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Earthquakes, should we care?

The Nepal 2015 EQ, Mw 7.8 : 
(previous 1833)

Total direct international aid: ~$1340 million 
(EU countries direct aid: ~$250 million)

PRIMA NEWS

Casualties: 9.000 killed, 22.000 injured

Damage cost: ~35% Nepal’s GDP (~$10B)

Repair estimates for UNESCO monuments:
$160 million
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Accumulated elastic energy -> Friction (>90%) + Fault propagation + Radiation
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(IRIS, Incorporated Research 
Institution for Seismology)
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from Collettini et al., 2012, Geology
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Principal slip zone (0.3 to 1mm) of Spoleto thrust fault in Central 
Italy 5-10km of accumulated displacement
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Faults

Myers et al. (1994)

Damaged zone 
thickness: from ~10 m to ~1 

km

Gouge 
composed of very fine crushed

particles, where the slip is
localized thickness: 

from ~1 μm to ~10 mm
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“Science may be described as the art 
of systematic over-simplification”

Karl R. Popper
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EQ nucleation - dynamic instability
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Far field tectonic displacements (~cm/yr), u∞=v ∞ t

Storage of elastic energy in 
the crust Uel↑

Fault

Sudden release of elastic 
energy → earthquake

Instability
Friction (F) δ

-u∞=-v ∞ t-u∞=-v ∞ t
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The spring-slider toy model for building 
understanding
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From bifurcation theory we retrieve the 
classical condition for instability of 
steady state slip motion:

Reid, 1910
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But of course, friction depends on many 
factors:

For instance when                                   (velocity weakening) steady state slip is 

(unconditionally) unstable
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𝐹(𝜹,  𝜹, 𝐩𝐨𝐫𝐞 𝐩𝐫𝐞𝐬𝐬𝐮𝐫𝐞, 𝐭𝐞𝐦𝐩𝐞𝐫𝐚𝐭𝐮𝐫𝐞, 𝐠𝐫𝐚𝐢𝐧 𝐬𝐢𝐳𝐞, ℎ𝑒𝑎𝑙𝑖𝑛𝑔… )
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For the nucleation of unstable, seismic slip we need somehow a 
sufficient weakening of the shear resistance of the fault zone.

Weakening mechanisms and earthquake 
nucleation

𝜏

𝑒. 𝑔. 𝛾 𝑜𝑟  𝛾 𝑜𝑟…
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• Mechanical softening (e.g. reduction of the friction angle, velocity weakening, RSF, 
Dieterich, 1978, Rice, J. R., & Ruina, A., 1983, Marone et al., 1990, Scholz, 1998)

• Thermal pressurization of pore fluids 
(Lachenbruch, 1980, Vardoulakis, 2002, Sulem et al. 2005, Rice 2006, Platt et al. 2014a,b)

• Thermal decomposition of minerals: dehydration of clay minerals (Brantut et al., 2008), 
decomposition of carbonates (Sulem & Famin, 2009, Collettini et al., 2014, Veveakis et al. 
2014, Platt et al. 2015).

• Flash heating and shear weakening at micro-asperity contacts 
(Rice, 1999, 2006, Spagnuolo et al., 2016).

• Lubrication due to the formation of a ‘gel-like’ layer in wet silica rich fault zones (Di Toro 
et al., 2004).

Examples of weakening and multiphysical 
couplings
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All these 
couplings and 
phenomena 

take place in a 
zone of finite 

thickness

from Chester & Chester. (1998), Tectonophysics
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• Observed in many faults, but the sizes depend strongly on physical properties of the 
gouge.

Fault system Thickness of 
the PSZ

Reference

Median Tectonic Line, 
Japan

3 mm Wibberley et 
al., 2003

Chelungpu fault, China 50-300 μm Heermance et 
al., 2003

Longmenshan fault, China 1cm Li et al. , 2013

Punchbowl fault, USA 100-300 μm Chester et al., 
2003

Northern Apennines, Italy 10-40 μm De Paola et 
al., 2008

PSZ in Nevada (Shipton et al., 
2006)

PSZ in M. Maggio, Italy
(Collettini et al., 2014)

PSZ

Thickness of Principal Slip Zones in active faults
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Field and experimental observations show that the shear band thickness is
associated with grain size

Grain size affects the different physical phenomena: chemistry kinetics, 
specific surface evolution, pore pressure, porosity, etc...

We need a theory that takes into account the microstructure and 
its evolution

Exner and Tschegg (2012)

Importance of the size of the microstructure
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Theory of micromorphic continua

&

Cosserat continuum
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Micromorphic (generalized) continua

(Germain, 1973
Mindlin, 1964 
Eringen, 1999,
…)i i ij j ijk j k ijk j kU U x x x x x xF F Fc c c c c c c � � � �

Ansatz:
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Micromorphic continua

(Germain, 1973)
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Linear and angular momentum balance for 
Cosserat

,ij j iuV U 

,
c

ij j ijk kj ij jm IH V Z�  

ijkH is the Levi-Civita symbol

is the stress tensor (non-symmetric)

is the couple stress tensor

is the density

is the microinertia tensor

ijm
ijV

U

I
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• Cosserat leads to a finite shear band thickness, as opposed to Cauchy continuum 
for which the shear band thickness is zero (unphysical).

• good representation of softening and energy dissipation, which controls 
temperature rise and other multiphysical couplings

Cauchy Cosserat

Why not the classical continuum ?
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Physically based link of the localization thickness with the microstructure and its 
evolution (grain size and cataclasis)
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G
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A fault zone is modelled as an 
infinite layer under shear. 

Momentum balance equations:

Elasto-plastic constitutive equation:

Energy balance equation:

Mass balance equation:

Thermal 
pressurisation

Porosity
variation

Plastic work

Terzaghi effective stress:

Mathematical modeling
of fault zones
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• Drucker-Prager yield surface (Mülhaus & Vardoulakis, 1987) with hardening

• Generalized stress and strain invariants

and         are, respectively, the deviatoric part of the stress and the plastic strain.
is the internal length.
and      are coefficients determined by micro-mechanical considerations.

Cosserat continuum (J2) plasticity

I.Stefanou, Mar18

𝜏

𝛾
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Linearization of the non-linear system around the 
homogeneous steady state:  𝑇, 𝛾𝑖𝑗,  𝑝. 

General solution of the linearized system:

Onset of strain localization: Re(s)>0

𝑇 𝑧, 𝑡 =  𝑇 + 𝑇∗ 𝑧, 𝑡

𝛾𝑖𝑗 𝑧, 𝑡 = 𝛾𝑖𝑗 + 𝛾𝑖𝑗∗ 𝑧, 𝑡

p 𝑧, 𝑡 =  𝑝 + 𝑝∗(𝑧, 𝑡)

𝑇∗ 𝑧, 𝑡 = Θ exp 𝑠. 𝑡 exp(2𝜋𝑖
𝑧
𝜆)

𝛾𝑖𝑗∗ 𝑧, 𝑡 = Ε𝑖𝑗 exp 𝑠. 𝑡 exp(2𝜋𝑖
𝑧
𝜆)

𝑝∗ 𝑧, 𝑡 = 𝑃 exp 𝑠. 𝑡 exp(2𝜋𝑖
𝑧
𝜆)

𝛾𝑖𝑗∗𝛾𝑖𝑗

Stable 𝑠 < 0Unstable 𝑠 > 0

Bifurcation and linear stability analysis

I.Stefanou, Mar18
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Bifurcation for a hardening modulus 𝐻𝑐𝑟

s 

Stable case
𝐻𝑠 = 2,81 𝑀𝑃𝑎

Unstable case
𝐻𝑠 = 2,8 𝑀𝑃𝑎 > 𝟎

s 

(∗ 103)

(∗ 103)

Bifurcation parameter and hardening
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• The parameter that most influences the bifurcation is the dilatancy β.

• HM couplings destabilize the system for contractant materials (β<0).

• THM couplings make the system unstable for dilatant materials in the hardening
regime.

Strain
localization

Onset of strain localization and couplings

I.Stefanou, Mar18

Rattez et al. 2018, JMPS
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Evolution of the shear band thickness in 
function of the hardening modulus

Evolution of the maximum s(λ) with
the hardening modulus

Wavelength selection and thickness of the band

I.Stefanou, Mar18
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(Ikari et al.,2008)

Shear band thickness evolution with shear 
deformation

I.Stefanou, Mar18
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Supposing an exponential evolution of 𝐷50with the total shear strain 𝛾.

Progressive decrease of the shear band thickness.

Effect of grain cataclasis during shearing

Shear band in Dolomite, tested
with a rotary shear apparatus

(Smith et al., 2015)

I.Stefanou, Mar18
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The full system of equations is integrated numerically using a displacement-
rotation finite element formulation 
(Rattez et al. 2018a&b, JMPS)

FEM analysis of Cosserat THM model

I.Stefanou, Mar18
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• Weak form of the momentum balance equations:

• Weak form of energy and mass balance equations:

- and      are linear or quadratic Lagrange test functions.

- The incremental plastic constitutive law is integrated using a 
return map algorithm (Godio et al., 2016).

FEM formulation

I.Stefanou, Mar18
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Numerical results
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The grain size affects the shear band thickness

and the stress-strain diagram.

Effect of the grain size

I.Stefanou, Mar18
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...despite the use of a rate-independent constititutive law (perfect plasticity here).

Fast shearing

Slow shearing

Apparent rate-dependency

I.Stefanou, Mar18



Rate-dependency of strain localization thickness
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Diffusion processes change the localization thickness

Fast shearing

Slow shearing

I.Stefanou, Mar18



Fast rate (1 m/s)
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Slow rate (0.01 m/s)
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In situ observations of the Punchbowl fault (San Andreas system, southern California) 
show that the Principal Slip Zone (PSZ) is 100-300μm thick.

Shear band thickness prediction
consistent with field observations of 

the Punchbowl fault.

PSZ

Chester et al. (2005),  Rice (2006)

5 mm

Range of band width
observed

R=10 μm

Comparison with field observations

I.Stefanou, Mar18
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Can modeling be predictive?
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Laboratory tests ?

Different thermo-hydro-chemo-
mechanical conditions  down 
there (several km’s)…

40



In-situ measurements?
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If we could, could we avoid earthquakes?
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ERC Starting Grant: 

Controlling earthQuakes

(CoQuake)



Engineer for the Parthenon at the end 
of PhD and early Post-Doc;
earthquake effects and seismic design

KEY IDEA & TARGET
Controlling 

earthQuakes

- Mitigate seismic risk:
Avoid 37500 deaths/yr

Save €35B/yr

- Breakthrough in 
earthquake mechanics

[Task 3]
● Large-scale Physics-based simulations

● Machine learning

[Task 1] 
Experiments on 

analogue fault systems 
and

earthquake-triggering

[Task 2] 
● Bridge micro- and 

macro-scales
● Physico-chemical 

phenomena
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Humans cause earthquakes
(review: Rubinstein & Mahani SRL2015, McGarr JGR2014, Ellsworth, Science2013)

Earthquake control

Trigger instability on a

lower energy level
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PRIMA NEWS

Hubbard et al., 
Geology2016 Hubbard et al., 

Geology2016

Perspective view of fault

Fault cross section

Fault patch characteristics
Total slip area: ~3500km2

Central slip area: dipping: ~10km, ~horizontal: ~100km

CoQuake:
9 Inland (lower cost)
9 Accessible depth by drilling

Order of magnitude of drilling cost @ that depth and span 
(current prices & state of technology): 100 million 

Going back to Nepal
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Thank you for your attention

ioannis.stefanou@enpc.fr



Rattez, H., Stefanou, I., Sulem J. et al. (2018), Validation of the THM Cosserat model, submitted to RMRE
Rattez, H., Stefanou, I., & Sulem, J. (2018). The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain 
localization in 3D continua with application to seismic faults. Part I: Theory and linear stability analysis. JMPS
Rattez, H., Stefanou, I., Sulem, J., Veveakis, M., & Poulet, T. (2018). The importance of Thermo-Hydro-Mechanical couplings and 
microstructure to strain localization in 3D continua with application to seismic faults. Part II: Numerical implementation and post-
bifurcation analysis. JMPS
Stefanou, I., Sulem, J., & Rattez, H. (2017). Cosserat approach to localization in geomaterials. In Handbook of Nonlocal Continuum 
Mechanics for Materials and Structures. Springer.
Godio, M., Stefanou, I., Sab, K., Sulem, J., & Sakji, S. (2016). A limit analysis approach based on Cosserat continuum for the 
evaluation of the in-plane strength of discrete media: application to masonry. European Journal of Mechanics - A/Solids, 66, 168–
192.
Sulem, J., & Stefanou, I. (2016). Thermal and chemical effects in shear and compaction bands. Geomechanics for Energy and the 
Environment, 6, 4–21.
Stefanou, I., & Sulem, J. (2016). Existence of a threshold for brittle grains crushing strength: two-versus three-parameter Weibull 
distribution fitting. Granular Matter, 18(2), 14.
Godio, M., Stefanou, I., Sab, K., & Sulem, J. (2016). Multisurface plasticity for Cosserat materials: Plate element implementation 
and validation. International Journal for Numerical Methods in Engineering, 108(5), 456–484.
Godio, M., Stefanou, I., Sab, K., & Sulem, J. (2015). Dynamic finite element formulation for Cosserat elastic plates. International 
Journal for Numerical Methods in Engineering, 101(13), 992–1018. 
Stefanou, I., & Sulem, J. (2014). Chemically induced compaction bands: Triggering conditions and band thickness. Journal of 
Geophysical Research: Solid Earth, 119(2), 880–899.
Veveakis, E., Stefanou, I., & Sulem, J. (2013). Failure in shear bands for granular materials: thermo-hydro-chemo-mechanical 
effects. Géotechnique Letters, 3(April-June), 31–36.
Veveakis, E., Sulem, J., & Stefanou, I. (2012). Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal 
pressurization and chemical decomposition as coseismic weakening mechanisms. Journal of Structural Geology, 38, 254–264.
Sulem, J., Stefanou, I., & Veveakis, E. (2011). Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat 
microstructure. Granular Matter, 13(3), 261–268.
Stefanou, I., Sulem, J., & Vardoulakis, I. (2008). Three-dimensional Cosserat homogenization of masonry structures: elasticity. Acta
Geotechnica, 3(1), 71–83.
Stefanou, I., Sulem, J., & Vardoulakis, I. (2010). Homogenization of interlocking masonry structures using a generalized differential 
expansion technique. International Journal of Solids and Structures, 47(11–12), 1522–1536.

Related references:


