antichain* if for $i \neq j$, we have $A_i \cap F(A_j) = \emptyset$. Informally, if means that no atom among the family $\{A_i\}_{i \in I}$ infects another atom of the family.

Theorem

There are some difficulties and possible generalizations of our results:

- (i) Everything also works by remplacing *T_k* by any power compact operator *T*. Except for the application, one can replace "finite measure" by "*σ*-finite measure".
- (ii) If p = 1 or $p = +\infty$, there are some issues about the dual of L^p .
- (iii) General framework of Banach lattices: Irreducibility is easy to generalize on more general spaces that L^p , but not atoms and convex sets.

Thank you for your attention !

日 ▶ ▲ □