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Familiar setting

An ODE on R
d :

dx(t)

dt
= b(x(t))

x(0) = x0 2 R
d .

• Question: How do you show that solutions exist for all times t � 0?

• First Answer: Apply iteration scheme and show it has a unique
fixed point!

• Problem: This assumes b is globally Lipschitz, i.e., there exists
C > 0 such that

|b(x)� b(y)|  C |x � y | 8x ,y 2 Rd .

• Solution. Find a Lyapunov function.
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Lyapunov functions

• Suppose that V 2 C1(Rd ; [0,1)) satisfies

• V(x)!1 as |x |!1;

• b(x) ·rV(x)  CV(x) for some constant C > 0,

Then

d

dt
V(x(t)) = b(x(t)) ·rV(x(t))  CV(x(t)).

• Gronwall’s inequality then implies

V(x(t))  V(x0)e
Ct .

• Therefore if we can find such a V , we are done.
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Problems persist

• General Lyapunov function theory is easy, but finding a Lyapunov
function can be hard.

• Even still, there is no known algorithm or procedure which would
produce a Lyapunov function for a given ODE.

• Same problem exists in the context of stochastic di↵erential
equations AND every other type of dynamics.

Goal: Make progress by studying interesting examples.

Singular stochastic Hamiltonian systems?: Noise in system forces
particles to interact causing intermittent high-energy excursions.
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Langevin dynamics

SDE on (Rk )N ⇥ (Rk )N :

dq(t) = p(t)dt

dp(t) = ��p(t)dt �rU(q(t))dt +
p
2�T dB(t).

• q(t) = (q1(t), . . . ,qN (t)), p(t) = (p1(t), . . . ,pN (t)) 2 (Rk )N are the
position and momentum vectors;

• U is the potential function; � ,T > 0 are constants.

• Bt is a standard Brownian motion on (Rk )N .

Main Assumption: U has singularities (e.g. Lennard-Jones).

Main Questions: Relaxation to Gibbs measure? If so, in what sense
and how fast?

Point: Requires nontrivial understanding of how dissipation spreads
through the system.
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Langevin dynamics

Langevin equation:

q̈(t) = �� q̇(t)�rU(q(t))+
p
2�T Ḃ(t)

• Model for particle movement in fluids. Particles experience friction⇣
�� q̇(t)

⌘
and thermal fluctuations

⇣p
2�kBT Ḃ(t)

⌘
. U encodes

potential forces (e.g. presence of a wells/walls) and particle
interactions.

• Molecular dynamics simulation and Gibbs sampling:

µ(dpdq) / e
��H(q ,p)

dpdq , H(q ,p) =
|p |

2

2
+U(q)

and � = 1/T .
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Singular U?

U(q) =
NX

i=1

UE(qi )

|      {z      }
environmental forces

+
X

i<j

UI (qi �qj )

|            {z            }
interaction forces

Common examples:

(1) UE(x) = a |x |
2j + p2j�1(x); UI (x) = 0 or UI (x) ⇠ b |x |

` .

(2) UE(x) = a |x |
2j + p2j�1(x); UI (x) =

b

|x |12
�

c

|x |6
.

(3) UE(x) =
a

||x |� b |c
; UI (x) =

b

|x |12
�

c

|x |6
.

Point: Mathematics literature almost exclusively restricted to
potentials like those in (1). How does one handle potentials like (2)
and (3)? How do (1)-(3) fit together? How is the dynamics di↵erent?
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Langevin dynamics

Example: k = N = � = 1, U(q) = q
4

4 + 1
2q2 , q0 = 8,p0 = 1, T = 25
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Langevin dynamics

Example: k = 1, N = 2, � = 1, T = 25, UQ(q) = q
2, UI (q) =

1
|q |1.3
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Langevin dynamics

Example: k = 1, N = 3, � = 1, T = 25, UE(q) = q
2, UI (q) =

1
|q |1.3
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History and Previous Work

Lots of papers. Here are highlights:

Theorem (Mattingly, Stuart, Higham ’02)

Suppose that U 2 C
1((Rk )N ; (0,1)) satisfies the global bound

1
2
rU(q) ·q � �U(q)+�2 �(2� �)

8(1� �)
|q |

2
�↵

for some ↵ > 0 and � 2 (0,1). Then for every ` � 1 there exists

C = C(`) > 0,�= �(`) > 0 such that

�����E(q ,p)�(q(t),p(t))�
Z
�dµ

�����  CV(q ,p)`e��t

for all t � 0, |�|  V
`
. Here V ⇠ H +1.

• Strengthens work of Tropper (’77).
• (Talay ’02) Similar conclusion provided U 2 C

1((Rk )N ; (0,1)) is
essentially a polynomial.
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History and Previous Work: Langevin

Point: In both works, there is an explicit Lyapunov function V which
satisfies

V(q ,p) = H(q ,p)+ (q ,p)

where  (q ,p) = ✏p ·q , ✏ > 0 small.

Theorem (Villani ’06)

If U 2 C
2((Rk )N ; (0,1)) grows at least linearly at infinity and satisfies

|r
2
U |  C(1+ |rU |), then there exist C ,� > 0 for which

�����E(q ,p)�(q(t),p(t))�
Z
�dµ

�����
H1(µ)

 Ce
��t
k�kH1(µ)

for all t � 0, � 2 H1(µ).

• Builds o↵/strengthens work of Hel↵er and Nier (’05), Hérau
(’06).
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History and Previous Work: Langevin

• Hypocoercivity versus Lyapunov approach. Makes use of
existence of an invariant measure, handles a di↵erent norm.

• Talay issues challenge in ’07 at AIM conference on Stochastic
Simulation: Singular, Lennard-Jones U?

• (Conrad, Grothaus ’10 & ’15) Under appropriate growth of U and
assuming

|r
2
U |  C(1+ |rU |↵)

for some C > 0 and ↵ 2 [1,2), then there exists a constant D > 0
such that for all t > 0, � 2 L2(µ)

Z  
1
t

Z
t

0
�̄(q(s),p(s))ds

!2
dµ 

D

t
k�̄k2

L2(µ).

In the above, �̄ = � �
R
�dµ.
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History and Previous Work: Langevin

• (Dolbeault, Mouhot, Schmeiser ’10) New method for proving
Hypocoercivity, nice parabolic scaling heuristic. Result does not
apply in singular U case.

• (F. Baudoin ’13) Establishes connection between hypocoercivity
and Gamma Calculus of Bakry-Emery (’85).

• (Cattiaux, Guillin, Monmarché, Zhang ’17) Geometric
convergence to equilibrium in weighted L

2(µ) under

|r
2
U |  CU

2⌘
 C

0
U

2⌘+1
 |rU |

2.

• Numerous other results:

• A. Eberle, A. Guillen, R. Zimmer (Coupling methods);
• G. Stoltz, B. Leimkuhler, M. Sachs (LD and adaptive Langevin);
• (absence of friction in some directions) by J-P Eckmann, M. Hairer,

L. Rey-Bellet, Mattingly, N. Cuneo.

Question: Does a Lyapunov function exist in the singular case ? Can
we improve convergence results? How does it all fit together?
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Main Results

Theorem (Cooke, H., Mattingly, McKinley, Schmidler ’17
1
)

Suppose N = k = 1 and U : (0,1)! (0,1) is of the form

U(q) =
JX

i=1

�i q
↵i

where �1,�J > 0, ↵1 > ↵2 > · · · > ↵J , and ↵1 > 2,↵J < 0. Then there

exist constants C ,� > 0 such that

�����E(q ,p)�(q(t),p(t))�
Z
�dµ

�����  CV(q ,p)e��t

for all t � 0, |�|  V. Here V ⇠ exp(�H) where � < �.

• Result makes use of an explicit construction of a Lyapunov
function of the form V = H + ,  = o(H) as H !1.

• Works for two particles in R
1. What about N particles on R

k?

1
Comm. Math. Sci. 15 no. 7 pp. 1987-2025 (2017)
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Main Results

Definition

Let U : (Rk )N ! [0,+1] and O = {q : U(q) <1}. We call U
admissible if

• O is non-empty, open, connected. Moreover, for each R > 0 the
set {q : U(q) < R } has compact closure in (Rk )N .

• U 2 C
1(O) and

R
O
e
��U(q)

dq <1.

• For any sequence {qk } ⇢ O for which U(qk )!1 as k !1 we
have

|rU(qk )|!1 and
|r

2
U(qk )|

|rU(qk )|2
! 0

as k !1.
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Main Results: Langevin

Theorem (H., Mattingly ’17
2
)

Suppose U : (Rk )N ! [0,+1] is admissible. Then there exist

constants C ,� > 0 such that

�����E(q ,p)�(q(t),p(t))�
Z
�dµ

�����  CV(q ,p)e��t

for all t � 0, |�|  V. Here V ⇠ exp(�H), � < �.

• Explicit Lyapunov function. Proof is relatively simple.

• Can relax regularity to U 2 C
2(O) in construction.

• Construction does not need apriori knowledge of the invariant
measure.

• (Lu, Mattingly ’19) Extended to handle Coulomb interactions.

2
Comm. Pure Appl. Math 72 no. 10 pp. 2231-2255 (2019)
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Main Results

Let r⇣ = ⇣�1(rp ,rq � c(�)rp),c(�) =
�
2 +

q
�2

2 +1 and H
1
⇣,W denote

the space of weakly di↵erentiable functions f : X ! R with

kfk
2
⇣,W =

Z

X

f
2
W dµ+ |r⇣f |

2
dµ <1.

Theorem (Baudoin, H., Gordina ’19)

Suppose U is admissible. Then there is an explicit function

W 2 C
1(X ; [1,1))\ L1(µ) and explicit constants � ,⇣ > 0 such that

for all f 2 H
1
⇣,W with

R
X
f dµ= 0

kPt fk
2
⇣,W  e

��t
kfk

2
⇣,W 8t � 0.

Corollary

For singular interaction and polynomial confining well: � � c/(⇢_Np)

where ⇢ > 0 is a local Poincaré constant for µ and c > 0 and p � 1 are

independent of N.
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Heuristics and Proof



Propagation of dissipation

Goal: Need to see how energy dissipates.

If H(q ,p) = |p |
2

2 +U(q) and x0 = (q0,p0), then

Ex0H(q(t),p(t))�H(x0) = Ex0

Z
t

0
�� |p(s)|2+�kBTkN|                    {z                    }

LH(q(s),p(s))

ds .

Problem: H is NOT pointwise contractive.

• LH(q ,p) > 0 for |p |2 > 0 small enough. Is dissipation possible?
• Yes, but must be due to averaging e↵ects:

Ap2(x0, t ,R) :=
1
t

Z
t

0
|p(s)|21{H(q(s),p(s)) � R }ds

where for fixed x0, t and R � 1 we hope

1
2
Ap2(x0, t ,R)� 1.
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Averaging

Example: k = N = � = 1, U(q) = q
4

4 + 1
2q2 , q0 = 8,p0 = 1, T = 25

19



Averaging
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Figure 1: H(q(t),p(t)) and p
2(t)
2 plotted for t 2 [0,4]. We have

AH ((8,1),10,8) ⇡ 82.04 and 1
2Ap2((8,1),10,8) ⇡ 53.62
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Averaging (N = 2, T = 25, UE(q) = q
2, UI (q) =

1
|q |1.3

)

Time
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Figure 2: H(q(t),p(t)) and p
2(t)
2 plotted for t 2 [0,70]. We have

AH ((8,�8,1, .5),70,20) ⇡ 3.94 and 1
2Ap2((8,�8,1, .5),70,20) ⇡ 1.58
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Construction

Goal: Find  2 C2 with  = o(H) as H !1 and such that

L (q ,p)  � for H � R

for some constants  > 2�kBTkN ,R � 1.

Set V = H + and note V ⇡ H and

LV(q ,p)  �� |p |2 ��kBTkN for H � R .

• Great in and of itself already. Implies expected returns to center
of space are finite.

• Does not (immediately) imply geometric convergence, however!

• Existence of invariant measure (if we perturb � and noise
coe�cients within reason) follows immediately.
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Defining  

For simplicity: Set k = N = 1 and U(q) = q
↵ +1/q� for q > 0 where

↵ > 1,� > 0.

Note:

LH(q ,p) = ��p2+�kBT

 � for p
2
�
+�kBT

�
.

Conclusion: We don’t need  if p2 is large enough. Need to analyze
the behavior of process at large energies when p

2 is bounded (i.e. p2

is bounded while U(q) is large).
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Defining  

Note:

L= p@q �U
0(q)@p ��p@p +�kBT@

2
p

= p@q � (↵q
↵�1
� �q���1)@p ��p@p +�kBT@

2
p .

Large U asymptotics: U is large when q � 1 or when q ⇡ 0, so
consider the scalings

q = �Q1 and q = ��1Q0

for �� 1.

Q1 scaling:

L = ��1p@Q1 � (↵�
↵�1

Q
↵�1
1 �����1Q

���1
1 )@p ��p@p +�kBT@

2
p

⇡ �↵�↵�1Q↵�1
1 @p .
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Defining  

Recall the Q1 scaling:

L ⇡ �↵�↵�1Q↵�1
1 @p .

Q0 scaling:

L = �p@Q0 � (↵�
�↵+1

Q
↵�1
0 ���+1

Q
���1
0 )@p ��p@p +�kBT@

2
p

⇡ ��+1
Q
���1
0 @p .

Summary: If p2 is bounded and U(q) is large

L ⇡ �U
0(q)@p .

Solve:

�U
0(q)@p (q ,p) = �

=)  (q ,p) = 
p

U 0(q)
+ f(q).
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Faster return times?

Point: Should be the case thatW = e
�(H+ )

⇡ e
�H satisfies

LW(q ,p)  �cW +D

for some constants c ,D > 0.

Why? For H � R

LW(q ,p) = �W(q ,p)⇥

"
LV(q ,p)+ ��kBT |rp(V)|

2
#

 �W(q ,p)⇥

"
��kpk2 ��kBTkN + ��kBTkpk

2+ �o(1)
#

Conclusion: Exponentiate �V and control quadratic variation terms
by picking 0 < � < 1/(kBT).
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Concluding remarks

• For general k ,N , one can repeat the analysis to conclude

 =
p ·rU

|rU |2

is a viable perturbation.

• Why is it so easy? Finding the right equation to solve IS the
hardship because rU does not scale homogeneously with U .

• Relationship to ✏pq?  = ✏p U(q)
U 0(q) ⇡ ✏pq .

• Condition |r2U | dominated by |rU |2 for large U?

p@q

 


p

U 0(q)

!
= �p2 U

00(q)

(U 0(q))2

=) competition with ��p2 unless condition is satisfied.
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