A periodic homogenization problem with defects rare at infinity

Rémi Goudey

Ecole des ponts ParisTech and MATHERIALS Team, INRIA Paris

December 3, 2020

CAN-J 2020

2 The perturbed problem

Purpose : To address an homogenization problem for a second order elliptic equation in divergence form when the coefficient is a non-local perturbation of a periodic coefficient :

$$\begin{cases} -\operatorname{div}((a_{per} + \tilde{a})(./\varepsilon)\nabla u^{\varepsilon}) = f & \text{in } \Omega, \\ u^{\varepsilon} = 0 & \text{in } \partial\Omega. \end{cases}$$
(1)

Where :

- $\Omega \subset \mathbb{R}^d$ is a bounded domain $(d \ge 1)$.
- $f \in L^2(\Omega)$.
- $\varepsilon > 0$ is a small scale parameter.
- $a = a_{per} + \tilde{a}$ is a bounded, elliptic coefficient.
- *a_{per}* is Z^d-periodic and *ã* represents a non-local perturbation.

Purpose : To address an homogenization problem for a second order elliptic equation in divergence form when the coefficient is a non-local perturbation of a periodic coefficient :

$$\begin{cases} -\operatorname{div}((a_{per} + \tilde{a})(./\varepsilon)\nabla u^{\varepsilon}) = f & \text{in } \Omega, \\ u^{\varepsilon} = 0 & \text{in } \partial\Omega. \end{cases}$$
(1)

We want :

- To identify the limit of u^ε when the scale parameter ε → 0 and study the convergence for several topologies (L²(Ω), H¹(Ω),...).
- 2. To make precise the convergence rates.

The periodic problem, when $a = a_{per}$, is well known ¹:

u^ε converges strongly in L²(Ω), weakly in H¹(Ω) to u^{*} solution to the homogenized equation :

$$\begin{pmatrix} -\operatorname{div}(a_{per}^* \nabla u^*) = f & \text{on } \Omega \\ u^*(x) = 0 & \text{in } \partial \Omega \end{pmatrix}$$
(2)

where (a_{per}^*) is a constant matrix.

The behavior in H¹(Ω) is obtained introducing a corrector w_{per,p} defined for all p ∈ ℝ^d as the periodic solution (unique up to the addition of a constant) to :

$$-\operatorname{div}(a_{per}(\nabla w_{per,p}+p))=0 \quad \text{in } \mathbb{R}^d. \tag{3}$$

¹[Bensoussan, Lions, Papanicolaou '1978]

This corrector w_{per} allows to both make explicit the homogenized coefficient :

$$(a_{per}^*)_{i,j} = \int_Q e_i^T a_{per}(y) \left(e_j + \nabla w_{per,e_j}\right) dy,$$

and define an approximation

$$u^{\varepsilon,1} = u^*(.) + \varepsilon \sum_{i=1}^d \partial_i u^*(.) w_{per,e_i}(./\varepsilon),$$

such that $u^{\varepsilon,1} - u^{\varepsilon}$ strongly converges to 0 in $H^1(\Omega)$.

2 The perturbed problem

• Our purpose is to extend these results to the setting of the perturbed problem when

$$a=a_{per}+ ilde{a}.$$

• Main difficulty : The corrector equation

$$-\operatorname{div}\left(\left(a_{per}+\widetilde{a}
ight)(
abla w_{p}+p)
ight)=0 ext{ in } \mathbb{R}^{d},$$

cannot be reduced to an equation posed on a bounded domain as is the case in periodic context, which prevents us from using classical techniques (Poincaré inequality). **First extension** ²: The case of local perturbations (i.e $\tilde{a}(x) \to 0$ when $|x| \to \infty$) when $\tilde{a} \in L^{r}(\mathbb{R}^{d})$ for $r \in]1, \infty[$.

• In this case, the homogenized limit is identical to that of the periodic case without defect $(\tilde{a} = 0)$ and the existence of a corrector w_p is established. The corrector is of the form :

$$w_{p} = w_{per,p} + \tilde{w}_{p}$$

where $w_{per,p}$ is the periodic corrector and $\nabla \tilde{w} \in L^r(\mathbb{R}^d)$,

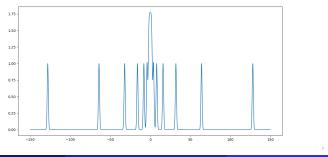
²[Blanc, Le Bris, Lions 2012, 2018] & [Blanc, Josien, Le Bris 2020]

The perturbed problem

The case of non-local perturbations

- We consider here a perturbation *ã*, that, although it does not vanish, becomes rare at infinity.
- For some fixed $\phi \in \mathcal{D}(\mathbb{R})$, a prototypical one-dimensional example reads as

$$\widetilde{a} = \sum_{k \in \mathbb{Z}} \phi(x - \operatorname{sign}(k) 2^{|k|}).$$



Rémi Goudey (ENPC and INRIA)

To formalize the mathematical setting of the defects rare at infinity, we introduce :

$$\mathcal{G} = \{x_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{Z}^d,$$

a infinite discrete set of points, and

$$V_k = \left\{ x \in \mathbb{R}^d \middle| \forall x_q \in \mathcal{G}, \ |x - x_k| \le |x - x_q|
ight\},$$

the Voronoi cell containing the point x_k .

- Each point x_k models the presence of a defect in the periodic background.
- To ensure the defects are sufficiently rare at infinity, we need the points are increasingly distant from one another when far from the origin.

Mathematical setting

The set ${\mathcal G}$ is required to satisfy the following three conditions :

$$\forall x_k \in \mathcal{G}, \quad |V_k| < \infty, \tag{H1}$$

$$\exists C_1 > 0, \ C_2 > 0, \ \forall x_k \in \mathcal{G}, \quad C_1 \le \frac{1 + |x_k|}{D(x_k, \mathcal{G} \setminus \{x_k\})} \le C_2,$$
(H2)

$$\exists C_3 > 0, \forall x_k \in \mathcal{G}, \quad \frac{Diam(V_k)}{D(x_k, \mathcal{G} \setminus \{x_k\})} \le C_3,$$
(H3)

- ∢ /⊐ >

э

Mathematical setting

The set \mathcal{G} is required to satisfy the following three conditions :

$$\forall x_k \in \mathcal{G}, \quad |V_k| < \infty, \tag{H1}$$

$$\exists C_1 > 0, \ C_2 > 0, \ \forall x_k \in \mathcal{G}, \quad C_1 \le \frac{1 + |x_k|}{D(x_k, \mathcal{G} \setminus \{x_k\})} \le C_2,$$
(H2)
$$\exists C_3 > 0, \forall x_k \in \mathcal{G}, \quad \frac{Diam(V_k)}{D(x_k, \mathcal{G} \setminus \{x_k\})} \le C_3,$$
(H3)

$$>0, \forall x_k \in \mathcal{G}, \quad rac{Diam(V_k)}{D(x_k, \mathcal{G} \setminus \{x_k\})} \leq C_3,$$
 (H3)

Remarks

- (H2) is the most significant assumption, it ensures the distance between a point x_k and the others to scale exponentially far from the origin.
- (H1) and (H3) are only technical assumptions that limit the size of the Voronoi cells and ensure the worst case scenario, where the set \mathcal{G} contains as many points as possible while satisfying (H2).

Example of admissible set of points

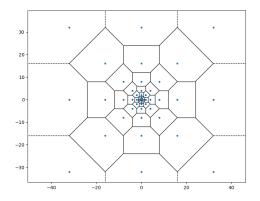


Figure: Example of points that satisfy our assumptions along with their associated Voronoi diagram for d = 2. Here the coordinates of the points are powers of 2.

In order to describe the perturbations we define :

$$\mathcal{B}^2(\mathbb{R}^d) = \left\{ f \in L^2_{unif}(\mathbb{R}^d) \ \bigg| \ \exists f_\infty \in L^2(\mathbb{R}^d), \lim_{|x_k| \to \infty} \|f - \tau_{-x_k} f_\infty\|_{L^2(V_k)} = 0 \right\},$$

equipped with the norm

$$\|f\|_{\mathcal{B}^{2}(\mathbb{R}^{d})} = \|f\|_{L^{2}_{unif}(\mathbb{R}^{d})} + \|f_{\infty}\|_{L^{2}(\mathbb{R}^{d})} + \sup_{x_{k}\in\mathcal{G}}\|f - \tau_{-x_{k}}f_{\infty}\|_{L^{2}(V_{k})}.$$

Where :

•
$$L^{2}_{unif}(\mathbb{R}^{d}) = \left\{ f \in L^{2}_{loc}(\mathbb{R}^{d}), \sup_{x \in \mathbb{R}^{d}} \|f\|_{L^{2}(B_{1}(x))} < \infty \right\},$$

• $\|f\|_{L^{2}_{unif}(\mathbb{R}^{d})} = \sup_{x \in \mathbb{R}^{d}} \|f\|_{L^{2}(B_{1}(x))}$
• $\tau_{x}f = f(.+x)$

The space of perturbations

In order to describe the perturbations we define :

$$\mathcal{B}^2(\mathbb{R}^d) = \left\{ f \in L^2_{unif}(\mathbb{R}^d) \mid \exists f_\infty \in L^2(\mathbb{R}^d), \lim_{|x_k| \to \infty} \|f - \tau_{-x_k} f_\infty\|_{L^2(V_k)} = 0 \right\},$$

equipped with the norm

$$\|f\|_{\mathcal{B}^{2}(\mathbb{R}^{d})} = \|f\|_{L^{2}_{unif}(\mathbb{R}^{d})} + \|f_{\infty}\|_{L^{2}(\mathbb{R}^{d})} + \sup_{x_{k}\in\mathcal{G}}\|f-\tau_{-x_{k}}f_{\infty}\|_{L^{2}(V_{k})}.$$

Remarks

A function in B²(R^d) behaves, locally at the vicinity of each point x_k, as a fixed L²-function truncated over the domain V_k.

•
$$\left(\mathcal{B}^2(\mathbb{R}^d), \|.\|_{\mathcal{B}^2(\mathbb{R}^d)}
ight)$$
 is a Banach space.

Proposition (Average)

Let $u \in \mathcal{B}^2(\mathbb{R}^d)$, then :

$$\langle |u| \rangle = \lim_{R \to \infty} \frac{1}{|\mathsf{B}_R|} \int_{\mathsf{B}_R} |u(x)| dx = 0$$

- Consequence of the geometric distribution of the points *x_k* (Assumption (H2)).
- On average, the perturbations belonging to $\mathcal{B}^2(\mathbb{R}^d)$ do not impact the periodic background.
- If ã ∈ B²(ℝ^d), the homogenized limit of u^ε is therefore expected to be the same as in the periodic case without defect (i.e. when ã = 0).

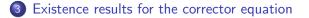
In our work, we consider a matrix-valued coefficient of the form

$$a = a_{per} + \tilde{a},$$

such that

•
$$a_{per} \in L^2_{per}(\mathbb{R}^d)^{d \times d}$$
, $\tilde{a} \in \mathcal{B}^2(\mathbb{R}^d)^{d \times d}$,
• $\exists \lambda > 0, \ \forall x, \xi \in \mathbb{R}^d, \ \lambda |\xi|^2 \le \langle a(x)\xi, \xi \rangle, \quad \lambda |\xi|^2 \le \langle a_{per}(x)\xi, \xi \rangle,$
• $a_{per}, \ \tilde{a}, \ \tilde{a}_{\infty} \in (L^{\infty}(\mathbb{R}^d) \cap \mathcal{C}^{0,\alpha}(\mathbb{R}^d))^{d \times d}, \ \alpha \in]0,1[.$

Here, \tilde{a}_{∞} is the limit L^2 -function associated with \tilde{a} .



Theorem 1 : Existence result for the corrector equation

For every $p \in \mathbb{R}^d$, there exists a unique (up to an additive constant) function $w_p \in H^1_{loc}(\mathbb{R}^d)$ such that $\nabla w_p \in (L^2_{per}(\mathbb{R}^d) + \mathcal{B}^2(\mathbb{R}^d))^d$, solution to : $\begin{cases} -\operatorname{div}((a_{per} + \tilde{a})(p + \nabla w_p)) = 0 & \text{in } \mathbb{R}^d, \\ \lim_{|x| \to \infty} \frac{|w_p(x)|}{1 + |x|} = 0. \end{cases}$ (4)

Theorem 1 : Existence result for the corrector equation

For every $p \in \mathbb{R}^d$, there exists a unique (up to an additive constant) function $w_p \in H^1_{loc}(\mathbb{R}^d)$ such that $\nabla w_p \in (L^2_{per}(\mathbb{R}^d) + \mathcal{B}^2(\mathbb{R}^d))^d$, solution to: $\begin{cases} -\operatorname{div}((a_{per} + \tilde{a})(p + \nabla w_p)) = 0 & \text{in } \mathbb{R}^d, \\ \lim_{|x| \to \infty} \frac{|w_p(x)|}{1 + |x|} = 0. \end{cases}$ (4)

Main Idea : Assume $w_p = w_{p,per} + \tilde{w}_p$ with $\nabla \tilde{w}_p \in \mathcal{B}^2(\mathbb{R}^d)$, then (4) is equivalent to an equation of the form :

$$-\operatorname{div}((a_{per}+\widetilde{a})
abla u)=\operatorname{div}(f)$$
 in \mathbb{R}^d ,

where $u = \tilde{w}_p$ and $f = \tilde{a}(p + \nabla w_{p,per}) \in \mathcal{B}^2(\mathbb{R}^d)$.

Existence of the corrector

Existence result in the periodic problem

Lemma 1 : Existence result in the case $\tilde{a} = 0$

Let $f \in \mathcal{B}^2(\mathbb{R}^d)$, $\exists u \in H^1_{loc}(\mathbb{R}^d)$ such that $\nabla u \in \mathcal{B}^2(\mathbb{R}^d)$, solution to :

 $-\operatorname{div}(a_{per}\nabla u) = \operatorname{div}(f)$ in $\mathcal{D}'(\mathbb{R}^d)$.

³[Avellaneda, Lin 1991]

Rémi Goudey (ENPC and INRIA)

Existence of the corrector

Existence result in the periodic problem

Lemma 1 : Existence result in the case $\tilde{a} = 0$

Let $f \in \mathcal{B}^2(\mathbb{R}^d)$, $\exists u \in H^1_{loc}(\mathbb{R}^d)$ such that $\nabla u \in \mathcal{B}^2(\mathbb{R}^d)$, solution to :

$$-\operatorname{div}(a_{per}\nabla u) = \operatorname{div}(f)$$
 in $\mathcal{D}'(\mathbb{R}^d)$.

Main idea (for $d \ge 3$): Use the Green function G_{per} (i.e. the fundamental solution) associated with $-\operatorname{div}(a_{per})$ on \mathbb{R}^d to define a solution u:

$$u(x) = \int_{\mathbb{R}^d} \nabla_y G_{per}(x, y) f(y) dy.$$

In order to show that u is well-defined in H^1_{loc} and $\nabla u \in \mathcal{B}^2$, we use pointwise estimates satisfied by G_{per} ³:

$$|
abla_y G_{per}(x,y)| \leq C rac{1}{|x-y|^{d-1}}, \quad |
abla_x
abla_y G_{per}(x,y)| \leq C rac{1}{|x-y|^d}.$$

³[Avellaneda, Lin 1991]

Rémi Goudey (ENPC and INRIA)

Lemma 2 : A priori estimate

There exists a constant C > 0 such that for every $f \in \mathcal{B}^2(\mathbb{R}^d)$ and u solution in $\mathcal{D}'(\mathbb{R}^d)$ to

$$-\operatorname{div}((a_{per}+\widetilde{a})\nabla u)=\operatorname{div}(f)$$
 in \mathbb{R}^d ,

with $\nabla u \in \mathcal{B}^2(\mathbb{R}^d)$, we have the following estimate :

 $\|\nabla u\|_{\mathcal{B}^2(\mathbb{R}^d)} \leq C \|f\|_{\mathcal{B}^2(\mathbb{R}^d)}.$

• Lemma 2 ensures the continuity of the reciprocal linear operator $f \mapsto \nabla (-\operatorname{div} a \nabla)^{-1} \operatorname{div}(f)$ from $\mathcal{B}^2(\mathbb{R}^d)$ to $\mathcal{B}^2(\mathbb{R}^d)$.

Main ideas for the proof of Theorem 1 $^{\rm 4}$:

- ullet For every $s\in[0,1],$ we consider the assertion $\mathsf{P}(s)$:
 - " There exists $u\in H^1_{loc}(\mathbb{R}^d)$ solution in $\mathcal{D}'(\mathbb{R}^d)$ to

$$-\operatorname{div}\left((a_{per}+s\tilde{a})\nabla u\right)=\operatorname{div}(f),$$

such that $abla u \in \mathcal{B}^2(\mathbb{R}^d)$ ".

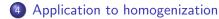
- We define $\mathcal{I} = \{s \in [0,1], \ \mathcal{P}(s) \text{ is true}\}$.
- Lemma $1 \Rightarrow \mathcal{I}$ is not empty.
- Lemma $2 \Rightarrow \mathcal{I}$ is both open and closed for the topology of [0, 1].
- Using an argument of connexity, $\mathcal{I} = [0,1] \Rightarrow s = 1 \in \mathcal{I}.$

⁴Proof adapted from [Blanc, Le Bris, Lions 2018]

Remarks

- The corrector satisfies $\nabla w_{\rho} \in L^2 per + \mathcal{B}^2(\mathbb{R}^d)$, its gradient shares the same structure "periodic + \mathcal{B}^2 " as the coefficient *a*.
- The proof of existence is heavily based upon the geometric distribution of the x_k . In particular, Assumption (H2), which ensures the distance between the points x_k to scale exponentially far from the origin, is essential in our approach.

2 The perturbed problem



Proposition : Homogenization result

Let u^{ε} the sequence of solutions in $H^1_0(\Omega)$ to

$$\begin{cases} -\operatorname{div}((a_{per} + \tilde{a})(./\varepsilon)\nabla u^{\varepsilon}) = f & \text{in } \Omega, \\ u^{\varepsilon} = 0 & \text{in } \partial\Omega. \end{cases}$$

Then the homogenized (weak- $H^1(\Omega)$ and strong- $L^2(\Omega)$) limit u^* obtained when $\varepsilon \to 0$ is the solution to

$$\begin{cases} -\operatorname{div}(a_{per}^* \nabla u^*) = f & \text{on } \Omega\\ u^*(x) = 0. & \text{in } \partial\Omega. \end{cases}$$

• As expected, the homogenized coefficient is identical to the periodic homogenized coefficient.

Theorem 2 : Convergence results

Assume $d \ge 3$ and Ω is a $C^{2,1}$ -bounded domain. Let $\Omega_1 \subset \subset \Omega$. We define $u^{\varepsilon,1} = u^* + \varepsilon \sum_{i=1}^d \partial_i u^* w_{e_i}(./\varepsilon)$ where w_{e_i} is solution to corrector equation for $p = e_i$ and $u^* \in H^1(\Omega)$ is the homogenized limit. Then $R^{\varepsilon} = u^{\varepsilon} - u^{\varepsilon,1}$ satisfies the following estimates :

 $\|R^{\varepsilon}\|_{L^{2}(\Omega)} \leq C_{1}\varepsilon\|f\|_{L^{2}(\Omega)},$ $\|\nabla R^{\varepsilon}\|_{L^{2}(\Omega_{1})} \leq C_{2}\varepsilon\|f\|_{L^{2}(\Omega)},$

where C_1 and C_2 are two positive constants independent of f and ε .

Thank you for your attention !