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Outline

I The duality between sampling and control
I applications: expectation values, hitting times

I Doob’s h-transform and conditioned processes

I Numerical approaches
I gradient descent

I controlled SMC

I others

I Connections to large deviations
I optimal control/variance reduction for infinite times?

I sampling of rate functions, adaptive methods
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The duality between sampling and control

I we consider the SDE

dXs = b(Xs)ds + �(Xs)dWs

and want to estimate quantities of the form

E [exp(�W (Xt:T ))] = E

exp

✓
�
Z T

t
f (Xs)ds � g(XT )

◆�

with f : Rd ! R, g : Rd ! R
I applications:

I sampling from stationary density ⇡, namely E⇡[h(X )]
I b(x) = r log ⇡(x),� =

p
2, f = 0, g = � log h

I computation of hitting times ⌧ = inf{s � 0 : Xs 2 B}
I T $ ⌧, f = 1, g = 0
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The duality between sampling and control

I Monte Carlo:

E [exp(�W (X0:T ))] ⇡ 1
K

KX

k=1

exp(�W (X̂ k
0:T )) =: ŴMC

I possible high variance of estimators (e.g. for rare events)
I toy example: sampling from stationary density ⇡, namely E⇡[e�X ]

b(x) = r log ⇡(x),� =
p

2, f = 0, g(x) = x

dXs = �Xsds +
p

2dWs

Xs ⇠ N (X0e
�s , (1 � e�2s))

I compute EP[e�X5 ] ⇡ e0.5 ⇡ 1.649

I Var(ŴMC) ⇡ 4.65 with K = 5000,�t = 0.001



5/29

The duality between sampling and control
I computing hitting times E[e⌧ ] or p = P(⌧ < T ) in Langevin dynamics

dXs = �rV (Xs)ds +
p

2✏dWs

I high variance since

lim
✏!0

✏ logE[⌧ ] = �V �rel =
1
p

r
p(1 � p)

K
p!0���! 1
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The duality between sampling and control

I strategy: importance sampling, sample from a different distribution to
reduce variance

EP[f (X )] = EQ


f (X )

dP
dQ

�

I

dQ =
f (X )

EP[f (X )]
dP =) VarQ

✓
f (X )

dP
dQ

◆
= 0
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The duality between sampling and control

I importance sampling in path space corresponds to changing the drift of the
stochastic process; the change of measure is given by Girsanov’s theorem:

dXs = b(Xs)ds + �(Xs)dWs

dX u
s = (b(X u

s ) + �(X u
s )u(X

u
s , s))ds + �(X u

s )dWs

dP
dQu

= exp

✓
�
Z T

0

u(X u
s , s) · dWs � 1

2

Z T

0

|u(X u
s , s)|2ds

◆



8/29

The duality between sampling and control

I zero-variance proposal density in path space

dQ⇤ =
e�W (X0:T )

E
⇥
e�W (X0:T )

⇤dP

I of course this is circular since we do not know the expectation
I in path space, however, importance sampling corresponds to an optimal

control problem
I we consider the SDE

dXs = b(Xs)ds + �(Xs)dWs

with generator

L = b · r +
1
2
��> : �
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The duality between sampling and control
I Feynman-Kac: (@t + L � f ) (x , t) = 0, (x ,T ) = e�g(x)

 (x , t) = E
"
exp

✓
�
Z T

t
f (Xs , s)ds � g(XT )

◆ �����Xt = x

#

I �(x , t) = log (x , t) brings Hamilton-Jacobi-Bellman equation (Fleming)

(@t + L)�(x , t) +
1
2
|�>r�(x , t)|2 � f = 0, �(x ,T ) = �g(x)

I � 1

2
|�>r�(x , t)|2 = minc2Rd

�
�c · r�(x , t) + 1

2
|c |2

 

I �(x , t) is the value function of a control problem with the cost functional

J(u) = E
"Z T

t

✓
f (X u

s , s) +
1
2
|u(X u

s , s)|2
◆

ds + g(X u
T )

�����Xt = x

#
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The duality between sampling and control

I Donsker-Varadhan:

�(x , t) = � logEP[exp(�W )|Xt = x ] = inf
Qu⌧P

{EQu [W ] + KL(QukP)}

I one can show that indeed

VarQ⇤

✓
exp (�W )

dP
dQ⇤

◆
= 0

I the optimal control is u⇤(x , t) = ��>rx�(x , t)

I note that choosing a different u(x , t) can increase the variance
substantially
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Three sides of the same problem

I free energy:
�(x , t) = � logE[exp(�W )|Xt = x ]

I change of measure:

�(x , t) = inf
Qu⌧P

{EQu [W ] + KL(QukP)}

I optimal control:

�(x , t) = inf
u
E
"Z T

t

✓
f (X u

s , s) +
1
2
|u(X u

s , s)|2
◆

ds + g(X u
T )

�����Xt = x

#

dX u
s = (b(X u

s ) + �(X u
s )u(X

u
s , s))ds + �(X u

s )dWs
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Numerics: gradient descent

I parametrize the control in ansatz functions 'i : Rd ! Rd and
time-dependent coefficients ↵i 2 R:

û(x , t) =
mX

i=1

↵i (t)'i (x)

I discretize time, 0 = t1 < · · · < tN = T , and run the algorithm backwards
(in analogy to the dynamic programming principle)

I for each tj compute the minimization of the costs J(u) with a gradient
descent in ↵, i.e.

↵k+1(tj) = ↵k(tj) � ⌘kr↵Ĵ(û(↵
k(tj)))

Ĵ(û) =
1
K

KX

k=1

0

@
NX

i=j

✓
f (X̂ û,k

i , i�t) +
1
2
|û(X̂ û,k

i , i�t)|2
◆
�t + g(X̂ û,k

N )

1

A
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Numerics: gradient descent

I cost functional is strongly convex if ansatz functions are non-overlapping
(Lie, 2016)

I the variances of different gradient estimators scale differently with the time
horizon T (R, 2016):

– Var(Gfinite differences) / T

– Var(Gcentered likelihood ratio) / T 2

– Var(Glikelihood ratio) / T 3

I outlook: compute drift on the fly
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Numerics: gradient descent
I sample E[exp(�↵XT )] with dXt = �Xtdt +

p
2dWt

I u⇤(x , t) = �
p

2↵et�T , û determined by gradient descent

I variances for T = 5,↵ = 1,K = 5000
�t vanilla with u⇤ with û

10�2 4.64 1.70 ⇥ 10�4 5.69 ⇥ 10�2

10�3 4.02 1.69 ⇥ 10�7 3.21 ⇥ 10�2

10�4 4.55 1.73 ⇥ 10�8 6.45 ⇥ 10�2
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Numerical application in molecular dynamics

I let f = 0, g(x) = � log B(x), ⌧ = inf{s � 0 : Xs 2 B}

E
h
e�g(Xmin(⌧,T ))

i
= P(⌧  T )

i.e. the probability to reach B before time T (for analyzing transition
mechanisms of molecules)

I conformational transitions of solvated butane, 900 water molecules,
d = 16224 (Zhang, 2014)
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Doob’s h-transform and conditioned processes

I controlling a stochastic process also appears under the name h-transform
I idea: find an h(x , t) s.t. for 0  t < u  T

(@t + L)h(x , t) = 0 and E[h(Xu, u)|Xt = x ] = h(x , t)

I h(x , t) = P(XT = x̃ |Xt = x)
I this leads to the conditioned processes Ys s.t. for all '

E['(Ys)] = E['(Xs)|XT = x̃ ]

dYt = (b(Ys) + ��>r log h(Ys , s))dt + �(Ys)dWs

with transition kernel P(Yu = y |Yt = x) = P(Xu=y |Xt=x)h(u,y)
h(t,x)

I h(x , t) = E[g(XT )|Xt = x ]
I this leads to the discussed zero-variance property

I yet another application: Schrödinger bridge by taking g(x) = dµT

dSTµ0
(x),

where µT is a desired target density (Dai Pra, 1991)
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Doob’s h-transform and conditioned processes
I in general the process is multidimensional and we sample

E
h
exp

⇣
�
R T
0

f (Xs)ds � g(XT )
⌘i

, f , g : Rd ! R
I only the one-dimensional quantity of interest is “conditioned”, and we have

some degree of freedom between the dimensions
I consider for instance Xs 2 R2, f = 0, g(x) = |x |2 then

EP

⇣
X (1)
T

⌘2

+
⇣
X (2)
T

⌘2
�
= EQu

⇣
X (1)
T

⌘2 dP
dQu

�
+ EQu

⇣
X (2)
T

⌘2 dP
dQu

�
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Numerics

I alternative numerical approaches are

I cross-entropy method (Hartmann)

I FBSDE (Hartmann, Kebiri)

I approximate policy iteration (Bertsekas)

I controlled SMC (Heng)
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MALA and large deviations
I application: MALA

dXs = r log ⇡(Xs)ds +
p

2dWs

p
T f̄T :=

1p
T

Z T

0

f (Xs)ds
T!1����! N (E⇡[f (X )],�2

f )

with asymptotic variance

�2

f = 2hf � E⇡[f ], (�L)�1(f � E[f ])i⇡

= 2
Z 1

0

E⇡ [f (Xs)f (X0)] ds

I is there an optimal (or at least variance-reducing) control for infinite
times? (ergodic control?)

I particularly relevant when considering rare events, e.g. f (x) = x2B
I compare to adding a nonreversible drift (Duncan, Rey-Bellet)
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MALA and large deviations

I we can make statements about the large deviations of f̄T from its typical
value, namely

lim
T!1

1
T

logP
�
f̄T 2 A

�
= � inf

a2A
I (a)

with rate function

I (a) = sup
k2R

{ka � �k},

�k = lim
T!1

1
T

logE
⇥
exp

�
kT f̄T

�⇤
,

where �k is a principal eigenvalue of

(L+ kf )rk = �k rk



21/29

MALA and large deviations

I we also have

�k = lim
T!1

sup
Qu⌧P

⇢
EQu

⇥
kf̄
⇤
� 1

T
KL(Qu|P)

�
,

which is the typical cost to be minimized in ergodic control problems as
well as

lim
T!1

�(x , t)

T
= �k

lim
T!1

u⇤(x , t) = ��>r log rk(x)
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MALA and large deviations

I taking the control
u(x) = ��>r log rk(x)

with k = I 0(a) makes the rare event f̄T = a common in the long time limit
(Touchette, 2015)

I in analogy to Doob-conditioning define Lk' = (L+kf )rk'
rk

� �k'

I the change of measure is
dQk
dP = rk (XT )

rk (x0)
exp(T (kf̄T � �k))

I idea: importance sampling

P(f̄T 2 A) = EQu


f̄T2A

dP
dQu

�

I but what about the numerics, how does the variance behave?
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MALA and large deviations
I consider e.g. the one-dimensional Ornstein-Uhlenbeck process

dXs = ��Xsds +
p

2✏dWs

I we want to sample f̄T = 1

T

R T
0

Xsds, then

rk(x) = e
kx
� , `k(x) = e

� �
2 (x�

k
�2 )

2
, �k =

✏k2

�2

I u(x) = 2✏r log rk(x) =
2✏k
�

I want f̄T = a ) k = I 0(a) = a�2

2✏ ) u(x) = �a

Xs ⇠ N
✓
X0e

��s + a
�
1 � e��s

�
,
✏

�

�
1 � e�2�s

�◆ s!1���! N
✓
a,
✏

�

◆

I but a constant drift brings a high variance of the weight
I for a constant drift u(x , t) = a we have VarQ

⇣
dP
dQ

⌘
= ea

2T � 1

I conjecture: VarQ
⇣
g(XT )

dP
dQ

⌘
/ ea

2T
(backed up by numerical simulations)

I Girsanov weight exp
⇣
� �p

2✏

R T
0

adWs � �2

4✏

R T
0

a2ds
⌘

degenerates (cut path

into pieces?)
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MALA and large deviations
I another idea: reduce the asymptotic variance by reweighting w.r.t.

stationary density
I assume we want to sample E⇡[e�g(X )]; the variance-zero (stationary)

density is

⇢⇤(x) =
e�g(x)⇡(x)

E⇡[e�g(X )]

I we therefore consider the SDE

dXs = (r log ⇡(Xs) � rg(Xs))ds +
p

2dWs

I we can reweight w.r.t. unnormalized stationary densities
I (asymptotically unbiased) self-normalized IS:

PN
i=1

e�g(Xi ) ⇡
⇢⇤ (Xi )

PN
i=1

⇡
⇢⇤ (Xi )

=

PN
i=1

e�g(Xi )eg(Xi )

PN
i=1

eg(Xi )
=

N
PN

i=1
eg(Xi )

I no numerical advantage observed (shape of e�g(x)⇡(x) might be more

complicated, possible decrease in convergence speed)
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MALA and large deviations

I additional questions:
I is there a control that optimally accelerates convergence speed (e.g. in the

sense of KL(⇢sk⇢1))?
I how to combine Metropolis adjustment and Girsanov reweighting?
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Numerics: controlled SMC (Heng, 2017)
I view process on a transition level with Markov kernels Mi (xi�1, dxi )

P(dx0:N) = µ(dx0)
NY

i=1

Mi (xi�1, dxi )

I change of measure defined by “potential functions” Gi (xi�1, xi )

Q⇤(dx0:N) = Z�1G0(x0)
NY

i=1

Gi (xi�1, xi )P(dx0:N),

I “twisting” by a policy  

Q (dx0:N) = µ (dx0)
NY

i=1

M 
i (xi�1, dxi ),

with M 
i (xi�1, dxi ) =

 i (xi�1,xi )Mi (xi�1,dxi )R
X  i (xi�1,xi )Mi (xi�1,dxi )
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Numerics: controlled SMC (Heng, 2017)

I for the optimal twisting  ⇤ we have G ⇤

t (xi�1, xi ) = 1 for i 2 [1 : N] and
G ⇤

0
(x0) = Z by construction, since we want Q⇤ = Q ⇤

I find optimal twisting  ⇤ by backward recursion (in analogy to the dynamic
programming principle):

 ⇤
N(xN�1, xN) = GN(xN�1, xN)

 ⇤
i (xi�1, xi ) = Gi (xi�1, xi )Mi+1( 

⇤
i+1)(xi )

 ⇤
0(x0) = G0(x0)M1( 

⇤
1)(x0)

I the potential functions G 
i (xi�1, xi ) additionally get used as weights in a

resampling scheme
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Merci pour votre attention!


