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École des Ponts ParisTech

Paris, March 2019



Minimum Rank Matrix Completion (MRMC) problem

min
Y 2Rn1⇥n2

rank(Y ) subject to Yij = Mij, (i, j) 2 ⌦, (1)

where ⌦ ⇢ {1, ..., n1} ⇥ {1, ..., n2} is an index set of cardinality m
and Mij, (i, j) 2 ⌦, are given values. Let M be the n1⇥n2 matrix
with entries Mij at (i, j) 2 ⌦, and all other entries equal zero.

Problem (1) can be written as

min
Y 2V⌦c

rank(M + Y ), (2)

where ⌦c = {(i, j) : (i, j) 62 ⌦} is the complement of index set ⌦
and

V⌦c :=
n
Y 2 Rn1⇥n2 : Yij = 0, (i, j) 2 ⌦

o
.

This linear space represents the set of matrices that are filled
with zeros at the locations of the observed entries.
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The MRMC problem can be formulated in the following equiva-
lent form

min
X2W⌧c

rank(⌅+X) subject to ⌅+X ⌫ 0, (3)

where Sp denotes the space of p⇥ p symmetric matrices, ⌅ 2 Sp,

p = n1 + n2, is of the form ⌅ =

"
0 M

M> 0

#

, and

W⌧ c := {X 2 Sp : Xij = 0, (i, j) 2 ⌧},

where ⌧ is (symmetric) index set associated with ⌦ and ⌧ c is its
symmetric complement. Indeed consider Y = VW>, where V
and W are matrices of the respective order n1⇥ r and n2⇥ r and
common rank r and take X := UU> �⌅, where

U :=

"
V
W

#

, i.e., X =

"
V V > Y �M

(Y �M)> WW>

#

.
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We can consider minimum rank problems of the form (3) with
symmetric index set ⌧ ⇢ {1, ..., p} ⇥ {1, ..., p} which does not in-
clude diagonal entries, i.e., (i, i) 62 ⌧ , i = 1, ..., p.

Minimum Rank Factor Analysis (MRFA) problem

min
X2Dp

rank(⌃�X) s.t. ⌃�X ⌫ 0,

where ⌃ 2 Sp is a positive definite matrix (covariance matrix).
By Sp we denote the space of p ⇥ p symmetric matrices and by
Dp the space of p⇥ p diagonal matrices.

In that case ⌧ = {(i, j) : i 6= j} is the index set of o↵-diagonal
elements and Dp = W⌧ c.
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Generic bounds for the minimal rank

Suppose that specified values of the minimum rank problems are
observed with noise. In the MRFA the covariance matrix ⌃ is es-
timated by the sample covariance matrix S based on a sample of
N observations. In the MRMC the entries Mij are observed with
random noise. In such settings there are the following generic
lower bounds for the minimal rank.

For the MRFA we have the following lower bound (Shapiro
(1982)), which holds for a.e. ⌃ 2 Sp (i.e., for all ⌃ 2 Sp ex-
cept in a set of Lebesgue measure zero):

rank(⌃+X) �
2p+1�

p
8p+1

2
, 8X 2 Dp.
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This is based on that the set

Wr := {A 2 Sp : rank(A) = r}
of matrices of rank r forms C1 smooth manifold, in the linear
space Sp, of dimension

dim(Wr) = p(p+1)/2� (p� r)(p� r +1)/2

and the transversality condition. Mapping A(X) := ⌃�X, from
Dp into Sp, intersects Wr transverally if for every X 2 Dp either
A(X) 62 Wr or A(X) 2 Wr and

Dp + TWr(A(X)) = Sp.

The above generic lower bound means that

p+dim(Wr) � dim(Sp),
i.e., that p � (p� r)(p� r +1)/2.
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For the MRMC problem we can proceed in a similar way. The
set

Mr := {A 2 Rn1⇥n2 : rank(A) = r}

of matrices of rank r  min{n1, n2} forms a smooth manifold, in
the linear space Rn1⇥n2, of dimension

dim(Mr) = r(n1 + n2 � r).

Consider mapping AM(Y ) := M + Y , Y 2 V⌦c. Note that M 2
V⌦ and the image AM(V⌦c) defines the space of feasible points
of the MRMC problem. The transversality condition: either
AM(Y ) 62 Mr or AM(Y ) 2 Mr and

V⌦c + TMr(AM(Y )) = Rn1⇥n2.
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It follows that generically (i.e., for a.e. values Mij) the rank r of
matrix Y 2 Rn1⇥n2 such that Yij = Mij, (i, j) 2 ⌦, should satisfy

r(n1 + n2 � r) � m.

(Recall that m = |⌦|.) Equivalently it holds generically (almost
surely) that the minimal rank

r � R(n1, n2,m),

where

R(n1, n2,m) := (n1 + n2)/2�
q
(n1 + n2)

2/4� m.

In particular, for n1 = n2 = n, R(n, n,m) = n�
q
n2 � m.

It also follows that unless R(n1, n2,m) is an integer, almost surely
the set of optimal solutions of the MRMC problem is not a
singleton.
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As a heuristic it was suggested in Fazel (2002) to approximate
the MRMC problem by the following problem

min
Y 2V⌦c

kY +Mk⇤, (4)

where k · k⇤ is the nuclear norm kY k⇤ =
Pmin{n1,n2}

i=1 �i(Y ), with
�i(Y ) denotes the i-th largest singular value of Y .

For the nuclear norm its dual norm is given by �1(·) and the re-
spective unit ball of the dual norm can be written as
B =

n
Q 2 Rn1⇥n2 : �1(Q>Q)  1

o
, where �1(Q>Q) is the largest

eigenvalue of matrix Q>Q. It follows that kY k⇤ is equal to the
optimal value of the following SDP problem

max
Q2Rn1⇥n2

tr(Q>Y ) s.t.

"
In1 Q
Q> In2

#

⌫ 0.
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The Lagrangian dual of this problem is

min
⇤12Sn1,⇤22Sn2

tr(⇤1 + ⇤2) s.t.

"
⇤1 �1

2Y
�1

2Y
> ⇤2

#

⌫ 0.

It follows that problem (4) can be written as the SDP problem

min
X2W⌧c

tr(X) subject to ⌅+X ⌫ 0. (5)

with p = n1 + n2, the index set ⌧ being the symmetric index

set corresponding to the index set ⌦ and ⌅ :=

"
0 M

M> 0

#

(the

coe�cient �1/2 can be absorbed into X).
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Minimum Trace Factor Analysis (MTFA) problem (Bentler,
1972)

min
X2Dp

tr(⌃�X) s.t. ⌃�X ⌫ 0. (6)

For any ⌃ 2 Sp the MTFA problem (6) has unique optimal solu-
tion.

Suppose that X̄ 2 Dp and ⌃� X̄ = ��> for some nonzero vector
� = (�1, ..., �p)>, i.e., ⌃� X̄ has rank one. Then X̄ is an optimal
solution of the MTFA problem (6) i↵ the following condition
holds (Shapiro, 1982)

|�j|  1
2

pX

i=1
|�i|, j = 1, ..., p. (7)
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For a general symmetric set ⌧ not containing diagonal, a point
X̄ 2 W⌧ c is an optimal solution of problem

min
X2W⌧c

tr(X) subject to ⌅+X ⌫ 0

i↵ ⌅+ X̄ ⌫ 0 and there exists ⇤ 2 Sp+ such that P⌧ c(⇤) = Ip and
the complementary condition holds

(⌅+ X̄)⇤ = 0.

When the minimal rank is less then the generic lower bound,
the minimum trace (minimum nuclear norm) approach “often”
recovers the exact minimum rank solution.
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Low-Rank Matrix Approximation

Consider the following model of the observed values

Mij = Y ⇤
ij +N�1/2�ij + "ij, (i, j) 2 ⌦,

where Y ⇤ is n1 ⇥ n2 matrix of rank r (i.e., Y ⇤ 2 Mr), �ij are
some (deterministic) numbers and "ij are mutually independent
random variables such that N1/2"ij converge in distribution to
normal with mean zero and variance �2ij, (i, j) 2 ⌦. The addi-

tional terms N�1/2�ij represent a possible deviation of popu-
lation values from the “true” model and are often referred to
as the population drift or a sequence of local alternatives. It is
assumed that r  R(n1, n2,m).

It is said that the model is (globally) identified (at Y ⇤) if Y ⇤ is
the unique solution of the respective matrix completion problem.
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Recall that

V⌦c =
n
Y 2 Rn1⇥n2 : Yij = 0, (i, j) 2 ⌦

o

and

V⌦ =
n
Y 2 Rn1⇥n2 : Yij = 0, (i, j) 2 ⌦c

o
.

By P⌦ we denote the projection onto the space V⌦, i.e., P⌦(Y ) =
Y for Y 2 V⌦, and P⌦(Y ) = 0 for Y 2 V⌦c.

Definition 1 (Well-posedness condition) We say that a ma-

trix Ȳ 2 Mr is well-posed, for the MRMC problem, if P⌦(Ȳ ) = M

and the following condition holds

V⌦c \ TMr(Ȳ ) = {0}.
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Theorem 1 (Su�cient conditions for local uniqueness) If

Ȳ 2 Mr is well-posed, then matrix Ȳ 2 Mr is a locally unique

solution of the MRMC problem, i.e., there is a neighborhood V
of Ȳ such that rank(Y ) > rank(Ȳ ) for any Y 2 V, Y 6= Ȳ .

Algebraic condition for well-posedness. The tangent space to
Mr at Y 2 Mr can be written as

TMr(Y ) =
n
H 2 Rn1⇥n2 : FHG = 0

o
,

where F is an (n1 � r) ⇥ n1 matrix of rank n1 � r such that
FY = 0 (referred to as a left side complement of Y ) and G is an
n2 ⇥ (n2 � r) matrix of rank n2 � r such that Y G = 0 (referred
to as a right side complement of Y .

Matrix Ȳ 2 Mr is well-posed if and only if for any left side
complement F and right side complement G of Ȳ , the column
vectors g>j ⌦ fi, (i, j) 2 ⌦c, are linearly independent.
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In a certain sense the well-posedness condition is generic. Denote
by Fr ⇢ Rn1⇥r and Xr ⇢ Rn2⇥r the respective sets of matrices of
rank r. Consider the set ⇥ := Fr ⇥ Xr ⇥ V⌦c viewed as a subset
of Rn1r+n2r+n1n2�m, and mapping F : ⇥ ! Rn1⇥n2 defined as

F(✓) := VW> +X, ✓ = (V,W,X) 2 ⇥.

Let �(✓) be the Jacobian matrix of mapping F. We refer to

% := max
✓2⇥

n
rank

⇣
�(✓)

⌘o
(8)

as the characteristic rank of mapping F and say that ✓ 2 ⇥ is
a regular point of F if rank

⇣
�(✓)

⌘
= %. We say that (V,W ) 2

Fr ⇥ Xr is regular if ✓ = (V,W,X) is regular for some X 2 V⌦c.

Consider

f(r,m) := dim(Mr) + dim(V⌦c) = r(n1 + n2 � r) + n1n2 �m.

We have that %  f(r,m).
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Theorem 2 The following holds. (i) Almost every point (V,W ) 2
Fr ⇥ Xr is regular. (ii) The set of regular points forms an open

subset of Fr⇥Xr. (iii) For any regular point (V,W ) 2 Fr⇥Xr, the

corresponding matrix Y = VW>
satisfies the well-posedness con-

dition if and only if the characteristic rank % is equal to f(r,m).
(iv) If % < f(r,m) and a point (V̄ , W̄ ) 2 Fr ⇥ Xr is regular, then

for any Y 2 Mr in a neighborhood of Ȳ = V̄ W̄>
there exists

X 2 V⌦c such that Y = Ȳ +X.
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Consider the weighted least squares problem

min
Y 2Mr

X

(i,j)2⌦
wij

⇣
Mij � Yij

⌘2
,

where wij := 1/�̂2ij with �̂2ij being consistent estimates of �2ij (i.e.,
�̂2ij converge in probability to �2ij as N ! 1).

The model

Mij = Y ⇤
ij +N�1/2�ij + "ij, (i, j) 2 ⌦,

is tested by the following statistic

TN(r) := N min
Y 2Mr

X

(i,j)2⌦
wij

⇣
Mij � Yij

⌘2
.
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A su�cient condition for a feasible Ȳ to be a strict local solution
of the MRMC problem is

tr
h
P⌦(H)>P⌦(H)

i
> 0, 8H 2 TMr(Ȳ ) \ {0}.

This condition is equivalent to well posedness of Ȳ .

Theorem 3 (Asymptotic properties of test statistic) Suppose

that the model is globally identified at Y ⇤ 2 Mr and Y ⇤
is

well-posed. Then the test statistic TN(r) converges in distri-

bution to noncentral chi square with degrees of freedom dfr =
m� r(n1 + n2 � r) and the noncentrality parameter

�r = min
H2TMr(Y

⇤)

X

(i,j)2⌦
��2
ij

⇣
�ij �Hij

⌘2
.

In Factor Analysis this type of results is going back to Steiger,
Shapiro, and Browne (1985).
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The noncentrality parameter can be approximated as

�r ⇡ N min
Y 2Mr

X

(i,j)2⌦
wij

⇣
Y ⇤
ij +N�1/2�ij � Yij

⌘2
.

That is, the noncentrality parameter is approximately equal to
N times the fit to the “true” model of the alternative popula-
tion values Y ⇤

ij + N�1/2�ij under small perturbations of order

O(N�1/2).
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The asymptotics of the test statistic TN(r) depends on r and
also on the cardinality m of the index set ⌦. Suppose now that
more observations become available at additional entries of the
matrix. That is we are testing now the model with a larger index
set ⌦0, of cardinality m0, such that ⌦ ⇢ ⌦0. In order to emphasize
that the test statistic also depends on the corresponding index
set we add the index set in the respective notations.

Theorem 4 Consider index sets ⌦ ⇢ ⌦0
of cardinality m = |⌦|

and m0 = |⌦0|. Suppose that the model is globally identified at

Y ⇤ 2 Mr and the well posedness condition holds at Y ⇤
for the

smaller model (and hence for both models). Then the statistic

TN(r,⌦0) � TN(r,⌦) converges in distribution to noncentral chi-

square with dfr,⌦0 � dfr,⌦ = m0 � m degrees of freedom and the

noncentrality parameter �r,⌦0 � �r,⌦, and TN(r,⌦0) � TN(r,⌦) is

asymptotically independent of TN(r,⌦).
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The (weighted) least squares problem is not convex and it may
happen that an optimization algorithm converges to a station-
ary point which is not a globally optimal solution. Suppose that
we run a numerical procedure which identifies a matrix Ȳ 2 Mr

satisfying the (necessary) first order optimality conditions, i.e.,
the algorithm converged to a stationary point. Then if P⌦(Ȳ ) is

su�ciently close to M (i.e., the fit
P

(i,j)2⌦
⇣
Yij �Mij

⌘2
is su�-

ciently small) and the well posedness condition holds at Ȳ , then
Ȳ solves the least squares problem at least locally. Unfortunately
it is not clear how to quantify the “su�ciently close” condition.
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Uniqueness of the minimal rank solutions

Consider the Minimum Rank Factor Analysis problem. Suppose
that it has solution

⌃ = ⇤⇤> +X

where ⇤ is p⇥ r matrix of rank r and X 2 Dp is diagonal matrix.
This solution is unique if for any i 2 {1, ..., p} the matrix ⇤ has
two r⇥r disjoint nonsingular submatrices not containing i-th row
(this result is going back at least to Anderson and Rubin, 1956).
That if r < p/2 and every r ⇥ r submatrix of ⇤ is nonsingular,
then the solution is unique.
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Example 1 (Wilson and Worcester. 1939) Consider

M =

0

BBBBBBBB@

0 0.56 0.16 0.48 0.24 0.64
0.56 0 0.20 0.66 0.51 0.86
0.16 0.20 0 0.18 0.07 0.23
0.48 0.66 0.18 0 0.3 0.72
0.24 0.51 0.07 0.30 0 0.41
0.64 0.86 0.23 0.72 0.41 0

1

CCCCCCCCA

The two rank 3 solutions are given by diagonal matrices:

D1 = Diag(0.64,0.85,0.06,0.56,0.50,0.93),

D2 = Diag(0.425616,0.902308,0.063469,0.546923,0.386667,0.998).

For the MRFA the corresponding generic lower bound for p = 6
is r � 3, and for the MRMC problem the corresponding generic
lower bound for n1 = n2 = 6 is r � 4.
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Uniqueness of the minimum rank solution is invariant with re-
spect to permutations of rows and columns of matrix M . This
motivates to introduce the following definition.

Definition 2 We say that the index set ⌦ is reducible if by per-

mutations of rows and columns, matrix M can be represented in

a block diagonal form, i.e., M =

"
M1 0
0 M2

#

. Otherwise we say

that ⌦ is irreducible.
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Theorem 5 The following holds.

(i) If the index set ⌦ is reducible, then any minimum rank solution

Ȳ , such that Ȳij 6= 0 for all (i, j) 2 ⌦c
, is not locally (and hence

globally) unique.

(ii) Suppose that ⌦ is irreducible, Mij 6= 0 for all (i, j) 2 ⌦, and

every row and every column of the matrix M have at least one

element Mij. Then any rank one solution is globally unique.
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Statistical inference of SDP problems
Consider the following Semidefinite Programming (SDP) prob-
lem

min
x2Rn

c>x subject to ⌃+A(x) ⌫ 0, (9)

where ⌃ 2 Sp and Ai 2 Sp are given matrices and A : Rn ! Sp is
the linear mapping A(x) :=

Pn
i=1 xiAi.

The (Lagrangian) dual of problem (9) is the problem

max
⇤2Sp+

�tr(⇤⌃) s.t. tr(⇤Ai) = ci, i = 1, ..., n. (10)
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Let x⇤ be optimal solutions of the primal problem (9) and ⇤ be
an optimal solution of the dual problem (10). Then

(⌃+A(x⇤))⇤ = 0.

It is said that the strict complementarity condition holds at ⇤ if

rank(⌃+A(x⇤)) + rank(⇤) = p.

Suppose that ⌃ is estimated (approximated) by a matrix S 2 Sp

and hence the SDP problem (9) is approximated by

min
x2Rn

c>x subject to S +A(x) ⌫ 0. (11)

What can be said about statistical properties of the optimal
value and optimal solutions of the SDP problem (11) considered
as estimates of their counterparts of problem (9).
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Consider p2⇥1 vectors s := vec(S) and � := vec(⌃) formed from
columns of the respective matrices stacked columnwise. We
assume that N1/2(s��) converges in distribution to multivariate
normal with mean vector zero and p2 ⇥ p2 covariance matrix �
as the sample size N tends to 1. This can be justified by the
Central Limit Theorem. In particular if S is the sample covariance
matrix of normally distributed population, then

�ij,k` = �ik�j` + �i`�jk,

where �ij = ⌃ij.

Statistical inference is based on perturbation (sensitivity) analysis
of SDP programs and the so-called Delta Theorem.
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It is said that x⇤ 2 Rn is a nondegenerate point of mapping
x 7! ⌃+A(x) if for ⌥ := ⌃+A(x⇤) and r := rank(⌥) it follows
that

A(Rn) + TWr(⌥) = Sp, (12)

otherwise point x⇤ is said to be degenerate. That is, x⇤ is nonde-
generate if mapping x 7! ⌃+A(x) intersects the smooth manifold
Wr transversally at ⌃+A(x⇤) 2 Wr.

If x⇤ is nondegenerate, then

n � (p� r)(p� r +1)/2.
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Denote by #(⌃) the optimal value of the the SDP problem (9)
considered as a function of matrix ⌃, by Sol(P ) the set of opti-
mal solutions of the SDP problem (9) and by Sol(D) the set of
optimal solutions of its dual problem.

Proposition 1 Suppose that Slater condition holds for the ref-

erence problem (9) and its optimal value #(⌃) is finite. Then

the set Sol(D) is nonempty, convex and compact and the opti-

mal value function #(·) is continuous and Fréchet directionally

di↵erentiable at ⌃ with the directional derivative

#0(⌃, H) = sup
⇤2Sol(D)

tr(⇤H). (13)
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Let #̂N be the optimal value of the approximate SDP problem
based on a sample of size N .

Theorem 6 Suppose that the optimal value #⇤ = #(⌃) is finite

and Slater condition for the true problem holds. Then

N1/2(#̂N � #⇤) ) sup
�2Sol(D)

�>Z,

where Z is a random vector having multivariate normal distribu-

tion N (0,�).

Moreover, if Sol(D) = {⇤} is a singleton, then N1/2(#̂N � #⇤)
converges in distribution to normal with zero mean and vari-

ance �2 = �>��, where � := vec(⇤). In particular, if the pop-

ulation is normally distributed, then the asymptotic variance

�2 = 2tr(⌃⇤⌃⇤).
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It follows, under mild regularity conditions, that if the set Sol(D)
is not a singleton, then the bias

E[#̂N � #⇤] = N�1/2E

2

4 sup
�2Sol(D)

�>Z

3

5 + o(N�1/2),

with Z ⇠ N (0,�). That is, the bias of c>x̂N considered as an
estimator of c>x⇤ is of order O(N�1/2).
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It is considerably more di�cult to derive asymptotic distribution
of optimal solutions of the approximate SDP problem. For that
we will need considerably more restrictive assumptions.

We need to verify that the following so-called quadratic growth
condition holds at an optimal solution x⇤ 2 Sol(P ):
there is  > 0 such that

c>x � c>x⇤ + kx� x⇤k2

for all feasible points of the problem (9) in a neighborhood of
the point x⇤.

Proposition 2 Suppose that Sol(P ) = {x⇤} is a singleton and

the strict complementarity condition holds at some ⇤ 2 Sol(D).
Then the quadratic growth condition follows.
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We discuss now di↵erentiability of an optimal solution x̄(�) of
the SDP problem (9) considered as a function of � = vec(⌃).

Suppose that Sol(P ) = {x⇤} is a singleton and that x⇤ is a non-
degenerate point of ⌃+A(·), and hence Sol(D) = {⇤} is a sin-
gleton. Suppose also that the strict complementarity condition
holds. Let ⌥ := ⌃ + A(x⇤) and ⇤ = E⇥E> be the spectral de-
composition of matrix ⇤. Recall that ⌥⇤ = 0 (complementarity
condition), ⌥ ⌫ 0, ⇤ ⌫ 0, and because of the strict comple-
mentarity assumption E is p⇥ (p� r) matrix of rank p� r where
r = rank(⌥).
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Consider the following optimization problem, depending on � 2
Sp,

min
h2Rn

tr
h
⇤(A(h) +�)⌥†(A(h) +�)

i

s.t. E>A(h)E + E>�E = 0,
(14)

where ⌥† is the Moore- Penrose pseudoinverse of matrix ⌥.

This is a problem of minimization of quadratic function subject to
linear constraints. Under the above assumptions, problem (14)
has a unique optimal solution h̄(�), which is a linear function of
� = vec(�). That is h̄(�) = J>�, where J is the corresponding
p2 ⇥ n matrix.
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Theorem 7 Suppose that Sol(P ) = {x⇤} is a singleton, and

that x⇤ is a nondegenerate point of ⌃ + A(·) and the strict

complementarity condition holds. Then x̄(·) is di↵erentiable at

� = vec(⌃) and

x̄(s) = x̄(�) + J>(s� �) + o(ks� �k), (15)

where J>� is the optimal solution of problem (14) with ⇤ being

the optimal solution of the dual problem and E being a matrix

whose columns are orthonormal and generate the null space of

the matrix ⌃+A(x⇤).

That is, J is the Jacobian matrix of x̄(·) at �.
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Let x̂N be an optimal solution of the approximation problem. By
the Delta Theorem it follows that under the above assumptions,
N1/2(x̂N � x⇤) converges in distribution to normal N (0, J>�J),
where J is the p2⇥n matrix such that J>� is the optimal solution
of problem (14).
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