Séminaire de Mathématiques Appliquées du CERMICS

Ergodicity and Lyapunov functions for Langevin dynamics with singular potentials

David Herzog (Iowa State University)

21 novembre 2019

Ergodicity and Lyapunov functions for Langevin dynamics with singular potentials

David P. Herzog

CERMICS Seminar Ecole des Ponts ParisTech November 21st, 2019

Familiar setting

An ODE on \mathbb{R}^d :

$$\frac{dx(t)}{dt} = b(x(t))$$
$$x(0) = x_0 \in \mathbb{R}^d.$$

$$\frac{dx(t)}{dt} = b(x(t))$$

x(0) = x₀ \in \mathbf{R}^d.

• Question: How do you show that solutions exist for all times $t \ge 0$?

$$\frac{dx(t)}{dt} = b(x(t))$$

x(0) = x₀ \in R^d.

• **Question**: How do you show that solutions exist for all times $t \ge 0$?

• First Answer: Apply iteration scheme and show it has a unique fixed point!

$$\frac{dx(t)}{dt} = b(x(t))$$

x(0) = x₀ \in R^d.

• **Question**: How do you show that solutions exist for all times $t \ge 0$?

• First Answer: Apply iteration scheme and show it has a unique fixed point!

• **Problem**: This assumes *b* is *globally Lipschitz*, i.e., there exists *C* > 0 such that

$$|b(x)-b(y)| \le C|x-y| \qquad \forall x,y \in \mathbb{R}^d.$$

$$\frac{dx(t)}{dt} = b(x(t))$$
$$x(0) = x_0 \in \mathbb{R}^d.$$

• **Question**: How do you show that solutions exist for all times $t \ge 0$?

• First Answer: Apply iteration scheme and show it has a unique fixed point!

• **Problem**: This assumes *b* is *globally Lipschitz*, i.e., there exists *C* > 0 such that

$$|b(x)-b(y)| \le C|x-y| \qquad \forall x,y \in \mathbb{R}^d.$$

• Solution. Find a Lyapunov function.

- Suppose that $V \in C^1(\mathbb{R}^d; [0, \infty))$ satisfies
 - $V(x) \to \infty$ as $|x| \to \infty$;
 - $b(x) \cdot \nabla V(x) \le CV(x)$ for some constant C > 0,

• Suppose that $V \in C^1(\mathbb{R}^d; [0, \infty))$ satisfies

•
$$V(x) \to \infty$$
 as $|x| \to \infty$;

• $b(x) \cdot \nabla V(x) \le CV(x)$ for some constant C > 0,

Then

$$\frac{d}{dt}V(x(t)) = b(x(t)) \cdot \nabla V(x(t)) \le CV(x(t)).$$

• Suppose that $V \in C^1(\mathbb{R}^d; [0, \infty))$ satisfies

•
$$V(x) \to \infty$$
 as $|x| \to \infty$;

• $b(x) \cdot \nabla V(x) \le CV(x)$ for some constant C > 0,

Then

$$\frac{d}{dt}V(x(t)) = b(x(t)) \cdot \nabla V(x(t)) \le CV(x(t)).$$

• Gronwall's inequality then implies

 $V(x(t)) \leq V(x_0)e^{Ct}.$

• Suppose that $V \in C^1(\mathbb{R}^d; [0, \infty))$ satisfies

•
$$V(x) \to \infty$$
 as $|x| \to \infty$;

• $b(x) \cdot \nabla V(x) \le CV(x)$ for some constant C > 0,

Then

$$\frac{d}{dt}V(x(t)) = b(x(t)) \cdot \nabla V(x(t)) \le CV(x(t)).$$

• Gronwall's inequality then implies

 $V(x(t)) \leq V(x_0)e^{Ct}.$

• Therefore if we can find such a *V*, we are done.

• General Lyapunov function theory is easy, but finding a Lyapunov function can be hard.

- General Lyapunov function theory is easy, but finding a Lyapunov function can be hard.
- Even still, there is no known algorithm or procedure which would produce a Lyapunov function for a given ODE.

- General Lyapunov function theory is easy, but finding a Lyapunov function can be hard.
- Even still, there is no known algorithm or procedure which would produce a Lyapunov function for a given ODE.
- Same problem exists in the context of *stochastic differential equations* AND every other type of dynamics.

- General Lyapunov function theory is easy, but finding a Lyapunov function can be hard.
- Even still, there is no known algorithm or procedure which would produce a Lyapunov function for a given ODE.
- Same problem exists in the context of *stochastic differential equations* AND every other type of dynamics.
- <u>Goal</u>: Make progress by studying *interesting* examples.

• General Lyapunov function theory is easy, but finding a Lyapunov function can be hard.

• Even still, there is no known algorithm or procedure which would produce a Lyapunov function for a given ODE.

• Same problem exists in the context of *stochastic differential equations* AND every other type of dynamics.

<u>Goal</u>: Make progress by studying *interesting* examples.

Singular stochastic Hamiltonian systems?:

• General Lyapunov function theory is easy, but finding a Lyapunov function can be hard.

• Even still, there is no known algorithm or procedure which would produce a Lyapunov function for a given ODE.

• Same problem exists in the context of *stochastic differential equations* AND every other type of dynamics.

<u>Goal</u>: Make progress by studying *interesting* examples.

Singular stochastic Hamiltonian systems?: Noise in system forces particles to interact causing intermittent high-energy excursions.

SDE on $(\mathbf{R}^k)^N \times (\mathbf{R}^k)^N$:

dq(t) = p(t) dt $dp(t) = -\gamma p(t) dt - \nabla U(q(t)) dt + \sqrt{2\gamma T} dB(t).$

- $q(t) = (q_1(t), \dots, q_N(t)), p(t) = (p_1(t), \dots, p_N(t)) \in (\mathbb{R}^k)^N$ are the position and momentum vectors;
- *U* is the potential function; γ , *T* > 0 are constants.
- B_t is a standard Brownian motion on $(\mathbb{R}^k)^N$.

SDE on $(\mathbf{R}^k)^N \times (\mathbf{R}^k)^N$:

dq(t) = p(t) dt $dp(t) = -\gamma p(t) dt - \nabla U(q(t)) dt + \sqrt{2\gamma T} dB(t).$

- $q(t) = (q_1(t), \dots, q_N(t)), p(t) = (p_1(t), \dots, p_N(t)) \in (\mathbb{R}^k)^N$ are the position and momentum vectors;
- *U* is the potential function; γ , *T* > 0 are constants.
- B_t is a standard Brownian motion on $(\mathbb{R}^k)^N$.

Main Assumption: *U* has singularities (e.g. Lennard-Jones).

SDE on $(\mathbf{R}^k)^N \times (\mathbf{R}^k)^N$:

dq(t) = p(t) dt $dp(t) = -\gamma p(t) dt - \nabla U(q(t)) dt + \sqrt{2\gamma T} dB(t).$

- $q(t) = (q_1(t), \dots, q_N(t)), p(t) = (p_1(t), \dots, p_N(t)) \in (\mathbb{R}^k)^N$ are the position and momentum vectors;
- *U* is the potential function; γ , *T* > 0 are constants.
- B_t is a standard Brownian motion on $(\mathbb{R}^k)^N$.

Main Assumption: U has singularities (e.g. Lennard-Jones).

Main Questions: Relaxation to Gibbs measure? If so, in what sense and how fast?

SDE on $(\mathbf{R}^k)^N \times (\mathbf{R}^k)^N$:

dq(t) = p(t) dt $dp(t) = -\gamma p(t) dt - \nabla U(q(t)) dt + \sqrt{2\gamma T} dB(t).$

- $q(t) = (q_1(t), \dots, q_N(t)), p(t) = (p_1(t), \dots, p_N(t)) \in (\mathbb{R}^k)^N$ are the position and momentum vectors;
- *U* is the potential function; γ , *T* > 0 are constants.
- B_t is a standard Brownian motion on $(\mathbb{R}^k)^N$.

Main Assumption: U has singularities (e.g. Lennard-Jones).

Main Questions: Relaxation to Gibbs measure? If so, in what sense and how fast?

Point: Requires nontrivial understanding of how dissipation spreads through the system.

Langevin equation:

$$\ddot{q}(t) = -\gamma \dot{q}(t) - \nabla U(q(t)) + \sqrt{2\gamma T} \dot{B}(t)$$

• Model for particle movement in fluids. Particles experience friction $\left(-\gamma \dot{q}(t)\right)$ and thermal fluctuations $\left(\sqrt{2\gamma k_B T} \dot{B}(t)\right)$. U encodes potential forces (e.g. presence of a wells/walls) and particle interactions.

Langevin equation:

$$\ddot{q}(t) = -\gamma \dot{q}(t) - \nabla U(q(t)) + \sqrt{2\gamma T} \dot{B}(t)$$

- Model for particle movement in fluids. Particles experience friction $\left(-\gamma \dot{q}(t)\right)$ and thermal fluctuations $\left(\sqrt{2\gamma k_B T} \dot{B}(t)\right)$. *U* encodes potential forces (e.g. presence of a wells/walls) and particle interactions.
- Molecular dynamics simulation and Gibbs sampling:

$$\mu(dpdq) \propto e^{-\beta H(q,p)} dpdq, \qquad H(q,p) = \frac{|p|^2}{2} + U(q)$$

and $\beta = 1/T$.

$$U(q) = \sum_{i=1}^{N} U_{\mathcal{E}}(q_i) + \sum_{i < j} U_{\mathcal{I}}(q_i - q_j)$$

environmental forces

interaction forces

Common examples:

(1) $U_{\mathcal{E}}(x) = a|x|^{2j} + p_{2j-1}(x); \quad U_{\mathcal{I}}(x) = 0 \text{ or } U_{\mathcal{I}}(x) \sim b|x|^{\ell}.$

Common examples:

(1)
$$U_{\mathcal{E}}(x) = a|x|^{2j} + p_{2j-1}(x); \quad U_{\mathcal{I}}(x) = 0 \text{ or } U_{\mathcal{I}}(x) \sim b|x|^{\ell}.$$

(2)
$$U_{\mathcal{E}}(x) = a|x|^{2j} + p_{2j-1}(x); \quad U_{\mathcal{I}}(x) = \frac{b}{|x|^{12}} - \frac{c}{|x|^6}.$$

$$U(q) = \sum_{i=1}^{N} U_{\mathcal{E}}(q_i) + \sum_{i < j} U_{\mathcal{I}}(q_i - q_j)$$

environmental forces interaction forces

Common examples:

(1)
$$U_{\mathcal{E}}(x) = a|x|^{2j} + p_{2j-1}(x); \quad U_{\mathcal{I}}(x) = 0 \text{ or } U_{\mathcal{I}}(x) \sim b|x|^{\ell}.$$

(2)
$$U_{\mathcal{E}}(x) = a|x|^{2j} + p_{2j-1}(x); \quad U_{\mathcal{I}}(x) = \frac{b}{|x|^{12}} - \frac{c}{|x|^6}.$$

(3)
$$U_{\mathcal{E}}(x) = \frac{a}{||x| - b|^c}; \quad U_{\mathcal{I}}(x) = \frac{b}{|x|^{12}} - \frac{c}{|x|^6}.$$

$$U(q) = \sum_{i=1}^{N} U_{\mathcal{E}}(q_i) + \sum_{i < j} U_{\mathcal{I}}(q_i - q_j)$$

environmental forces interaction forces

Common examples:

(1)
$$U_{\mathcal{E}}(x) = a|x|^{2j} + p_{2j-1}(x); \quad U_{\mathcal{I}}(x) = 0 \text{ or } U_{\mathcal{I}}(x) \sim b|x|^{\ell}.$$

(2)
$$U_{\mathcal{E}}(x) = a|x|^{2j} + p_{2j-1}(x); \quad U_{\mathcal{I}}(x) = \frac{b}{|x|^{12}} - \frac{c}{|x|^6}.$$

(3)
$$U_{\mathcal{E}}(x) = \frac{a}{||x| - b|^c}; \quad U_{\mathcal{I}}(x) = \frac{b}{|x|^{12}} - \frac{c}{|x|^6}.$$

$$U(q) = \sum_{i=1}^{N} U_{\mathcal{E}}(q_i) + \sum_{i < j} U_{\mathcal{I}}(q_i - q_j)$$

Common examples:

(1)
$$U_{\mathcal{E}}(x) = a|x|^{2j} + p_{2j-1}(x); \quad U_{\mathcal{I}}(x) = 0 \text{ or } U_{\mathcal{I}}(x) \sim b|x|^{\ell}$$

(2) $U_{\mathcal{E}}(x) = a|x|^{2j} + p_{2j-1}(x); \quad U_{\mathcal{I}}(x) = \frac{b}{|x|^{12}} - \frac{c}{|x|^6}.$

(3)
$$U_{\mathcal{E}}(x) = \frac{a}{||x| - b|^c}; \quad U_{\mathcal{I}}(x) = \frac{b}{|x|^{12}} - \frac{c}{|x|^6}.$$

<u>Point</u>: Mathematics literature almost exclusively restricted to potentials like those in (1). How does one handle potentials like (2) and (3)? How do (1)-(3) fit together? How is the dynamics different?

Example:
$$k = N = \gamma = 1$$
, $U(q) = \frac{q^4}{4} + \frac{1}{2q^2}$, $q_0 = 8$, $p_0 = 1$, $T = 25$

Example: $k = 1, N = 2, \gamma = 1, T = 25, U_Q(q) = q^2, U_I(q) = \frac{1}{|q|^{1.3}}$

Example: $k = 1, N = 3, \gamma = 1, T = 25, U_{\mathcal{E}}(q) = q^2, U_{\mathcal{I}}(q) = \frac{1}{|q|^{1.3}}$

Theorem (Mattingly, Stuart, Higham '02) Suppose that $U \in C^{\infty}((\mathbb{R}^k)^N; (0, \infty))$ satisfies the global bound

$$\frac{1}{2}\nabla U(q) \cdot q \ge \beta U(q) + \gamma^2 \frac{\beta(2-\beta)}{8(1-\beta)} |q|^2 - \alpha$$

for some $\alpha > 0$ and $\beta \in (0, 1)$. Then for every $\ell \ge 1$ there exists $C = C(\ell) > 0$, $\lambda = \lambda(\ell) > 0$ such that

$$\left|\mathsf{E}_{(q,p)}\phi(q(t),p(t))-\int\phi\,d\mu\right|\leq CV(q,p)^{\ell}e^{-\lambda t}$$

for all $t \ge 0$, $|\phi| \le V^{\ell}$. Here $V \sim H + 1$.

Theorem (Mattingly, Stuart, Higham '02) Suppose that $U \in C^{\infty}((\mathbb{R}^k)^N; (0, \infty))$ satisfies the global bound

$$\frac{1}{2}\nabla U(q) \cdot q \ge \beta U(q) + \gamma^2 \frac{\beta(2-\beta)}{8(1-\beta)} |q|^2 - \alpha$$

for some $\alpha > 0$ and $\beta \in (0, 1)$. Then for every $\ell \ge 1$ there exists $C = C(\ell) > 0$, $\lambda = \lambda(\ell) > 0$ such that

$$\left|\mathsf{E}_{(q,p)}\phi(q(t),p(t))-\int\phi\,d\mu\right|\leq CV(q,p)^{\ell}\,e^{-\lambda t}$$

for all $t \ge 0$, $|\phi| \le V^{\ell}$. Here $V \sim H + 1$.

• Strengthens work of Tropper ('77).

Theorem (Mattingly, Stuart, Higham '02) Suppose that $U \in C^{\infty}((\mathbb{R}^k)^N; (0, \infty))$ satisfies the global bound

$$\frac{1}{2}\nabla U(q) \cdot q \ge \beta U(q) + \gamma^2 \frac{\beta(2-\beta)}{8(1-\beta)} |q|^2 - \alpha$$

for some $\alpha > 0$ and $\beta \in (0, 1)$. Then for every $\ell \ge 1$ there exists $C = C(\ell) > 0$, $\lambda = \lambda(\ell) > 0$ such that

$$\left|\mathsf{E}_{(q,p)}\phi(q(t),p(t))-\int\phi\,d\mu\right|\leq CV(q,p)^{\ell}\,\mathrm{e}^{-\lambda t}$$

for all $t \ge 0$, $|\phi| \le V^{\ell}$. Here $V \sim H + 1$.

- Strengthens work of Tropper ('77).
- (Talay '02) Similar conclusion provided U ∈ C[∞]((R^k)^N; (0,∞)) is essentially a polynomial.
Point: In both works, there is an explicit Lyapunov function *V* which satisfies

$$V(q,p) = H(q,p) + \psi(q,p)$$

where $\psi(q, p) = \epsilon p \cdot q$, $\epsilon > 0$ small.

Point: In both works, there is an explicit Lyapunov function *V* which satisfies

$$V(q,p) = H(q,p) + \psi(q,p)$$

where $\psi(q, p) = \epsilon p \cdot q$, $\epsilon > 0$ small.

Theorem (Villani '06) If $U \in C^2((\mathbb{R}^k)^N; (0, \infty))$ grows at least linearly at infinity and satisfies $|\nabla^2 U| \le C(1 + |\nabla U|)$, then there exist $C, \lambda > 0$ for which

$$\left\| \mathsf{E}_{(q,p)}\phi(q(t),p(t)) - \int \phi \, d\mu \right\|_{H^{1}(\mu)} \le C e^{-\lambda t} \|\phi\|_{H^{1}(\mu)}$$

for all $t \ge 0$, $\phi \in H^1(\mu)$.

Point: In both works, there is an explicit Lyapunov function *V* which satisfies

$$V(q,p) = H(q,p) + \psi(q,p)$$

where $\psi(q, p) = \epsilon p \cdot q$, $\epsilon > 0$ small.

Theorem (Villani '06) If $U \in C^2((\mathbb{R}^k)^N; (0, \infty))$ grows at least linearly at infinity and satisfies $|\nabla^2 U| \le C(1 + |\nabla U|)$, then there exist $C, \lambda > 0$ for which

$$\left\| \mathsf{E}_{(q,p)} \phi(q(t), p(t)) - \int \phi \, d\mu \right\|_{H^{1}(\mu)} \le C e^{-\lambda t} \|\phi\|_{H^{1}(\mu)}$$

for all $t \ge 0$, $\phi \in H^1(\mu)$.

• Builds off/strengthens work of Helffer and Nier ('05), Hérau ('06).

• Hypocoercivity versus Lyapunov approach. Makes use of existence of an invariant measure, handles a different norm.

- Hypocoercivity versus Lyapunov approach. Makes use of existence of an invariant measure, handles a different norm.
- Talay issues challenge in '07 at AIM conference on Stochastic Simulation: Singular, Lennard-Jones U?

- Hypocoercivity versus Lyapunov approach. Makes use of existence of an invariant measure, handles a different norm.
- Talay issues challenge in '07 at AIM conference on Stochastic Simulation: Singular, Lennard-Jones U?
- (Conrad, Grothaus '10 & '15) Under appropriate growth of U and assuming

$$|\nabla^2 U| \le C (1 + |\nabla U|^{\alpha})$$

for some C > 0 and $\alpha \in [1, 2)$, then there exists a constant D > 0 such that for all t > 0, $\phi \in L^2(\mu)$

$$\int \left(\frac{1}{t}\int_0^t \bar{\phi}(q(s),p(s))\,ds\right)^2 d\mu \leq \frac{D}{t} \|\bar{\phi}\|_{L^2(\mu)}^2.$$

In the above, $\bar{\phi} = \phi - \int \phi \, d\mu$.

• (Dolbeault, Mouhot, Schmeiser '10) New method for proving Hypocoercivity, nice parabolic scaling heuristic. Result does not apply in singular *U* case.

- (Dolbeault, Mouhot, Schmeiser '10) New method for proving Hypocoercivity, nice parabolic scaling heuristic. Result does not apply in singular *U* case.
- (F. Baudoin '13) Establishes connection between hypocoercivity and Gamma Calculus of Bakry-Emery ('85).

- (Dolbeault, Mouhot, Schmeiser '10) New method for proving Hypocoercivity, nice parabolic scaling heuristic. Result does not apply in singular *U* case.
- (F. Baudoin '13) Establishes connection between hypocoercivity and Gamma Calculus of Bakry-Emery ('85).
- (Cattiaux, Guillin, Monmarché, Zhang '17) Geometric convergence to equilibrium in weighted $L^2(\mu)$ under

 $|\nabla^2 U| \le C U^{2\eta} \le C' U^{2\eta+1} \le |\nabla U|^2.$

- (Dolbeault, Mouhot, Schmeiser '10) New method for proving Hypocoercivity, nice parabolic scaling heuristic. Result does not apply in singular *U* case.
- (F. Baudoin '13) Establishes connection between hypocoercivity and Gamma Calculus of Bakry-Emery ('85).
- (Cattiaux, Guillin, Monmarché, Zhang '17) Geometric convergence to equilibrium in weighted $L^2(\mu)$ under

$$|\nabla^2 U| \leq C U^{2\eta} \leq C' U^{2\eta+1} \leq |\nabla U|^2.$$

• Numerous other results:

- (Dolbeault, Mouhot, Schmeiser '10) New method for proving Hypocoercivity, nice parabolic scaling heuristic. Result does not apply in singular *U* case.
- (F. Baudoin '13) Establishes connection between hypocoercivity and Gamma Calculus of Bakry-Emery ('85).
- (Cattiaux, Guillin, Monmarché, Zhang '17) Geometric convergence to equilibrium in weighted $L^2(\mu)$ under

$$|\nabla^2 U| \leq C U^{2\eta} \leq C' U^{2\eta+1} \leq |\nabla U|^2.$$

- Numerous other results:
 - A. Eberle, A. Guillen, R. Zimmer (Coupling methods);

- (Dolbeault, Mouhot, Schmeiser '10) New method for proving Hypocoercivity, nice parabolic scaling heuristic. Result does not apply in singular *U* case.
- (F. Baudoin '13) Establishes connection between hypocoercivity and Gamma Calculus of Bakry-Emery ('85).
- (Cattiaux, Guillin, Monmarché, Zhang '17) Geometric convergence to equilibrium in weighted $L^2(\mu)$ under

$$|\nabla^2 U| \leq C U^{2\eta} \leq C' U^{2\eta+1} \leq |\nabla U|^2.$$

- Numerous other results:
 - A. Eberle, A. Guillen, R. Zimmer (Coupling methods);
 - G. Stoltz, B. Leimkuhler, M. Sachs (LD and adaptive Langevin);

- (Dolbeault, Mouhot, Schmeiser '10) New method for proving Hypocoercivity, nice parabolic scaling heuristic. Result does not apply in singular *U* case.
- (F. Baudoin '13) Establishes connection between hypocoercivity and Gamma Calculus of Bakry-Emery ('85).
- (Cattiaux, Guillin, Monmarché, Zhang '17) Geometric convergence to equilibrium in weighted $L^2(\mu)$ under

$$|\nabla^2 U| \leq C U^{2\eta} \leq C' U^{2\eta+1} \leq |\nabla U|^2.$$

- Numerous other results:
 - A. Eberle, A. Guillen, R. Zimmer (Coupling methods);
 - G. Stoltz, B. Leimkuhler, M. Sachs (LD and adaptive Langevin);
 - (absence of friction in some directions) by J-P Eckmann, M. Hairer, L. Rey-Bellet, Mattingly, N. Cuneo.

- (Dolbeault, Mouhot, Schmeiser '10) New method for proving Hypocoercivity, nice parabolic scaling heuristic. Result does not apply in singular *U* case.
- (F. Baudoin '13) Establishes connection between hypocoercivity and Gamma Calculus of Bakry-Emery ('85).
- (Cattiaux, Guillin, Monmarché, Zhang '17) Geometric convergence to equilibrium in weighted $L^2(\mu)$ under

$$|\nabla^2 U| \leq C U^{2\eta} \leq C' U^{2\eta+1} \leq |\nabla U|^2.$$

- Numerous other results:
 - A. Eberle, A. Guillen, R. Zimmer (Coupling methods);
 - G. Stoltz, B. Leimkuhler, M. Sachs (LD and adaptive Langevin);
 - (absence of friction in some directions) by J-P Eckmann, M. Hairer, L. Rey-Bellet, Mattingly, N. Cuneo.

- (Dolbeault, Mouhot, Schmeiser '10) New method for proving Hypocoercivity, nice parabolic scaling heuristic. Result does not apply in singular *U* case.
- (F. Baudoin '13) Establishes connection between hypocoercivity and Gamma Calculus of Bakry-Emery ('85).
- (Cattiaux, Guillin, Monmarché, Zhang '17) Geometric convergence to equilibrium in weighted $L^2(\mu)$ under

$$|\nabla^2 U| \leq C U^{2\eta} \leq C' U^{2\eta+1} \leq |\nabla U|^2.$$

- Numerous other results:
 - A. Eberle, A. Guillen, R. Zimmer (Coupling methods);
 - G. Stoltz, B. Leimkuhler, M. Sachs (LD and adaptive Langevin);
 - (absence of friction in some directions) by J-P Eckmann, M. Hairer, L. Rey-Bellet, Mattingly, N. Cuneo.

Question: Does a Lyapunov function exist in the singular case ? Can we improve convergence results? How does it all fit together?

Theorem (Cooke, H., Mattingly, McKinley, Schmidler '17¹) Suppose N = k = 1 and $U : (0, \infty) \rightarrow (0, \infty)$ is of the form

$$U(q) = \sum_{i=1}^{J} \beta_i q^{lpha_i}$$

where $\beta_1, \beta_J > 0, \alpha_1 > \alpha_2 > \cdots > \alpha_J$, and $\alpha_1 > 2, \alpha_J < 0$. Then there exist constants $C, \lambda > 0$ such that

$$\left|\mathsf{E}_{(q,p)}\phi(q(t),p(t))-\int\phi\,d\mu\right|\leq CV(q,p)e^{-\lambda t}$$

for all $t \ge 0$, $|\phi| \le V$. Here $V \sim \exp(\delta H)$ where $\delta < \beta$.

¹Comm. Math. Sci. **15** no. 7 pp. 1987-2025 (2017)

Theorem (Cooke, H., Mattingly, McKinley, Schmidler '17¹) Suppose N = k = 1 and $U : (0, \infty) \rightarrow (0, \infty)$ is of the form

$$U(q) = \sum_{i=1}^{J} \beta_i q^{lpha_i}$$

where β_1 , $\beta_J > 0$, $\alpha_1 > \alpha_2 > \cdots > \alpha_J$, and $\alpha_1 > 2$, $\alpha_J < 0$. Then there exist constants *C*, $\lambda > 0$ such that

$$\left|\mathsf{E}_{(q,p)}\phi(q(t),p(t))-\int\phi\,d\mu\right|\leq CV(q,p)e^{-\lambda t}$$

for all $t \ge 0$, $|\phi| \le V$. Here $V \sim \exp(\delta H)$ where $\delta < \beta$.

• Result makes use of an explicit construction of a Lyapunov function of the form $V = H + \psi$, $\psi = o(H)$ as $H \rightarrow \infty$.

¹Comm. Math. Sci. **15** no. 7 pp. 1987-2025 (2017)

Theorem (Cooke, H., Mattingly, McKinley, Schmidler '17¹) Suppose N = k = 1 and $U : (0, \infty) \rightarrow (0, \infty)$ is of the form

$$U(q) = \sum_{i=1}^{J} \beta_i q^{lpha_i}$$

where $\beta_1, \beta_J > 0$, $\alpha_1 > \alpha_2 > \cdots > \alpha_J$, and $\alpha_1 > 2, \alpha_J < 0$. Then there exist constants *C*, $\lambda > 0$ such that

$$\left|\mathsf{E}_{(q,p)}\phi(q(t),p(t))-\int\phi\,d\mu\right|\leq CV(q,p)e^{-\lambda t}$$

for all $t \ge 0$, $|\phi| \le V$. Here $V \sim \exp(\delta H)$ where $\delta < \beta$.

- Result makes use of an explicit construction of a Lyapunov function of the form $V = H + \psi$, $\psi = o(H)$ as $H \rightarrow \infty$.
- Works for two particles in \mathbb{R}^1 . What about N particles on \mathbb{R}^k ?

¹Comm. Math. Sci. **15** no. 7 pp. 1987-2025 (2017)

Definition Let $U : (\mathbb{R}^k)^N \to [0, +\infty]$ and $\mathcal{O} = \{q : U(q) < \infty\}$. We call U admissible if

- O is non-empty, open, connected. Moreover, for each R > 0 the set {q : U(q) < R} has compact closure in (R^k)^N.
- $U \in C^{\infty}(\mathcal{O})$ and $\int_{\mathcal{O}} e^{-\beta U(q)} dq < \infty$.
- For any sequence $\{q_k\} \subset \mathcal{O}$ for which $U(q_k) \to \infty$ as $k \to \infty$ we have

$$|\nabla U(q_k)| \to \infty$$
 and $\frac{|\nabla^2 U(q_k)|}{|\nabla U(q_k)|^2} \to 0$

as $k \to \infty$.

Theorem (H., Mattingly '17²) Suppose $U : (\mathbb{R}^k)^N \to [0, +\infty]$ is admissible. Then there exist constants $C, \lambda > 0$ such that

$$\left|\mathsf{E}_{(q,p)}\phi(q(t),p(t))-\int\phi\,d\mu\right|\leq CV(q,p)e^{-\lambda t}$$

for all $t \ge 0$, $|\phi| \le V$. Here $V \sim \exp(\delta H)$, $\delta < \beta$.

²Comm. Pure Appl. Math **72** no. 10 pp. 2231-2255 (2019)

Theorem (H., Mattingly '17²) Suppose $U : (\mathbb{R}^k)^N \to [0, +\infty]$ is admissible. Then there exist constants $C, \lambda > 0$ such that

$$\left|\mathsf{E}_{(q,p)}\phi(q(t),p(t))-\int\phi\,d\mu\right|\leq CV(q,p)e^{-\lambda t}$$

for all $t \ge 0$, $|\phi| \le V$. Here $V \sim \exp(\delta H)$, $\delta < \beta$.

- Explicit Lyapunov function. Proof is relatively simple.
- Can relax regularity to $U \in C^2(\mathcal{O})$ in construction.
- Construction does not need apriori knowledge of the invariant measure.
- (Lu, Mattingly '19) Extended to handle Coulomb interactions.

²Comm. Pure Appl. Math **72** no. 10 pp. 2231-2255 (2019)

Let $\nabla_{\zeta} = \zeta^{-1}(\nabla_p, \nabla_q - c(\gamma)\nabla_p), c(\gamma) = \frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{2} + 1}$ and $H^1_{\zeta, W}$ denote the space of weakly differentiable functions $f : X \to \mathbb{R}$ with

$$\|f\|_{\zeta,W}^2 = \int_X f^2 W \, d\mu + |\nabla_{\zeta} f|^2 \, d\mu < \infty.$$

Let $\nabla_{\zeta} = \zeta^{-1}(\nabla_p, \nabla_q - c(\gamma)\nabla_p), c(\gamma) = \frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{2} + 1}$ and $H^1_{\zeta, W}$ denote the space of weakly differentiable functions $f : X \to \mathbb{R}$ with

$$\|f\|_{\zeta,W}^2 = \int_X f^2 W \, d\mu + |\nabla_{\zeta} f|^2 \, d\mu < \infty.$$

Theorem (Baudoin, H., Gordina '19) Suppose U is admissible. Then there is an explicit function $W \in C^{\infty}(X; [1, \infty)) \cap L^{1}(\mu)$ and explicit constants $\sigma, \zeta > 0$ such that for all $f \in H^{1}_{\zeta, W}$ with $\int_{X} f d\mu = 0$

$$\|P_t f\|_{\zeta,W}^2 \le e^{-\sigma t} \|f\|_{\zeta,W}^2 \qquad \forall t \ge 0$$

Let $\nabla_{\zeta} = \zeta^{-1}(\nabla_p, \nabla_q - c(\gamma)\nabla_p), c(\gamma) = \frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{2} + 1}$ and $H^1_{\zeta, W}$ denote the space of weakly differentiable functions $f : X \to \mathbb{R}$ with

$$\|f\|_{\zeta,W}^2 = \int_X f^2 W \, d\mu + |\nabla_{\zeta} f|^2 \, d\mu < \infty.$$

Theorem (Baudoin, H., Gordina '19) Suppose U is admissible. Then there is an explicit function $W \in C^{\infty}(X; [1, \infty)) \cap L^{1}(\mu)$ and explicit constants $\sigma, \zeta > 0$ such that for all $f \in H^{1}_{\zeta, W}$ with $\int_{X} f d\mu = 0$

$$||P_t f||^2_{\zeta,W} \le e^{-\sigma t} ||f||^2_{\zeta,W} \qquad \forall t \ge 0.$$

Corollary

For singular interaction and polynomial confining well: $\sigma \ge c/(\rho \lor N^p)$ where $\rho > 0$ is a local Poincaré constant for μ and c > 0 and $p \ge 1$ are independent of N.

Heuristics and Proof

Goal: Need to see how energy dissipates.

Goal: Need to see how energy dissipates.

If
$$H(q,p) = \frac{|p|^2}{2} + U(q)$$
 and $x_0 = (q_0, p_0)$, then

$$E_{x_0}H(q(t), p(t)) - H(x_0) = E_{x_0} \int_0^t \underbrace{-\gamma |p(s)|^2 + \gamma k_B TkN}_{\mathcal{L}H(q(s), p(s))} ds.$$

Goal: Need to see how energy dissipates.

If
$$H(q,p) = \frac{|p|^2}{2} + U(q)$$
 and $x_0 = (q_0, p_0)$, then

$$E_{x_0}H(q(t), p(t)) - H(x_0) = E_{x_0} \int_0^t \underbrace{-\gamma |p(s)|^2 + \gamma k_B T k N}_{\mathcal{L}H(q(s), p(s))} ds.$$

Problem: *H* is NOT pointwise contractive.

- $\mathcal{L}H(q,p) > 0$ for $|p|^2 > 0$ small enough. Is dissipation possible?
- Yes, but must be due to averaging effects:

$$A_{p^2}(x_0, t, R) := \frac{1}{t} \int_0^t |p(s)|^2 \mathbf{1}\{H(q(s), p(s)) \ge R\} ds$$

where for fixed x_0 , t and $R \gg 1$ we hope

$$\frac{1}{2}A_{p^2}(x_0, t, R) \gg 1.$$

Averaging

Example:
$$k = N = \gamma = 1$$
, $U(q) = \frac{q^4}{4} + \frac{1}{2q^2}$, $q_0 = 8$, $p_0 = 1$, $T = 25$

Figure 1: H(q(t), p(t)) and $\frac{p^2(t)}{2}$ plotted for $t \in [0, 4]$. We have $A_H((8, 1), 10, 8) \approx 82.04$ and $\frac{1}{2}A_{p^2}((8, 1), 10, 8) \approx 53.62$

Averaging (N = 2, T = 25, U
$$_{\mathcal{E}}(q) = q^2$$
, U $_{\mathcal{I}}(q) = rac{1}{|q|^{1.3}}$)

Figure 2: H(q(t), p(t)) and $\frac{p^2(t)}{2}$ plotted for $t \in [0, 70]$. We have $A_H((8, -8, 1, .5), 70, 20) \approx 3.94$ and $\frac{1}{2}A_{p^2}((8, -8, 1, .5), 70, 20) \approx 1.58$

Goal: Find $\psi \in C^2$ with $\psi = o(H)$ as $H \to \infty$ and such that

 $\mathcal{L}\psi(q,p) \leq -\kappa$ for $H \geq R$

for some constants $\kappa > 2\gamma k_B T k N, R \gg 1$.

Goal: Find $\psi \in C^2$ with $\psi = o(H)$ as $H \to \infty$ and such that

 $\mathcal{L}\psi(q,p) \leq -\kappa$ for $H \geq R$

for some constants $\kappa > 2\gamma k_B T k N, R \gg 1$.

Set $V = H + \psi$ and note $V \approx H$ and

$$\mathcal{L}V(q,p) \leq -\gamma |p|^2 - \gamma k_B T k N$$
 for $H \geq R$.

Goal: Find $\psi \in C^2$ with $\psi = o(H)$ as $H \to \infty$ and such that

 $\mathcal{L}\psi(q,p) \leq -\kappa$ for $H \geq R$

for some constants $\kappa > 2\gamma k_B T k N, R \gg 1$.

Set $V = H + \psi$ and note $V \approx H$ and

$$\mathcal{L}V(q,p) \leq -\gamma |p|^2 - \gamma k_B T k N$$
 for $H \geq R$.

• Great in and of itself already. Implies expected returns to center of space are finite.

Goal: Find $\psi \in C^2$ with $\psi = o(H)$ as $H \to \infty$ and such that

 $\mathcal{L}\psi(q,p) \leq -\kappa$ for $H \geq R$

for some constants $\kappa > 2\gamma k_B T k N, R \gg 1$.

Set $V = H + \psi$ and note $V \approx H$ and

$$\mathcal{L}V(q,p) \leq -\gamma |p|^2 - \gamma k_B T k N$$
 for $H \geq R$.

- Great in and of itself already. Implies expected returns to center of space are finite.
- Does not (immediately) imply geometric convergence, however!

Goal: Find $\psi \in C^2$ with $\psi = o(H)$ as $H \to \infty$ and such that

 $\mathcal{L}\psi(q,p) \leq -\kappa$ for $H \geq R$

for some constants $\kappa > 2\gamma k_B T k N, R \gg 1$.

Set $V = H + \psi$ and note $V \approx H$ and

$$\mathcal{L}V(q,p) \leq -\gamma |p|^2 - \gamma k_B T k N$$
 for $H \geq R$.

- Great in and of itself already. Implies expected returns to center of space are finite.
- Does not (immediately) imply geometric convergence, however!
- Existence of invariant measure (if we perturb γ and noise coefficients within reason) follows immediately.
Note:

$$\mathcal{L}H(q,p) = -\gamma p^2 + \gamma k_B T$$

Note:

$$\mathcal{L}H(q,p) = -\gamma p^2 + \gamma k_B T$$

$$\leq -\kappa \quad \text{for} \quad p^2 \geq \frac{\kappa + \gamma k_B T}{\gamma}.$$

Note:

$$\mathcal{L}H(q,p) = -\gamma p^2 + \gamma k_B T$$

$$\leq -\kappa \quad \text{for} \quad p^2 \geq \frac{\kappa + \gamma k_B T}{\gamma}.$$

Conclusion: We don't need ψ if p^2 is large enough. Need to analyze the behavior of process at large energies when p^2 is bounded (i.e. p^2 is bounded while U(q) is large).

Note:

$$\mathcal{L} = p\partial_q - U'(q)\partial_p - \gamma p\partial_p + \gamma k_B T \partial_p^2$$

= $p\partial_q - (\alpha q^{\alpha-1} - \beta q^{-\beta-1})\partial_p - \gamma p\partial_p + \gamma k_B T \partial_p^2$

Note:

$$\mathcal{L} = p\partial_q - U'(q)\partial_p - \gamma p\partial_p + \gamma k_B T \partial_p^2$$

= $p\partial_q - (\alpha q^{\alpha-1} - \beta q^{-\beta-1})\partial_p - \gamma p\partial_p + \gamma k_B T \partial_p^2$

Large U asymptotics: *U* is large when $q \gg 1$ or when $q \approx 0$, so consider the scalings

$$q = \lambda Q_{\infty}$$
 and $q = \lambda^{-1} Q_0$

for $\lambda \gg 1$.

Note:

$$\mathcal{L} = p\partial_q - U'(q)\partial_p - \gamma p\partial_p + \gamma k_B T \partial_p^2$$

= $p\partial_q - (\alpha q^{\alpha-1} - \beta q^{-\beta-1})\partial_p - \gamma p\partial_p + \gamma k_B T \partial_p^2$

Large U asymptotics: *U* is large when $q \gg 1$ or when $q \approx 0$, so consider the scalings

$$q = \lambda Q_{\infty}$$
 and $q = \lambda^{-1} Q_0$

for $\lambda \gg 1$.

 Q_{∞} scaling:

$$\mathcal{L} = \lambda^{-1} p \partial_{Q_{\infty}} - (\alpha \lambda^{\alpha - 1} Q_{\infty}^{\alpha - 1} - \lambda^{-\beta - 1} Q_{\infty}^{-\beta - 1}) \partial_{p} - \gamma p \partial_{p} + \gamma k_{B} T \partial_{p}^{2}$$

Note:

$$\mathcal{L} = p\partial_q - U'(q)\partial_p - \gamma p\partial_p + \gamma k_B T \partial_p^2$$

= $p\partial_q - (\alpha q^{\alpha-1} - \beta q^{-\beta-1})\partial_p - \gamma p\partial_p + \gamma k_B T \partial_p^2$

Large U asymptotics: *U* is large when $q \gg 1$ or when $q \approx 0$, so consider the scalings

$$q = \lambda Q_{\infty}$$
 and $q = \lambda^{-1} Q_0$

for $\lambda \gg 1$.

 Q_{∞} scaling:

$$\mathcal{L} = \lambda^{-1} p \partial_{Q_{\infty}} - (\alpha \lambda^{\alpha - 1} Q_{\infty}^{\alpha - 1} - \lambda^{-\beta - 1} Q_{\infty}^{-\beta - 1}) \partial_{p} - \gamma p \partial_{p} + \gamma k_{B} T \partial_{p}^{2}$$

$$\approx -\alpha \lambda^{\alpha - 1} Q_{\infty}^{\alpha - 1} \partial_{p}.$$

Recall the Q_{∞} scaling:

$$\mathcal{L} \approx -\alpha \lambda^{\alpha - 1} Q_{\infty}^{\alpha - 1} \partial_{p}.$$

 Q_0 scaling:

$$\mathcal{L} = \lambda p \partial_{Q_0} - (\alpha \lambda^{-\alpha+1} Q_0^{\alpha-1} - \lambda^{\beta+1} Q_0^{-\beta-1}) \partial_p - \gamma p \partial_p + \gamma k_B T \partial_p^2$$

Recall the Q_{∞} scaling:

$$\mathcal{L} \approx -\alpha \lambda^{\alpha - 1} Q_{\infty}^{\alpha - 1} \partial_{p}.$$

 Q_0 scaling:

$$\mathcal{L} = \lambda p \partial_{Q_0} - (\alpha \lambda^{-\alpha+1} Q_0^{\alpha-1} - \lambda^{\beta+1} Q_0^{-\beta-1}) \partial_p - \gamma p \partial_p + \gamma k_B T \partial_p^2$$

$$\approx \lambda^{\beta+1} Q_0^{-\beta-1} \partial_p.$$

Recall the Q_{∞} scaling:

$$\mathcal{L} \approx -\alpha \, \lambda^{\alpha - 1} \, Q_{\infty}^{\alpha - 1} \, \partial_{p}.$$

 Q_0 scaling:

$$\mathcal{L} = \lambda p \partial_{Q_0} - (\alpha \lambda^{-\alpha+1} Q_0^{\alpha-1} - \lambda^{\beta+1} Q_0^{-\beta-1}) \partial_p - \gamma p \partial_p + \gamma k_B T \partial_p^2$$

$$\approx \lambda^{\beta+1} Q_0^{-\beta-1} \partial_p.$$

Summary: If p^2 is bounded and U(q) is large

 $\mathcal{L} \approx -U'(q)\partial_p.$

Recall the Q_{∞} scaling:

$$\mathcal{L} \approx -\alpha \lambda^{\alpha - 1} Q_{\infty}^{\alpha - 1} \partial_{p}.$$

 Q_0 scaling:

$$\mathcal{L} = \lambda p \partial_{Q_0} - (\alpha \lambda^{-\alpha+1} Q_0^{\alpha-1} - \lambda^{\beta+1} Q_0^{-\beta-1}) \partial_p - \gamma p \partial_p + \gamma k_B T \partial_p^2$$

$$\approx \lambda^{\beta+1} Q_0^{-\beta-1} \partial_p.$$

Summary: If p^2 is bounded and U(q) is large

 $\mathcal{L} \approx -U'(q)\partial_p.$

Solve:

$$-U'(q)\partial_p\psi(q,p) = -\kappa$$

Recall the Q_{∞} scaling:

$$\mathcal{L} \approx -\alpha \lambda^{\alpha - 1} Q_{\infty}^{\alpha - 1} \partial_{p}.$$

 Q_0 scaling:

$$\mathcal{L} = \lambda p \partial_{Q_0} - (\alpha \lambda^{-\alpha+1} Q_0^{\alpha-1} - \lambda^{\beta+1} Q_0^{-\beta-1}) \partial_p - \gamma p \partial_p + \gamma k_B T \partial_p^2$$

$$\approx \lambda^{\beta+1} Q_0^{-\beta-1} \partial_p.$$

Summary: If p^2 is bounded and U(q) is large

 $\mathcal{L} \approx -U'(q)\partial_p.$

Solve:

$$-U'(q)\partial_p\psi(q,p) = -\kappa$$

$$\implies \psi(q,p) = \kappa \frac{p}{U'(q)} + f(q).$$

Recall the Q_{∞} scaling:

$$\mathcal{L} \approx -\alpha \lambda^{\alpha - 1} Q_{\infty}^{\alpha - 1} \partial_{p}.$$

 Q_0 scaling:

$$\mathcal{L} = \lambda p \partial_{Q_0} - (\alpha \lambda^{-\alpha+1} Q_0^{\alpha-1} - \lambda^{\beta+1} Q_0^{-\beta-1}) \partial_p - \gamma p \partial_p + \gamma k_B T \partial_p^2$$

$$\approx \lambda^{\beta+1} Q_0^{-\beta-1} \partial_p.$$

Summary: If p^2 is bounded and U(q) is large

 $\mathcal{L} \approx -U'(q)\partial_p.$

Solve:

$$-U(q)\partial_{p}\psi(q,p) = -\kappa$$

$$\implies \psi(q,p) = \kappa \frac{p}{U'(q)} + f(q).$$

Point: Should be the case that $W = e^{\delta(H+\psi)} \approx e^{\delta H}$ satisfies

 $\mathcal{L}W(q,p) \leq -cW + D$

for some constants c, D > 0.

Point: Should be the case that $W = e^{\delta(H+\psi)} \approx e^{\delta H}$ satisfies

 $\mathcal{L}W(q,p) \leq -cW + D$

for some constants c, D > 0.

Why? For $H \ge R$

$$\mathcal{L}W(q,p) = \delta W(q,p) \times \left[\mathcal{L}V(q,p) + \delta \gamma k_B T |\nabla_p(V)|^2 \right]$$

$$\leq \delta W(q,p) \times \left[-\gamma ||p||^2 - \gamma k_B T k N + \delta \gamma k_B T ||p||^2 + \delta o(1) \right]$$

Point: Should be the case that $W = e^{\delta(H+\psi)} \approx e^{\delta H}$ satisfies

$$\mathcal{L}W(q,p) \leq -cW + D$$

for some constants c, D > 0.

Why? For $H \ge R$

$$\mathcal{L}W(q,p) = \delta W(q,p) \times \left[\mathcal{L}V(q,p) + \delta \gamma k_B T |\nabla_p(V)|^2 \right]$$

$$\leq \delta W(q,p) \times \left[-\gamma ||p||^2 - \gamma k_B T k N + \delta \gamma k_B T ||p||^2 + \delta o(1) \right]$$

Conclusion: Exponentiate δV and control quadratic variation terms by picking $0 < \delta < 1/(k_B T)$.

$$\psi = \frac{p \cdot \nabla U}{|\nabla U|^2}$$

$$\psi = \frac{p \cdot \nabla U}{|\nabla U|^2}$$

is a viable perturbation.

• Why is it so easy? Finding the right equation to solve IS the hardship because ∇U does not scale homogeneously with U.

$$\psi = \frac{p \cdot \nabla U}{|\nabla U|^2}$$

- Why is it so easy? Finding the right equation to solve IS the hardship because ∇U does not scale homogeneously with U.
- Relationship to ϵpq ? $\psi = \epsilon p \frac{U(q)}{U'(q)} \approx \epsilon pq$.

$$\psi = \frac{p \cdot \nabla U}{|\nabla U|^2}$$

- Why is it so easy? Finding the right equation to solve IS the hardship because ∇U does not scale homogeneously with U.
- Relationship to ϵpq ? $\psi = \epsilon p \frac{U(q)}{U'(q)} \approx \epsilon pq$.
- Condition $|\nabla^2 U|$ dominated by $|\nabla U|^2$ for large U?

$$\psi = \frac{p \cdot \nabla U}{|\nabla U|^2}$$

- Why is it so easy? Finding the right equation to solve IS the hardship because ∇U does not scale homogeneously with U.
- Relationship to ϵpq ? $\psi = \epsilon p \frac{U(q)}{U'(q)} \approx \epsilon pq$.
- Condition $|\nabla^2 U|$ dominated by $|\nabla U|^2$ for large U?

$$\psi = \frac{p \cdot \nabla U}{|\nabla U|^2}$$

- Why is it so easy? Finding the right equation to solve IS the hardship because ∇U does not scale homogeneously with U.
- Relationship to ϵpq ? $\psi = \epsilon p \frac{U(q)}{U'(q)} \approx \epsilon pq$.
- Condition $|\nabla^2 U|$ dominated by $|\nabla U|^2$ for large U?

$$p\partial_q\left(\kappa\frac{p}{U'(q)}\right) = -\kappa p^2 \frac{U''(q)}{(U'(q))^2}$$

$$\psi = \frac{p \cdot \nabla U}{|\nabla U|^2}$$

is a viable perturbation.

- Why is it so easy? Finding the right equation to solve IS the hardship because ∇U does not scale homogeneously with U.
- Relationship to ϵpq ? $\psi = \epsilon p \frac{U(q)}{U'(q)} \approx \epsilon pq$.
- Condition $|\nabla^2 U|$ dominated by $|\nabla U|^2$ for large U?

$$p\partial_q \left(\kappa \frac{p}{U'(q)} \right) = -\kappa p^2 \frac{U''(q)}{(U'(q))^2}$$

 \implies competition with $-\gamma p^2$ unless condition is satisfied.