
Séminaire de Mathématiques Appliquées du CERMICS

Short- and long-time behavior in (hypo)coercive
ODE-systems and Fokker-Planck equations

Anton Arnold (TU Wien)

27 novembre 2019



TECHNISCHE
UNIVERSITÄT
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Goals & strategies

Given an evolution eq: d
dt f = �L f , t � 0; L ... const-in-t operator

Assume �L is dissipative

Assume L has a unique steady state: L f1 = 0

1) optimal long-time decay estimate:
I exponential decay: kf (t)� f1k  ce

�µtkf (0)� f1k, t � 0
I possibly with sharp (= maximum) rate µ > 0

and minimal c � 1 [uniform for all f (0)]

2) short-time decay estimate:
I kf (t)� f1k 

⇥
1� ct

a +O(ta+1)
⇤
kf (0)� f1k, t ! 0+

I relation of a to hypocoercivity index of L

for (nonsymmetric) ODEs ẋ = �Cx

for (nonsymmetric) Fokker-Planck equations with linear drift

! find their connection
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Outline:

1 hypocoercive ODEs
2 long-time decay of Fokker-Planck equations
3 short-time decay of Fokker-Planck equations
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Long-time decay for nonsymmetric ODEs

ẋ = �Cx , t � 0, x(t) 2 Cn (1)

Definition: C is coercive if xTCx � kxk2 8x (for some  > 0).

ex: C =

✓
1 �1
1 0

◆
, �C = 1

2 ± i

p
3
2 ) decay rate = 1

2 for (1).

C not coercive ) no decay of kx(t)k2 by trivial energy method!

But decay of modified norm kx(t)kP :=
p
xT P x ; P := [2 � 1;�1 2]

How to find P / the
Lyapunov functional?
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hypocoercive ODEs
ẋ = �Cx , t � 0, x(t) 2 Cn

Definition: C is hypocoercive (= positive stable) if 9µ > 0 such that:

<(�j) � µ, j = 1, ..., n.

If all eigenvalues of C are non-defective:

9c � 1 : kx(t)k2  ckx(0)k2e�µt , t � 0.

• always: µ �  := max
x

x
T
Cx

kxk2 (i.e. spectral gap � coercivity)

Conditions for hypocoercivity:

1 C = C1 + C2 2 Cn⇥n; C
⇤

1 = �C1, C⇤

2 = C2 � 0 (w.l.o.g.)

2 No (non-trivial) subspace of kerC2 is invariant under C1
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Choice of P for kxkP / Lyapunov’s direct method

Lemma 1

Let C 2 Rn⇥n
be positive stable, i.e. µ := min{<�C} > 0 .

1 If all �min
C

2 {� 2 �(C) |<� = µ} are non-defective

(i.e. geometric = algebraic multiplicity)

) 9 P 2 Rn⇥n, P > 0 : PC+ C
>
P � 2µP .

2 If (at least) one �min
C

is defective )
8 " > 0 9 P = P(") > 0 : PC+ C

>
P � 2(µ� ")P .

Proof: P can be constructed explicitly; e.g. for C non-defective /
diagonalizable:

P :=
nX

j=1

zj ⌦ z̄
>

j ; zj ... eigenvectors of C
>

• P not unique; but the decay rates µ (or µ� ") are independent of P.
• For complex C: P > 0 Hermitian with PC+ C

⇤
P � 2µP.
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Long-time decay of P–norm

Sharp decay estimate for ẋ = �Cx (non-defective case, C real):

Let kxk2
P
:= x

T
P x .

d

dt
kxk2P = �x

T
�
PC+ C

T
P| {z }

�2µP

�
x  �2µkxk2P

) kx(t)kP  kx(0)kP e
�µt , t � 0.

P–norm can be used for entropy/energy methods of kinetic equations
(e.g. relaxation/BGK, Fokker-Planck)
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Decay of P–norm (continued)
ex: ẋ = �Cx with C =

✓
1 �1
1 0

◆

At x2-axis: trajectory x(t) tangent to level curve of |x | :
x ’ = − x + y
y ’ = − x    

 
 

 
 

 
 

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

x

y

Drift characteristic Level curve of P−norm

level curve of “distorted” vector norm
p
xT P x ; P =

✓
2 �1
�1 2

◆

! uniform decay with sharp rate 1
2

Anton ARNOLD (TU Vienna) short/long-time behavior / hypocoercivity 8 / 28



Hypocoercivity index

Conservative-dissipative system:

ẋ = �(C1 + C2)x , C1 2 Cn⇥n...anti-Hermitian; C2 � 0 Hermit. (2)

Definition 1 (Achleitner-AA-Carlen 2018)

The hypocoercivity index of C = C1 + C2 is the smallest integer

mHC 2 N0, such that

mHCX

j=0

C
j

1C2(C
⇤

1)
j > 0.

C is coercive , C2 > 0 , mHC = 0

C is hypocoercive , mHC < 1
If C is hypocoercive: n�rankC2

rankC2
 mHC  n � rankC2

mHC describes the structural complexity of (2).
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Hypocoercivity index for ẋ = �(C1 + C2)x

ex: C2 = diag(0, 0, 1, 1)

(a) C1 =

0

BB@

0 0 0 1
0 0 1 0
0 �1 0 0
�1 0 0 0

1

CCA, HC index = 1 (direct connection)

(b) C1 =

0

BB@

0 1 0 0
�1 0 1 0
0 �1 0 0
0 0 0 0

1

CCA, HC index = 2 (indirect connection)
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Short-time decay / hypocoercivity index for ẋ = �Cx

Lemma 2 (Achleitner-AA-Carlen 2019)

Let C be conservative-dissipative. Then its HC-index is mHC 2 N0 i↵

ke�Ctk2 = 1� ct
2mHC+1 +O(t2mHC+2), t ! 0+

with some c > 0.

ex: 2-velocity BGK model, 1D (Goldstein-Taylor model)

for f (x , t) =
�
f+(x ,t)
f�(x ,t)

�
corresponding to v = ±1:

@t f± = ⌥@x f± ± 1

2
(f� � f+) =: �Lf±, t � 0, 2⇡–periodic in x

• ke�LtkB(L2) decays like 1� t
3/3 + o(t3) [Miclo-Monmarché ’13];

via x-modal decomposition: d

dt
uk = �

✓
0 ik

ik 1

◆
uk ; mHC = 1 for k 6= 0
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Outline:

1 hypocoercive ODEs
2 long-time decay of Fokker-Planck equations
3 short-time decay of Fokker-Planck equations
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degenerate Fokker-Planck equations

ft = div
⇣
Drf + Cx f

⌘
=: �Lf , x 2 Rd (3)

with degenerate 0  D 2 Rd⇥d is degenerate parabolic;
(symmetric part of) L is not coercive.

Definition 2 (Villani 2009)

Consider L on Hilbert space H with K = ker L; let H̃ ,! K? (densely)
(e.g. H ... weighted L

2, H̃ ... weighted H
1).

L is called hypocoercive on H̃ if 9� > 0, c � 1:

ke�Lt
f0kH̃  c e��tkf0kH̃ 8 f0 2 H̃

• typically c > 1
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hypocoercive Fokker-Planck equation

ft = div
⇣
Drf + C x f

⌘

can be normalized such that D = Cs (from now assumed).
Then f1(x) = (2⇡)�d/2

e
�|x |

2/2; H := L
2(f �1

1 ).

Condition A for hypocoercivity:

1 No (nontrivial) subspace of kerD is invariant under C>.
(equivalent: L is hypoelliptic.)

2 Let Cs 2 Rd⇥d � 0.

) C is positive stable (i.e. <�C > 0).
9 confinement potential; drift towards x = 0.

• hypoelliptic + confinement = hypocoercive (for FP eq.)
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typical decay of degenerate Fokker-Planck equation

decay of e(t) := kf (t)� f1k2
L2(f �1

1 )
:

degenerate FP eq. with D � 0: e(t) is not convex;
e
0(t) = 0 for some f 6= f1
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decay estimates for Fokker-Planck equations

Goal 1: best exponential decay kf (t)� f1kH  c e
��tkf (0)� f1kH

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
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decay estimates for Fokker-Planck equations

Goal 2: find exact PDE-propagator norm ke�Lt � ⇧0kB(H) ) Goal 1

0 1 2 3 4 5 6 7 8 9 10
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propagator norm of (normalized) Fokker-Planck equation

ft = div
⇣
Drf + C x f

⌘
=: �Lf , D = Cs

main Theorem 1 (AA-Signorello-Schmeiser 2019)

Let L satisfy Condition A (i.e. L is hypocoercive). Then

ke�Lt � ⇧0kB(H) = ke�Ctk2, t � 0

⇧0 ... projection on span[f1]

ex: [Gadat-Miclo ’13] ft=�vfx + axfv + (vf )v + fvv ; f1(x , v)=c e
�

a

2 x
2
�

v
2

2

normalized Fokker-Planck: Ca =

✓
0 �

p
ap

a 1

◆
, a > 0

ke�Lt � ⇧0kB(H) = Ca(t) exp
�
�

1�
p
(1� 4a)+
2

t
�
,

Ca(t) = O(1) for a 6= 1
4 , C1/4(t) = O(t), t ! 1
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sharp long-time decay of (normal.) Fokker-Planck equation

ft = div
⇣
Drf + C x f

⌘
=: �Lf , D = Cs (4)

Corollary 1 (of main Theorem)

Let C 2 Rd⇥d
be non-defective and satisfy Condition A (i.e. C is hypo-

coercive). Let (c1, µ) be the optimal constants for ẋ = �Cx in estimate

kx(t)k2  c1 e
�µtkx0k, t � 0.

Then, they are optimal for (4):

kf (t)� f1kH  c1 e
�µtkf0 � f1kH,

Z

Rd

f0(x) dx = 1

ex: For d = 2, <�C
1 = <�C

2 : c1 =
p
cond(P)

Rem: For C defective (in eigenvalues with <� = µ): rate = p(t)e�µt
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short-time decay of Fokker-Planck equation

ex: [Gadat-Miclo ’13] ft = �vfx + axfv + (vf )v + fvv := �La f

normal. Fokker-Planck: Ca =

✓
0 �

p
ap

a 1

◆
, hypocoercivity index = 1

for a � 1

4
: ke�Lt � ⇧0kB(H) = 1� a

6
t
3 + o(t3), t ! 0+

Conjecture: Decay “power 3 should be seen as an order of the
hypocoercivity of the operator La .”

GOAL: Make this connection concrete, not just for one example.
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short-time decay of Fokker-Planck equation

ft = div
⇣
Drf + C x f

⌘
, D = Cs (5)

Definition 3

The hypocoercivity index of (5) is the smallest integer mHC 2 N0, such

that

mHCX

j=0

C
j

AH
D(C⇤

AH
)j > 0.

(Also valid for (5) not normalized, i.e. D 6= Cs .)

Corollary 4 (of main Theorem: ke�Lt � ⇧0kB(H) = ke�Ctk2)
The HC-index of (5) is mHC i↵

ke�Lt � ⇧0kB(H) = 1� ct
2mHC+1 +O(t2mHC+2), t ! 0+

with some c > 0.

proof: HC-index of (5) = HC-index of ODE (ẋ = �Cx).
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Definition 3

The hypocoercivity index of (5) is the smallest integer mHC 2 N0, such

that

mHCX

j=0

C
j

AH
D(C⇤

AH
)j > 0.

(Also valid for (5) not normalized, i.e. D 6= Cs .)

Corollary 4 (of main Theorem: ke�Lt � ⇧0kB(H) = ke�Ctk2)
The HC-index of (5) is mHC i↵

ke�Lt � ⇧0kB(H) = 1� ct
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short-time decay of Fokker-Planck: second interpretation

ft = div
⇣
Drf + C x f

⌘
=: �Lf , with HC-index mHC 2 N0

• Then: short-time regularization:

Theorem 5 ([Villani ’09] for Hörmander rank; [AA-Erb ’14] for HCI)
����r

f (t)

f1

����
L2(f1)

 c t
�(mHC+

1
2 )

����
f0

f1
� 1

����
L2(f1)

, 0 < t  � (6)

• For Fokker-Planck eq. this is equivalent to the short time decay:

Proposition 1 (AA-Schmeiser-Signorello ’19)

ke�Lt � ⇧0kB(H) = 1� ct
a + o(ta), t ! 0+

i↵ regularization (6) holds with rate t
�a/2

.
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Proof of main result (step 1)

main Theorem 2 (AA-Schmeiser-Signorello 2019)

Let L = � div
⇣
Dr ·+C x ·

⌘
satisfy Condition A (i.e. L is hypocoercive).

Then

ke�Lt � ⇧0kB(H) = ke�Ctk2, t � 0

⇧0 ... projection on span[f1], f1 = c e
�|x |

2/2

• L ... nonsymmetric. Still, 9 a partially orthogonal decomposition:

H := L
2(f �1

1 )=
M

m2N0

?

V
(m); V

(m) = span[g↵(x) := (�1)|↵|r↵
f1, |↵| = m]

�(L) =
n dX

j=1

↵j�j , ↵ 2 Nd

0

o
; �j ... eigenvalues of C 2 Rd⇥d
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main proof (step 2): evolution in subspaces V (m)

d↵(t) ... coe�cient of g↵(x), ↵ 2 Nd

0 , x 2 Rd

ex. d = 2:
m = 1: d

dt

�
d(1,0)

d(0,1)

�
= �C

�
d(1,0)

d(0,1)

�

m = 2:

0

@
d(2,0)

d(1,1)

d(0,2)

1

A ... impractical !

better: D(2)(t) :=

✓
d(2,0) d(1,1)/2

d(1,1)/2 d(0,2)

◆
(t) 2 R2⇥2

d

dt
D

(2) = �
�
CD

(2) + D
(2)

C
T
�

m � 3: D(m)(t) ... symmetric m-order tensor

d

dt
D

(m)(t) = �m Sym
�
C� D

(m)(t)| {z }
mult. on 1st index

�
... tensored drift ODE

) FP = 2nd quantization of ODE in Bosonic Fock space of R2
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evolution in subspaces V (m)

• ingredient for evolution equation in V
(m):

rank-1 decomposition of order-m tensors:

D
(m) =

sX

k=1

µkv
⌦m

k
, µk 2 R, vk 2 Rd (7)

Lemma 3

Let (7) be the decomposition of D
(m)(0). Then, the evolution in V

(m)
is

given by

D
(m)(t) =

sX

k=1

µk [vk(t)]
⌦m, v̇k = �Cvk .
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main proof (step 3): decay in subspaces V (m)

Lemma 4

Let h(t) := ke�Ctk2, in particular h(t)  1.

) kD(m)(t)kF  h(t)m kD(m)(0)kF , t � 0, m 2 N

• partial Parseval’s identity:

kf (t)� f1k2H =
X

m2N
m! kD(m)(t)k2

F

) ke�Lt � ⇧0kB(H) = h(t), t � 0

• I.e., decay behavior determined only by 1st subspace!
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Conclusion

Hypocoercivity index characterizes the short-time decay of ODEs
( ẋ = �Cx ) and Fokker-Planck equations: ft = div(C[rf + xf ]) ;
as well as the regularization rate in Fokker-Planck equations.

Optimal decay estimates of (drift) ODEs carry over to Fokker-Planck
equations.
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