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Why use molecular simulation?

Statistical physics provides a bridge between the macroscopic and microscopic properties of
matter.

Using molecular simulation, we can calculate macroscopic quantities of interest:

Static, thermodynamic properties, such as heat capacities;

Dynamical properties, such as transport coe�cients and Arrhenius constants for
chemical kinetics.

In this talk, we are interested in the di↵usion coe�cient, also know as the mobility,
associated with the microscopic description of matter provided by the Generalized Langevin
equation.
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Models

We consider the following hierarchy of models:

q̇ = � V
0 (q) +

p
2��1 Ẇ , (OL)

q̈ = � V
0 (q)� � q̇ +

q
2 � ��1 Ẇ , (L)

q̈ = � V
0 (q)�

Z
t

0

�(t� s) q̇(s) ds+ F (t). (GLE)

where

V is the periodic potential 1

2
(1� cos(q));

� is the friction coe�cient;

�(·) is the memory kernel;

F is a non-Markovian noise process.

The kernel �(·) and the noise F are related by the fluctuation/dissipation relation:

hF (t)F (s)i = �
�1
�(t� s).
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E↵ective di↵usion

For all these models, it is possible to show that a functional central limit theorem holds:

x(t/"2) := " q(t/"2) !
p
2DW (t),

in the sense of weak convergence of probability measures.
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Some background material on the Langevin equation

The (one-particle) Langevin equation can be rewritten as:

8
<

:

dqt = pt dt ,

dpt = � V
0(qt) dt � �pt dt+

p
2���1 dWt .

The position and momentum {pt, qt} define a Markov process with generator

LL =

✓
p
@

@q
� V

0(q)
@

@p

◆
+ �

✓
�p

@

@p
+ �

�1 @
2

@p2

◆
=: Lham + �LFD.

The formal L2 adjoint of LL is the Fokker–Planck operator

L†

L
=

✓
�p

@

@q
+ V

0(q)
@

@p

◆
+ �

✓
@

@p
(p ·) + �

�1 @
2

@p2

◆
=: �Lham + �L†

FD
.
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Some background material on the Langevin equation

Lham is the Liouville operator corresponding to the Hamiltonian dynamics
8
>><

>>:

dqt =
@H

@p
(qt, pt) dt,

dpt = �@H
@q

(qt, pt) dt.
H(q, p) = V (q) +

p
2

2
.

Its null space consists of function of the type f = f(H(q, p)):

Lhamf(H(q, p)) =
@H

@p

@H

@q
f
0 � @H

@q

@H

@p
f
0 = 0.

The null space of L†

FD
consists of functions of the type f = f(q) e��

p2

2 .

It follows that ker(L†

L
) is spanned by the canonical measure

µ(q, p) =
1
Z e��H(q,p) =

1
Z e

��

✓
V (q)+

p2

2

◆

, on T⇥R.
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The Langevin equation: long-time behavior

In L
2 (µ),

The fluctuation/dissipation part is symmetric:

hLFDu, viL2(µ)
= hu,LFDviL2(µ)

= ���1
⌦
u
0
, v

0
↵
L2(µ)

.

and in fact LFD = � 1

�
@
⇤

p@p.

The Hamiltonian part is antisymmetric:

hLhamu, vi
L2(µ)

= �hu,Lhamvi
L2(µ)

.

and in fact Lham = 1

�

�
@
⇤

p@q � @
⇤

q@p

�
.

Therefore, if u(t) = eLLt
u0 for u0 2 L

2 (µ), then

1
2
@

@t
kuk2

L2(µ)
= hLLu, ui = �� ��1 k@puk2L2(µ)

.

Since the right-hand side is zero when u = u(q), LL is not coercive.
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The Langevin equation: long-time behavior

Let us define:

L
2

0(µ) =

⇢
u 2 L

2(µ) :

Z
u dµ = 0

�
, H

1

0 (µ) = H
1(µ) \ L

2

0.

It is possible to construct inner products ((·, ·))L2(µ) and ((·, ·))H1(µ) such that:

((·, ·))L2(µ) induces a norm equivalent to k · kL2(µ) and

((LLu, u))L2(µ)  �� ((u, u))L2(µ) 8u 2 L
2

0(µ).

((·, ·))H1(µ) induces a norm equivalent to k · kH1(µ) and

((LLu, u))H1(µ)  �� ((u, u))H1(µ) 8u 2 H
1

0 (µ).

For all u0 2 X0, u = eLLt
u0 satisfies

1
2
d
dt

((u, u))X = ((LLu, u))X  ��((u, u))X ,

) ((u(·, t), u(·, t)))  e�2�t((u(·, 0), u(·, 0)))

) ku(·, t)kX  C e��t ku(·, 0)kX

�LL is said to be hypocoercive on L
2

0(µ) and H
1

0 (µ).
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The Langevin equation: e↵ective di↵usion

After

introducing the non-periodized position x;

applying the di↵usive rescaling x 7! x/", t 7! t/"
2;

the Langevin equation can be recast as a fast/slow system of SDEs:

dx"

t =
1
"
p
"

t dt, x
"

t 2 R,

dq"t =
1
"2

p
"

t dt, q
"

t 2 T,

dp"t =
1
"2

�
�V

0(q"t ) dt� �p
"

t dt
�
+

1
"

p
2���1 dWt.

To relate D to LL, we consider the backward Kolmogorov equation associated with the
rescaled dynamics:

@u

@t
= L"

Lu, u(x, q, p, t = 0) = U0,

where

L"

L =
1
"2

LL +
1
"

✓
p
@

@x

◆
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The Langevin equation: e↵ective di↵usion

Expanding the solution in powers of ",

u = u0 + "u1 + "
2
u2 + · · · ,

and grouping the terms multiplying equal powers of ",

O("�2) LLu0 = 0,

O("�1) LLu1 + (p @xu0) = 0,

O("0) LLu2 + (p @xu1)� @tu0 = 0,

.

.

.

The equation �LLu = f admits a solution if and only if f is orthogonal to ker(L†

L
):

Z
f dµ = 0. (Centering condition)

The first and second equations give u0 = u0(x) and

u1(x, q, p) = (�L�1

L
p)u0

0(x)
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The Langevin equation: e↵ective di↵usion

The centering condition, applied to the third equation, gives:

0 =

Z
(p @xu1 � @tu0)µ(dq dp)

=

Z �
p (�L�1

L
p)u00

0 (x)� @tu0(x)
�
µ(dq dp)

=

✓Z
(�L�1

L
p) p µ(dq dp)

◆
u
00

0 (x)� @tu0(x).

This suggests that x"(t) converges to a Brownian motion multiplied by
p
2D, where

D =

Z
(�L�1

L
p) p µ(dq dp),

=

Z
��LL�µ(dq dp) where � := �L�1

L
p,

= ��
�1

Z
|@p�|2 µ(dq dp).
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The Langevin equation: e↵ective di↵usion

To show this rigorously, apply Itô’s formula to � := �L�1

L
p:

d�(q"t , p
"

t ) =
1
"2

LL�(q
"

t , p
"

t ) +
⇢

⇢
⇢Z

Z
Z

1
"
p
@�

@x
+

1
"

p
2���1

@�

@p
(q"t , p

"

t ) dWt,

=
1
"2

p
"

t +
1
"

p
2���1

@�

@p
(q"t , p

"

t ) dWt.

Therefore,

x
"

t =
1
"

Z
t

0

p
"

s ds = "(�(q"t , p
"

t )� �(q0, p0))| {z }
!0 in L

p
(⌦, C([0, T ],R))

+
p

2���1

Z
t

0

@�

@p
(q"s , p

"

s) dWs.

The martingale term has quadratic variation

hMit = 2 � ��1

Z
t

0

|@p�(q"s , p"s)|2 ds

= 2 "2 � ��1

Z
t/"

2

0

|@p�(qs, ps)|2 ds !
"!0

2���1
t

Z
|@p�(q, p)|2 µ(dq dp),

after which the central limit theorem for martingales gives the conclusion.
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The Langevin equation: underdamped limit

Parameters: � = 0.01, � = 1.

Figure: GL1 dynamics in the q � p plane.

Generalized Langevin equation in a periodic potential 14 / 48

file:///Users/julienreygner/Downloads/videos/gle/underdamped.avi%3Fautostart&loop


The Langevin equation: overdamped limit

Parameters: � = 100, " = 1, � = 1.

Figure: GL1 dynamics in the q � p plane.
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The Langevin equation: overdamped and underdamped limits

The � ! 1 (overdamped) and � ! 0 (underdamped) limits are well understood for the
Langevin equation.

lim
�!0

�D� =: D⇤
,

lim
�!1

�D� =: D,

D
⇤  �D�  D 8� 2 (0,1).

In addition D coincides with the e↵ective di↵usion coe�cient associated with the
overdamped Langevin dynamics.

�2 0 2

q

�4

�2

0

2

4

p

� = 1/10

�40

�30

�20

�10

0

10

20

30

40

�2 0 2

q

�4

�2

0

2

4

p

� = 1

�4.8

�3.6

�2.4

�1.2

0.0

1.2

2.4

3.6

4.8

�2 0 2

q

�4

�2

0

2

4

p

� = 10

�0.88

�0.66

�0.44

�0.22

0.00

0.22

0.44

0.66

0.88
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The Langevin equation: underdamped limit

As � ! 0, the Hamiltonian of the rescaled process
(
q�(t) = q(t/�),

p�(t) = p(t/�),

converges weakly to a di↵usion process on a graph.

�4 �3 �2 �1 0 1 2 3 4

q

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

p

H(q, p) < 1

H(q, p) > 1, p < 0

H(q, p) > 1, p > 0

H(q, p) =
1

H(q,
p)

=
1

Emin

E0

p < 0 p > 0
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The Langevin equation: e↵ective di↵usion in the overdamped limit

As � ! 1, the rescaled position q(�t) converges weakly to the solution of the
overdamped Langevin equation:

q̇ = �V
0(q) +

p
2��1 Ẇ .

To study the e↵ective di↵usion in the overdamped regime, we use the expansion

�� = �0 +
1
�
�1 +

1
�2
�2 + · · ·

in the Poisson equation �LL� = p. Grouping terms:

O(�) � LFD�0 = 0,

O(1) � LFD�1 � Lham�0 = p,

O(1/�) � LFD�2 � Lham�1 = 0 . . .

Solving these equations as previously, we obtain

�0(q) =
�
�V

0(q)@q + �
�1
@
2

q

�
�1

V
0(q),

�1(q, p) = p (1 + @q�0) +
�
��H
HH

 1(q) ,

�2(q, p) = (p2/2) @2

q�0 +⇠⇠⇠XXXp @q 1 +  2(q).
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The Langevin equation: e↵ective di↵usion in the overdamped limit

Truncating the series at the third term, we have

�LL

✓
�0 +

1
�
�1 +

1
�2
�2 � ��

◆
= � 1

�2
Lham�2.

If one can show that

The right-hand side Lham�2 2 X,

The operator norm kL�1

L
kX/�

2 ! 0 as � ! 1.

Then, taking � ! 1, we obtain

k�0 � ��kX ! 0 as � ! 1.

The second condition is guaranteed by hypocoercivity:

Hypocoercivity implies the boundedness of the inverse

If
k eLt

hkX  C e��t khkX , 8h 2 X

then

kL�1kB(X) 
C

�
.
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Back to the GLE: a simple quasi-Markovian model

Assume that the memory kernel is of the form �(t) = �
2 e�a|t|. The corresponding GLE is

equivalent to

dqt = pt dt,

dpt = �V
0(qt) dt+ � zt dt,

dzt = �� pt dt� a zt dt+
p

2a��1 dWt, z(0) ⇠ N (0,��1)

Indeed, integrating the third equation:

zt = e�at
z0 � �

Z
t

0

e�a(t�s)
ps ds+

p
2a��1

Z
t

0

e�a(t�s) dWs.

Substituting in the equation for p:

dpt = �V
0(qt) dt�

Z
t

0

�(t� s) ps ds+

✓
� e�at

z0 + �

p
2a��1

Z
t

0

e�a(t�s) dWs

◆

| {z }
=:F (t)

,

F (t) is a stationary mean-zero Gaussian process with variance ��1
�
2, so

E (F (s)F (t)) =

Z

R

(eLOUt
x)xN (0,�2

�
�1) dx = �

�1
�
2 e�at

,

where LOU = �a x @x + a�
�1
�
2
@
2

x.
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General quasi-Markovian approximation

When the memory kernel is of the form

�(t) =
D
e�A|t| �,�

E
,

for (possibly nonsymmetric) A 2 Rn⇥n with nonnegative eigenvalues and � 2 Rn, eq.
(GLE) is equivalent to

dq = p dt,

dp = �V
0(q) dt+ h�, zi dt,

dz = �p� dt�Az dt+⌃ dWt, z(0) ⇠ N (0,��1I),

where ⌃ 2 Rn⇥n is related to A by the fluctuation/dissipation relation:

⌃⌃T = �
�1 (A+AT ).

Invariant density:

µ(dq dp dz) =
1
Z exp

✓
��
✓
H(q, p) +

|z|2

2

◆◆
.

where H(q, p) = V (q) + p
2

2
.
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Relationship with the Langevin dynamics

Let us consider the scaling A 7! A/⌫
2, � 7! �/⌫, then

Theorem (Ottobre 2011[1])

Let {q(t), p(t), z(t)} be the solution of the quasi-Markovian GLE, with V 2 C
1(T) and

initial conditions having finite moments of any order. Then the process {q, p} on [0, T ]
converges weakly to the solution of the Langevin equation:

dq = p(t) dt,

dp = �V
0(q) dt� � p(t) dt+

p
2���1 dW (t)

with

� =

Z
1

0

�(t) dt.

[1] M. Ottobre and G. A. Pavliotis. Asymptotic analysis for the generalized Langevin equation. Nonlinearity,
24(5):1629–1653, 2011. issn: 0951-7715.
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Example: sum of exponentials

If �(t) =
P

n

i=1
�
2

i e�ai|t|, then

� =

0

BBB@

�1

�2

.

.

.

�n

1

CCCA
, A =

0

BBB@

a1

a2

. . .

an

1

CCCA

This leads to the following system:

dq = p dt,

dp = �V
0(q) dt+

 
nX

i=1

�iz
i

t

!
dt,

dzit = ��i pt dt� ai z
i

t dt+
p

2ai�
�1 dWt, i = 1, 2, . . . , n.
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Example: continued fraction

If the Laplace transform �̃ is of the form

�̃(s) =
�
2

✓1 + s+
"
2
1

✓2+s+
"2
2

✓3+s+
"2
3

. . .

,

then quasi-Markovian approximations can be constructed via

A =

0

BBBBBBB@

✓1 "1

�"1 ✓2 "2

�"1 ✓3 "3

. . .
. . .

. . .

�"n�2 ✓n�1 "n�1

�"n�1 ✓n,

1

CCCCCCCA

and � =

0

BBBBBBB@

�

0
0
.
.
.

0
0

1

CCCCCCCA
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Models: quasi-Markovian approximations of interest

We are interested in two particular Markovian approximations:

GL1: Scalar OU noise,

dz = (�p
� p/⌫ � z/⌫

2) dt+
p

2��1/⌫2 dWt, z(0) ⇠ N (0,��1).

The associated memory kernel is �(t) = �

⌫2 e�
|t|
⌫2 .

GL2: Harmonic noise,

� =
1
⌫

✓p
�

0

◆
, A =

1
⌫2

✓
0 �↵
↵ ↵

2

◆
! ⌃ =

r
2��1 ↵2

⌫2

✓
0 0
0 1

◆
.

In particular, we recover model GL1 as ↵! 1 (the overdamped limit of the noise).
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Models: quasi-Markovian approximations of interest

Influence of the paramaters on the autocorrelation function of the noise:

⌫
2 is horizontal scaling;

� is a vertical scaling;

↵ encodes the shape;

0 2 4 6 8 10 12 14
t/ν2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ν
2
γ
(t
)/
γ

α = ∞ (GL1)

α = 0.5

α = 1

α = 2

α = 3

Figure: Autocorrelation function of the noise for model GL2.
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Calculation of the e↵ective di↵usion

After

introducing the non-periodized position x;
applying the di↵usive rescaling x 7! x/", t 7! t/"

2;

the (quasi-Markovian) GLE can be recast as a fast/slow system of SDEs:

dx =
1
"
p dt,

dq =
1
"2

p dt,

dp =
1
"2

�
�V

0(q) + h�, zi
�
dt,

dz = � 1
"2

(p�+Az) dt+
1
"
⌃ dWt, z(0) ⇠ N (0,��1I).

The e↵ective di↵usion coe�cient can be obtained by solving a Poisson equation:

�L� = p,

D =

Z

T⇥R⇥Rn
� p µ(dq dp dz).
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Alternative expression of the di↵usion coe�cient

Decomposing the generator as

L =

✓
p
@

@q
� @V

@q

@

@p
+ h�, zi @

@p
� p� ·rz �Aa z ·rz

◆

+
�
�As z ·rz + �

�1 A : (rzrz)
�
,

the e↵ective di↵usion coe�cient can be written as

D = �
�1

Z

T⇥R⇥Rn
As : (rz�⌦rz�)µ(dq dp dz).
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Asymptotic analysis: limits of interest

The underdamped limit: � ! 0;

The overdamped limit: � ! 1;

The short memory limit: ⌫ ! 0.
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Results

Underdamped limit for the GLE

It holds that:

lim
�!0

�D⌫,� ! D
⇤

⌫ ,

lim
⌫!0

D
⇤

⌫ ! D
⇤
,

but in general D⇤

⌫ 6= D
⇤ for ⌫ > 0.

0.0 0.2 0.4 0.6 0.8 1.0

⌫

0.306

0.308

0.310

0.312

0.314

0.316
D

⇤
(Langevin)

D
⇤
⌫ (GLE)
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Idea of the (formal) proof

Decomposing the generator as

L0 +
p
�L1 :=

✓
p
@

@q
� @V

@q

@

@p
+

1
⌫2

✓
�z

@

@z
+

@
2

@z2

◆◆
+

p
�

⌫

✓
z
@

@p
� p

@

@z

◆
,

and considering the asymptotic expansion � = 1

�
�0 + 1

p
�
�1 + · · ·

O(��1) L0�0 = 0,

O(��1/2) L0�1 + L1�0 = 0,

O(�(i�1)/2) L0�i+1 + L1�i = �p, i = 1, 2, . . .

Then use that �L0� = f admits a solution only if f = f(q, p) and
Z

T⇥R

f(q, p)F

✓
V (q) +

p
2

2

◆
dp dq = 0,

for all smooth, rapidly decaying F . The solvability condition of the third equation gives an

equation for �0 = �0

⇣
V (q) + p

2

2

⌘
:

�
�
�1

S
0

⌫(E)� S⌫(E)
�
�
0

0(E) + �
�1

S⌫(E)�00

0 (E) =

8
><

>:

� 2⇡, for p > 0, E > E0,

2⇡, for p < 0, E > E0,

0, for Emin < E < E0.
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Results

Overdamped limit for the GLE

It holds that:
lim

�!1

�D⌫,� = D, 8⌫ > 0.

Short memory limit

In the limit ⌫ ! 0,

D⌫,� = D� +O(⌫4), when ↵ = 1,

D⌫,� = D� +O(⌫2), otherwise.

In addition, the O(⌫2) and O(⌫4) corrections can be calculated by solving Poisson
equations of the type

�LL� = f,

where LL is the generator of the Langevin dynamics.
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Asymptotic analysis: summary

D
⇤ �D� D

D
⇤

⌫
�D⌫,�

� ! 1

� ! 0

� ! 0 � ! 1

⌫ ! 0 ⌫ ! 0
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Hypocoercivity: a toy example

ẋ =

✓
0 �1
1 ��

◆
x, � > 0, x 2 R2

.

Writing x = (x, y)T ,
d
dt

|x|2 = �2 � y2
,

Defining ((x,x)) = x
2 � 2↵x y + y

2, with ↵ < 1,

d
dt

((x,x)) = xT

✓
�2↵ ↵�

↵� 2↵� 2�

◆
x < �⇠ |x|2

�1.0 �0.5 0.0 0.5 1.0
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1.0
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Figure: Level sets of |x|2 (left) and ((x,x)) (right).
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Convergence to equilibrium

By decomposing the generator as

�L =��1
⌫
�2
↵
2
@
⇤

z2
@z2

+ ⌫
�2
↵(z1 @z2 � z2 @z1) +

p
� ⌫

�1(p @z1 � z1 @p) + (@qV @p � p @q)

= : A⇤
A+B,

we observe that
h�Lu, ui

L2(µ)
= �

�1
⌫
�2
↵
2 k@z2uk2.

we can apply Villani’s framework for hypocoercivity.

((h, h)) = khk2 + a0 k@z2hk2 + a1 k@z1hk2 + a2 k@phk2 + a3 k@qhk2

� b0 h@z2h, @z1hi � b1 h@z1h, @phi � b2 h@ph, @qhi .
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Convergence to equilibrium

By Cauchy–Schwarz,

((h, h))� khk2 �

0

BB@

k@z2hk
k@z1hk
k@phk
k@qhk

1

CCA

T 0

BB@

a0 �b0 0 0
0 a1 �b1 0
0 0 a2 �b2

0 0 0 a3

1

CCA

| {z }
:=M1

0

BB@

k@z2hk
k@z1hk
k@phk
k@qhk

1

CCA. (3)

On the other hand, after some calculations,

�((h,Lh)) �

0

BB@

k@z2 @z2 hk
k@z2 @z1 hk
k@z2 @p hk
k@z2 @q hk

1

CCA

T

(↵2
⌫
�2

M1)

0

BB@

k@z2 @z2 hk
k@z2 @z1 hk
k@z2 @p hk
k@z2 @q hk

1

CCA

+

0

BB@

k@z2 hk
k@z1 hk
k@p hk
k@q hk

1

CCA

T

M2

0

BB@

k@z2 hk
k@z1 hk
k@p hk
k@q hk

1

CCA.

where M2 also depends on a0, a1, a2, a3, b0, b1, b2.
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Convergence to equilibrium

Combining the two inequalities, and using the coercivity of

@
⇤

z2
@z2 + @

⇤

z1
@z1 + @

⇤

p@p + @
⇤

q@q

we conclude to the exponential convergence to equilibrium:

1
2

d
dt

((h, h))  � c2

C1 + �1
((h, h)),

where C1 is the largest eigenvalue of the symmetric part of M1 and c2 is the smallest
eigenvalue of the symmetric part of M2.

To obtain the best possible rate of convergence, we solve

max
a0,a1,a2,a3

b0,b1,b2

c2,C1

c2

C1 + �1
subject to

8
><

>:

1
2
(M2 +M

T

2 )� c2I ⌫ 0,

C1I � 1
2
(M1 +M

T

1 ) ⌫ 0,
(4)
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Convergence to equilibrium: results
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Figure: Convergence rate of the dynamics for the three models when X = R, V (q) = q2/2 (left)

and X = T, V (q) = (1/2) (1� cos(q)) (right). In both cases, ⌫ = ↵�1 = 1/3.
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Numerical approaches for the calculation of the e↵ective di↵usion coe�cient

Ensemble average of second moment

D = lim
t!1

1
2t

E(q(t)� q(0))2

Green–Kubo formula Since �L�1 = eLt,

D =

Z
(�L�1

p) p dµ =

Z
1

0

Z
(eLt

p)p dµ dt =

Z
1

0

Cp(t) dt.

Non-equilibrium technique Considering a small forcing,

dq = p dt,

dp = ⌘ � V
0(q) dt� � p+

p
2 � ��1 dW (t),

the e↵ective di↵usion can also be obtained as

D = lim
⌘!0

1
⌘
Eµ⌘ p.

Fourier/Hermite Galerkin method for the Poisson equation
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Numerical experiments

Goals:

Verify asymptotic results;

Corroborate and complement early results.

We employ a Fourier/Hermite spectral method for the Poisson equation, with the
saddle-point formulation[2].

(
�⇧N L⇧N�N + ↵NuN = ⇧Np,

h�N , uN i = 0,

where

⇧N is the L
2 (µ) projection operator on a finite-dimensional subspace VN ,

uN = ⇧N1/k⇧N1kµ.

The constraint h�N , uN i = 0 ensures that the system is well-conditioned.

[2] J. Roussel and G. Stoltz. Spectral methods for Langevin dynamics and associated error estimates.

ESAIM: Math. Model. Numer. Anal., 52(3):1051–1083, 2018.
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Approximation subspace

In the case of harmonic noise, we use the following basis functions:

ei,j,k,l =
⇣
Z e�(H(q,p)+|z|2)

⌘ 1

2

Gi(q)Hj(p)Hk(z1)Hl(z2), 0  i, j, k, l  N.

where Gi are trigonometric functions,

Gi(q) =

8
>><

>>:

1/
p
2⇡, if i = 0,

sin
�
i+1

2
q
�
/
p
⇡, if i is odd,

cos
�
i

2
q
�
/
p
⇡, if i is even, i > 0.

and Hj are rescaled normalized Hermite functions,

Hj(p) =
1p
�
 j

⇣
p

�

⌘
,  j(p) := (2⇡)�

1

4
(�1)jp

j!
e

p2

4
dj

dpj

✓
e�

p2

2

◆
.
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Unitary transformation

Let ⇢1 = 1

Z
e��(H(q,p)+|z|2) be the density of µ.

Since it is more convenient to work in the flat L2 (Rn), we rewrite the problem using the
following unitary transformation:

p
⇢1 : L2 (µ) ! L

2 (dq dp dz) .

The Poisson equation for the calculation of the e↵ective di↵usion coe�cient becomes:

� (⇢1/21 L ⇢�1/2

1 )| {z }
=:H

(⇢1/21 �)| {z }
=: 

= (⇢1/21 p).

In the case of the overdamped Langevin equation, the operator H obtained by the
transformation is a Schrödinger operator:

H = ��
✓
1
4
|rV |2 � 1

2
�V

◆
.

With this formulation, the e↵ective coe�cient is simply h , pi
L2 .
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Choice of the scaling factor

We recall that

The Hermite functions are the eigenfunctions of the Fourier transform;

A contraction in real space leads to a dilation in Fourier space;

The final inflection point of  j occurs at x /
p
4j + 2;

Using Plancherel identity:
⌦
u,H

�

j

↵
=
D
ũ, H

1/�

j

E
.

To favor exploration in Fourier space, e.g. because u(x) is expected to decay rapidly as
|x| ! 1, it is useful to choose � = �(N).

In particular, with �(N) /
p
N , the window of resolution in real space does not grow as

N increases.
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Improving the convergence by rescaling the Hermite functions
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Comparison with previous literature

A Fourier/Hermite discretization can also be used to calculate the velocity autocorrelation.
8
<

:

@vN

@t
= (⇧N L⇧N )vN ,

vN (0) = ⇧Np.

Its spectrum is

v̂N (!) :=

Z

R

hvN (t),⇧Npi e�i!t dt.
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Dependence of D on �
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Figure: Di↵usion coe�cient as a function of �, when ⌫ = ↵ = 1.
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Dependence of D on ⌫ and ↵
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Figure: E↵ective di↵usion coe�cient against ⌫, for fixed values � = � = 1.
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Dependence of D on ⌫ and ↵
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Figure: Deviation of the e↵ective di↵usion coe�cient from its limiting value as ⌫ ! 0, for fixed
values � = � = 1.
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