Schémas préservant l'asymptotique sur maillages coniques

Xavier Blanc, Laboratoire Jacques-Louis Lions, Université Paris Diderot blanc@ann.jussieu.fr collaboration avec V. Delmas (CEA), P. Hoch (CEA)

Introduction

- Fusion par confinement inertiel
- Transfert radiatif
- Modèle P1
- Limite diffusion

Maillages polygonaux

- Schémas préservant l'asymptotique
- Résultats numériques

Maillages coniques

- Schémas préservant l'asymtotique
- Résultats numériques

Fusion par confinement inertiel Transfert radiatif Modèle P1 Limite diffusion

Fusion par confinement inertiel (FCI)

Introduction

Maillages polygonaux Maillages coniques Fusion par confinement inertiel Transfert radiatif Modèle P1

Limite diffusion

FCI

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Fusion par confinement inertiel Transfert radiatif Modèle P1 Limite diffusion

FCI

Inertial Confinement Fusion Concept

Fusion par confinement inertiel Transfert radiatif Modèle P1 Limite diffusion

Modélisation

$$\begin{split} \vec{\partial}_{t}\rho + \operatorname{div}_{x}(\rho\vec{v}) &= 0, \\ \vec{\partial}_{t}(\rho\vec{v}) + \operatorname{div}_{x}(\rho\vec{v}\otimes\vec{v}) + \nabla_{x}p &= -\vec{\mathscr{P}}_{F}, \qquad E = \frac{1}{2}|u|^{2} + e, \\ \vec{\partial}_{t}(\rho E) + \operatorname{div}_{x}((\rho E + \rho)\vec{v}) &= -\mathscr{P}_{E} + S, \qquad E.O.S \ p &= p(\rho,\theta) \\ \frac{1}{c}\vec{\partial}_{t}l + \vec{\Omega} \cdot \nabla_{x}l &= \mathscr{P}, \\ l &= l(t, x, \Omega), \quad \Omega \in S^{2}, \quad \text{intensité radiative.} \\ \mathscr{S} &= \sigma_{a}(\rho,\theta) \left(a\theta^{4} - l\right) + \sigma_{s}(\rho,\theta) \left(\int_{S^{2}} ld\Omega - l\right), \qquad a = \text{constant.} \\ \vec{\mathscr{P}}_{F} &= \int_{S^{2}} \Omega \mathscr{S} d\Omega, \qquad \mathscr{P}_{E} = \int_{S^{2}} \mathscr{S} d\Omega. \end{split}$$

6

æ,

・ロン ・四と ・日と ・日と

Fusion par confinement inertiel Transfert radiatif Modèle P1 Limite diffusion

Modèle aux moments

ntensité radiative
$$I = I(t, x, \Omega)$$
 $t \ge 0, x \in \mathbb{R}^3, \Omega \in S^2$.

$$\frac{1}{c} \partial_t I + \vec{\Omega} \cdot \nabla_x I = \sigma_a \left(a\theta^4 - I \right) + \sigma_s \left(\langle I \rangle - I \right), \quad \langle I \rangle = \int_{S^2} I d\Omega.$$

Moments de l'équation :

$$\begin{cases} \partial_t E + \operatorname{div}(F) = 4\pi\sigma_a \left(a\theta^4 - E\right), \\ \partial_t F + c^2 \operatorname{div}(P) = -c(\sigma_s + \sigma_s)F. \end{cases}$$
$$E = \frac{1}{c} \int_{S^2} I(t, x, \Omega) d\Omega, \ F = \int_{S^2} \Omega I(t, x, \Omega) d\Omega, \ P = \frac{1}{c} \int_{S^2} \Omega \otimes \Omega I(t, x, \Omega) d\Omega. \end{cases}$$

Approximation affine en Ω : $I(t,x,\Omega) = \frac{c}{4\pi}E(t,x) + \frac{1}{4\pi}\Omega \cdot F(t,x).$

$$P(t,x) = \frac{1}{3}E(t,x) \operatorname{Id}.$$

Fusion par confinement inertiel Modèle P1 Limite diffusion

$$\begin{cases} \partial_t E + \operatorname{div}(F) = S, \\ \frac{1}{c} \partial_t F + \frac{c}{3} \nabla E = -\sigma F. \end{cases}$$

0

・ロト・日本・ キャー キー シック

Fusion par confinement inertiel Transfert radiatif Modèle P1 Limite diffusion

$$\begin{cases} \partial_t E + \operatorname{div}(F) = S, \\ \frac{1}{c} \partial_t F + \frac{c}{3} \nabla E = -\sigma F. \end{cases}$$

Limite diffusion :
$$c \approx \sigma \rightarrow +\infty$$
 : $F = -\frac{c}{3\sigma} \nabla E$.

$$\partial_t E - \operatorname{div}\left(\frac{c}{3\sigma}\nabla E\right) = S.$$

୬ < ୯ ୨

◆□ > ◆□ > ◆臣 > ◆臣 > □ 臣 □

Schémas préservant l'asymptotique Résultats numériques

Premier essai : 1D, schéma décentré amont

$$\begin{cases} \partial_t E + \partial_x F = 0, \\ \\ \partial_t F + \frac{c^2}{3} \partial_x E = -\sigma c F. \end{cases}$$

Invariants de Riemann : $U = E + \frac{\sqrt{3}}{c}F$, $V = E - \frac{\sqrt{3}}{c}F$,

$$\begin{cases} \partial_t U + \frac{c}{\sqrt{3}} \partial_x U = \sigma \frac{c}{2} (V - U), \\ \partial_t V - \frac{c}{\sqrt{3}} \partial_x V = \sigma \frac{c}{2} (U - V). \end{cases}$$

Schéma décentré amont :

$$\begin{cases} \frac{U_j^{n+1}-U_j^n}{\Delta t} + \frac{c}{\sqrt{3}} \frac{U_j^n - U_{j-1}^n}{\Delta x} = \sigma \frac{c}{2} \left(V_j^n - U_j^n \right), \\ \frac{V_j^{n+1}-V_j^n}{\Delta t} - \frac{c}{\sqrt{3}} \frac{V_{j+1}^n - V_j^n}{\Delta x} = \sigma \frac{c}{2} \left(U_j^n - V_j^n \right). \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 めへぐ

Schémas préservant l'asymptotique Résultats numériques

Schéma upwind

$$\begin{cases} \frac{U_j^{n+1}-U_j^n}{\Delta t}+\frac{c}{\sqrt{3}}\frac{U_j^n-U_{j-1}^n}{\Delta x}=\sigma\frac{c}{2}\left(V_j^n-U_j^n\right),\\ \frac{V_j^{n+1}-V_j^n}{\Delta t}-\frac{c}{\sqrt{3}}\frac{V_{j+1}^n-V_j^n}{\Delta x}=\sigma\frac{c}{2}\left(U_j^n-V_j^n\right). \end{cases}$$

$$\begin{cases} \frac{E_{j}^{n+1}-E_{j}^{n}}{\Delta t}+\frac{F_{j+1}^{n}-F_{j-1}^{n}}{2\Delta x}+\frac{c}{2\sqrt{3}\Delta x}\left(2E_{j}^{n}-E_{j-1}^{n}-E_{j+1}^{n}\right)=0,\\ \frac{F_{j}^{n+1}-F_{j}^{n}}{\Delta t}+\frac{c^{2}}{3}\frac{E_{j+1}^{n}-E_{j-1}^{n}}{2\Delta x}+\frac{c}{2\sqrt{3}\Delta x}\left(2F_{j}^{n}-F_{j-1}^{n}-F_{j+1}^{n}\right)=-c\sigma F_{j}^{n}. \end{cases}$$

Limite diffusion $c \approx \sigma \rightarrow +\infty$:

$$F_j^n = -\frac{c}{3\sigma} \frac{E_{j+1}^n - E_{j-1}^n}{2\Delta x}, \quad 2E_j^n - E_{j-1}^n - E_{j+1}^n = 0.$$

Pas consistant avec l'équation de diffusion $\partial_t E - \partial_x \left(\frac{c}{3\sigma} \partial_x E\right) = 0$.

Schémas préservant l'asymptotique Résultats numériques

Schémas préservant l'asymptotique

- **1** S. Jin, D. Levermore 1996.
- 2 J. Greenberg, A. Y. Leroux 1996.
- 3 L. Gosse, G. Toscani 2001.
- O. Berthon, R. Turpault, 2011.
- In C. Buet, B. Després, E. Franck, 2012. ← dimension 2
- 6 C. Buet, B. Després, 2015.

Schémas préservant l'asymptotique Résultats numériques

Schéma de Jin-Levermore

Idée : monter en ordre sur E en utilisant l'asymptotique diffusion : $\partial_{\times}E = -\frac{3\sigma}{c}F.$ Flux upwind : $U_{j+\frac{1}{2}} = U_j$, $V_{j+\frac{1}{2}} = V_{j+1}.$

$$\begin{cases} E_{j+\frac{1}{2}} + \frac{\sqrt{3}}{c} F_{j+\frac{1}{2}} = E_j + \frac{\sqrt{3}}{c} F_j, \\ E_{j+\frac{1}{2}} - \frac{\sqrt{3}}{c} F_{j+\frac{1}{2}} = E_{j+1} - \frac{\sqrt{3}}{c} F_{j+1}. \end{cases} \stackrel{\sim \rightarrow}{\to} \begin{cases} E_{j+\frac{1}{2}} + \frac{\Delta x}{2} \frac{3\sigma}{c} F_{j+\frac{1}{2}} + \frac{\sqrt{3}}{c} F_{j+\frac{1}{2}} = E_j + \frac{\sqrt{3}}{c} F_j, \\ E_{j+\frac{1}{2}} - \frac{\Delta x}{2} \frac{3\sigma}{c} F_{j+\frac{1}{2}} - \frac{\sqrt{3}}{c} F_{j+\frac{1}{2}} = E_{j+1} - \frac{\sqrt{3}}{c} F_{j+1}. \end{cases}$$

$$\begin{cases} E_{j+\frac{1}{2}} = \frac{1}{2} \left(E_j + E_{j+1} + \frac{\sqrt{3}}{c} F_j - \frac{\sqrt{3}}{c} F_{j+1} \right), \\ F_{j+\frac{1}{2}} = \frac{1}{1 + \sigma \sqrt{3} \frac{\Delta x}{2}} \frac{1}{2} \left(F_j + F_{j+1} + \frac{\sqrt{3}}{c} E_j - \frac{\sqrt{3}}{c} E_{j+1} \right). \end{cases}$$

Schémas préservant l'asymptotique Résultats numériques

Schéma de Jin-Levermore

$$M = \frac{1}{1 + \sigma \sqrt{3} \frac{\Delta x}{2}} \\ \begin{cases} \frac{E_j^{n+1} - E_j^n}{\Delta t} + M \frac{F_{j+1}^n - F_{j-1}^n}{2\Delta x} + M \frac{c}{2\sqrt{3}\Delta x} \left(2E_j^n - E_{j-1}^n - E_{j+1}^n\right) = 0, \\ \frac{F_j^{n+1} - F_j^n}{\Delta t} + \frac{c^2}{3} \frac{E_{j+1}^n - E_{j-1}^n}{2\Delta x} + \frac{c}{2\sqrt{3}\Delta x} \left(2F_j^n - F_{j-1}^n - F_{j+1}^n\right) = -c\sigma F_j^n. \end{cases}$$

-1

Limite diffusion $c \approx \sigma \rightarrow +\infty$: $M \approx \frac{1}{\sigma\sqrt{3}\frac{\Delta x}{2}}$. Première équation :

$$\frac{E_{j}^{n+1} - E_{j}^{n}}{\Delta t} + \frac{c}{3\sigma\Delta x^{2}} \left(2E_{j}^{n} - E_{j-1}^{n} - E_{j+1}^{n} \right) = 0$$

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のなぐ

Schémas préservant l'asymptotique Résultats numériques

Dimension deux

$$\begin{split} & l_{jr} = \frac{1}{2} |x_{r+1} - x_{r-1}|, \\ & n_{jr} = \frac{1}{2l_{jr}} (x_{r+1} - x_{r-1})^{\perp}. \\ & \nabla_{x_r} |\Omega_j| = l_{jr} n_{jr}. \end{split}$$

Refs : C. Mazerand, thèse. E. Franck, thèse.

$$\begin{split} |\Omega_j|\partial_t E_j + \sum_r l_{jr} F_r \cdot n_{jr} &= 0, \\ |\Omega_j|\partial_t F_j + \frac{c^2}{3} \sum_r l_{jr} E_{jr} n_{jr} &= -\sigma c |\Omega_j| F_j \\ \begin{cases} E_{jr} &= E_j + \frac{\sqrt{3}}{c} (F_j - F_r) \cdot n_{jr}, \\ &\sum_j l_{jr} n_{jr} E_{jr} &= 0. \end{cases} \end{split}$$

イロト イヨト イヨト イヨト

Modification Jin-Levermore : limite diffusion.

Schémas préservant l'asymptotique Résultats numériques

Problème : stencil "en croix" => stabilisation.

э

・ロト ・日ト ・ヨト ・ヨト

Schémas préservant l'asymtotique Résultats numériques

Arêtes coniques

$$\mathbf{M}^{\omega}(q) = \begin{pmatrix} x(q) \\ y(q) \end{pmatrix} = \frac{\mathbf{M}_0(1-q)^2 + 2\omega q(1-q)\mathbf{M}_1 + q^2\mathbf{M}_2}{(1-q)^2 + 2\omega q(1-q) + q^2}, \qquad q \in [0,1]$$

 \mathbf{M}_0

Schémas préservant l'asymtotique Résultats numériques

Arêtes coniques

Shoulder point : $\mathbf{S} := \mathbf{M}^{\omega}(q = 0.5).$

$$\mathbf{S} = \frac{1}{2} (\mathbf{Q}_0 + \mathbf{Q}_2), \quad \mathbf{Q}_0 = \frac{1}{1+\omega} (\omega \mathbf{M}_1 + \mathbf{M}_0), \quad \mathbf{Q}_2 = \frac{1}{1+\omega} (\omega \mathbf{M}_1 + \mathbf{M}_2).$$

B. Boutin, E. Deriaz, P. Hoch, ESAIM Proc 2011, M. Li, X.-S. Gao, S.-C. Chou, Visual Comput., 2006.

臣

・ロト ・四ト ・ヨト ・ヨト

Schémas préservant l'asymtotique Résultats numériques

Arêtes coniques

Aire

$$|\Omega_j| = \sum_e A(\mathbf{O}, \mathbf{M}_0^e, \mathbf{M}_2^e) + f(\omega)A(\mathbf{M}_0^e, \mathbf{M}_1^e, \mathbf{M}_2^e) = \frac{1}{2}\sum_{dof} \widetilde{\mathbf{C}}_j^{dof,\omega} \cdot \mathbf{OM}_{dof}.$$

B. Boutin, E. Deriaz, P. Hoch, ESAIM Proc 2011, M. Li, X.-S. Gao, S.-C. Chou, Visual Comput. 2006. =

Schémas préservant l'asymtotique Résultats numériques

Arêtes coniques

Dof aux sommets \mathbf{M}_r ET aux shoulder points $\mathbf{S}_{r+1/2}$.

Schémas préservant l'asymtotique Résultats numériques

Schéma GLACE

$$\begin{cases} E_i^{n+1} - E_i^n + \frac{\Delta t}{|\Omega_i|} \sum_{r/M_r \in \Omega_i} \boldsymbol{C}_i^r \cdot \boldsymbol{F}_r^{n+1} = 0, \\ \boldsymbol{F}_i^{n+1} - \boldsymbol{F}_i^n + \frac{c^2 \Delta t}{3|\Omega_i|} \sum_{r/M_r \in \Omega_i} \boldsymbol{C}_i^r E_{ir}^{n+1} = -c\sigma_i \Delta t \boldsymbol{F}_i^{n+1}, \end{cases}$$

$$\begin{cases} E_{ir}^{n+1} = E_i^{n+1} + \frac{\sqrt{3}}{c} \left(\boldsymbol{F}_i^{n+1} - \boldsymbol{F}_r^{n+1} \right) \cdot \boldsymbol{n}_{ir} - c\sigma_r \boldsymbol{F}_r^{n+1} \cdot \left(\boldsymbol{M}_r - \boldsymbol{x}_i \right), \\ \sum_{i/\boldsymbol{M}_r \in \Omega_i} \left(\alpha_{ir} + c\sigma_r \beta_{ir} \right) \boldsymbol{F}_r^{n+1} = \sum_{i/\boldsymbol{M}_r \in \Omega_i} \boldsymbol{C}_i^r E_i^{n+1} + \sum_{i/\boldsymbol{M}_r \in \Omega_i} \boldsymbol{C}_i^r \otimes \boldsymbol{n}_{ir} \boldsymbol{F}_i^{n+1}. \end{cases}$$

$$\alpha_{ir} = \boldsymbol{C}_i^r \otimes \boldsymbol{n}_{ir} \text{ et } \beta_{ir} = \boldsymbol{C}_i^r \otimes (\boldsymbol{M}_r - \boldsymbol{x}_i) \text{ avec } \boldsymbol{n}_{ir} = \frac{\boldsymbol{C}_i^r}{\|\boldsymbol{C}_i^r\|}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Schémas préservant l'asymtotique Résultats numériques

Limite diffusion

$$\sigma = c = 10^4$$
, donnée initiale $E(0, x) = \delta_0(x)$. $E(t, x) = \frac{6\sigma}{\pi ct} e^{-\frac{3\sigma}{2ct}|x|^2}$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ■ ○ ○ ○ ○

Schémas préservant l'asymtotique Résultats numériques

Limite diffusion

$$\sigma = c = 10^4$$
, donnée initiale $E(0, x) = \delta_0(x)$. $E(t, x) = \frac{6\sigma}{\pi ct} e^{-\frac{3\sigma}{2ct}|x|^2}$

Schémas préservant l'asymtotique Résultats numériques

Régime transport

$$\begin{array}{ll} \mbox{Conditions périodiques aux bord} => \mbox{Fourier : solution analytique.} \\ \mbox{Si } 4\pi\sqrt{j^2 + k^2} \leq \sigma L\sqrt{3}, & E(x,y,t) = \cos\left(\frac{2j\pi x}{L} + \frac{2k\pi y}{L}\right)e^{-\sigma ct}\left[\alpha\left(\sigma c \frac{\sinh(\gamma t)}{2\gamma} + \cosh(\gamma t)\right) + \beta \frac{\sinh(\gamma t)}{\gamma}\right], \\ \mbox{Si } 4\pi\sqrt{j^2 + k^2} > \sigma L\sqrt{3}, & E(x,y,t) = \cos\left(\frac{2j\pi x}{L} + \frac{2k\pi y}{L}\right)e^{-\sigma ct}\left[\alpha\left(\sigma c \frac{\sinh(\gamma t)}{2\gamma} + \cos(\gamma t)\right) + \beta \frac{\sin(\gamma t)}{\gamma}\right], \\ \mbox{$\gamma = \frac{1}{2}\sqrt{\left|\sigma^2 c^2 - 16\frac{\pi^2 c^2}{3L^2}\left(j^2 + k^2\right)\right|}. \end{array} \right.$$

$$\sigma = c = 1, j = 1, k = 2$$

Schémas préservant l'asymtotique Résultats numériques

Régime transport

3

Schémas préservant l'asymtotique Résultats numériques

Régime diffusion

 $\sigma = c = 10^4$, solution analytique

Schémas préservant l'asymtotique Résultats numériques

dirac.gif

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへで