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Introduction

Purpose : To address an homogenization problem for a second order
elliptic equation in divergence form when the coefficient is a non-local
perturbation of a periodic coefficient :{

− div((aper + ã) (./ε)∇uε) = f in Ω,
uε = 0 in ∂Ω.

(1)

Where :

Ω ⊂ Rd is a bounded domain (d ≥ 1).

f ∈ L2(Ω).

ε > 0 is a small scale parameter.

a = aper + ã is a bounded, elliptic coefficient.

aper is Zd -periodic and ã represents a non-local
perturbation.
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− div((aper + ã) (./ε)∇uε) = f in Ω,
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We want :

1. To identify the limit of uε when the scale parameter
ε→ 0 and study the convergence for several topologies
(L2(Ω), H1(Ω),...).

2. To make precise the convergence rates.
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Introduction
The periodic case

The periodic problem, when a = aper , is well known 1 :

uε converges strongly in L2(Ω), weakly in H1(Ω) to u∗ solution to the
homogenized equation :{

− div(a∗per∇u∗) = f on Ω
u∗(x) = 0 in ∂Ω

(2)

where (a∗per ) is a constant matrix.

The behavior in H1(Ω) is obtained introducing a corrector wper ,p

defined for all p ∈ Rd as the periodic solution (unique up to the
addition of a constant) to :

− div(aper (∇wper ,p + p)) = 0 in Rd . (3)

1[Bensoussan, Lions, Papanicolaou ’1978]
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Introduction
The periodic case

This corrector wper allows to both make explicit the homogenized
coefficient :

(a∗per )i ,j =

∫
Q
eTi aper (y)

(
ej +∇wper ,ej

)
dy ,

and define an approximation

uε,1 = u∗(.) + ε

d∑
i=1

∂iu
∗(.)wper ,ei (./ε),

such that uε,1 − uε strongly converges to 0 in H1(Ω).
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The perturbed problem

Our purpose is to extend these results to the setting of the perturbed
problem when

a = aper + ã.

Main difficulty : The corrector equation

− div ((aper + ã) (∇wp + p)) = 0 in Rd ,

cannot be reduced to an equation posed on a bounded domain as is
the case in periodic context, which prevents us from using classical
techniques (Poincaré inequality).
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The perturbed problem
The case of local perturbations

First extension 2: The case of local perturbations (i.e ã(x)→ 0 when
|x | → ∞) when ã ∈ Lr (Rd) for r ∈]1,∞[.

In this case, the homogenized limit is identical to that of the periodic
case without defect (ã = 0) and the existence of a corrector wp is
established. The corrector is of the form :

wp = wper ,p + w̃p

where wper ,p is the periodic corrector and ∇w̃ ∈ Lr (Rd),

2[Blanc, Le Bris, Lions 2012, 2018] & [Blanc, Josien, Le Bris 2020]
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The perturbed problem
The case of non-local perturbations

We consider here a perturbation ã, that, although it does not vanish,
becomes rare at infinity.

For some fixed φ ∈ D(R), a prototypical one-dimensional example
reads as

ã =
∑
k∈Z

φ(x − sign(k)2|k|).
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Mathematical setting

To formalize the mathematical setting of the defects rare at infinity, we
introduce :

G = {xk}k∈Zd ⊂ Zd ,

a infinite discrete set of points, and

Vk =
{
x ∈ Rd

∣∣∣∀xq ∈ G, |x − xk | ≤ |x − xq|
}
,

the Voronoi cell containing the point xk .

Each point xk models the presence of a defect in the periodic
background.

To ensure the defects are sufficiently rare at infinity, we need the
points are increasingly distant from one another when far from the
origin.
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Mathematical setting

The set G is required to satisfy the following three conditions :

∀xk ∈ G, |Vk | <∞, (H1)

∃C1 > 0, C2 > 0, ∀xk ∈ G, C1 ≤
1 + |xk |

D (xk ,G \ {xk})
≤ C2, (H2)

∃C3 > 0,∀xk ∈ G,
Diam (Vk)

D (xk ,G \ {xk})
≤ C3, (H3)

Remarks

(H2) is the most significant assumption, it ensures the distance between a
point xk and the others to scale exponentially far from the origin.

(H1) and (H3) are only technical assumptions that limit the size of the
Voronoi cells and ensure the worst case scenario, where the set G contains as
many points as possible while satisfying (H2).
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Example of admissible set of points

Figure: Example of points that satisfy our assumptions along with their associated
Voronoi diagram for d = 2. Here the coordinates of the points are powers of 2.
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The space of perturbations

In order to describe the perturbations we define :

B2(Rd) =

{
f ∈ L2

unif (Rd)

∣∣∣∣ ∃f∞ ∈ L2(Rd), lim
|xk |→∞

‖f − τ−xk f∞‖L2(Vk ) = 0

}
,

equipped with the norm

‖f ‖B2(Rd ) = ‖f ‖L2
unif (Rd ) + ‖f∞‖L2(Rd ) + sup

xk∈G
‖f − τ−xk f∞‖L2(Vk ).

Where :

L2
unif (Rd) =

{
f ∈ L2

loc(Rd), sup
x∈Rd

‖f ‖L2(B1(x)) <∞
}
,

‖f ‖L2
unif (Rd ) = sup

x∈Rd

‖f ‖L2(B1(x))

τx f = f (.+ x)
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The space of perturbations

In order to describe the perturbations we define :
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∣∣∣∣ ∃f∞ ∈ L2(Rd), lim
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xk∈G
‖f − τ−xk f∞‖L2(Vk ).

Remarks

A function in B2(Rd) behaves, locally at the vicinity of each point xk ,
as a fixed L2-function truncated over the domain Vk .(
B2(Rd), ‖.‖B2(Rd )

)
is a Banach space.
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A property of B2(Rd)

Proposition (Average)

Let u ∈ B2(Rd), then :

〈|u|〉 = lim
R→∞

1

|BR |

∫
BR

|u(x)|dx = 0

Consequence of the geometric distribution of the points xk
(Assumption (H2)).

On average, the perturbations belonging to B2(Rd) do not impact the
periodic background.

If ã ∈ B2(Rd), the homogenized limit of uε is therefore expected to
be the same as in the periodic case without defect (i.e. when ã = 0).
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Assumptions

In our work, we consider a matrix-valued coefficient of the form

a = aper + ã,

such that

aper ∈ L2
per (Rd)d×d , ã ∈ B2(Rd)d×d ,

∃λ > 0, ∀x , ξ ∈ Rd , λ|ξ|2 ≤ 〈a(x)ξ, ξ〉, λ|ξ|2 ≤ 〈aper (x)ξ, ξ〉,

aper , ã, ã∞ ∈
(
L∞(Rd) ∩ C0,α(Rd)

)d×d
, α ∈]0, 1[.

Here, ã∞ is the limit L2-function associated with ã.
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Existence of the corrector

Theorem 1 : Existence result for the corrector equation

For every p ∈ Rd , there exists a unique (up to an additive constant)

function wp ∈ H1
loc(Rd) such that ∇wp ∈

(
L2
per(Rd) + B2(Rd)

)d
, solution

to : 
− div((aper + ã)(p +∇wp)) = 0 in Rd ,

lim
|x |→∞

|wp(x)|
1 + |x |

= 0.
(4)

Main Idea : Assume wp = wp,per + w̃p with ∇w̃p ∈ B2(Rd), then (4) is
equivalent to an equation of the form :

− div((aper + ã)∇u) = div(f ) in Rd ,

where u = w̃p and f = ã (p +∇wp,per ) ∈ B2(Rd).
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Existence of the corrector
Existence result in the periodic problem

Lemma 1 : Existence result in the case ã = 0

Let f ∈ B2(Rd), ∃u ∈ H1
loc(Rd) such that ∇u ∈ B2(Rd), solution to :

− div(aper∇u) = div(f ) in D′(Rd).

Main idea (for d ≥ 3) : Use the Green function Gper (i.e. the fundamental
solution) associated with − div(aper .) on Rd to define a solution u :

u(x) =

∫
Rd

∇yGper (x , y)f (y)dy .

In order to show that u is well-defined in H1
loc and ∇u ∈ B2, we use pointwise

estimates satisfied by Gper
3 :

|∇yGper (x , y)| ≤ C
1

|x − y |d−1
, |∇x∇yGper (x , y)| ≤ C

1

|x − y |d
.

3[Avellaneda, Lin 1991]
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Existence of the corrector
A priori estimate

Lemma 2 : A priori estimate

There exists a constant C > 0 such that for every f ∈ B2(Rd) and u
solution in D′(Rd) to

− div((aper + ã)∇u) = div(f ) in Rd ,

with ∇u ∈ B2(Rd), we have the following estimate :

‖∇u‖B2(Rd ) ≤ C‖f ‖B2(Rd ).

Lemma 2 ensures the continuity of the reciprocal linear operator
f 7→ ∇ (− div a∇)−1 div(f ) from B2(Rd) to B2(Rd).
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Existence of the corrector

Main ideas for the proof of Theorem 1 4 :

For every s ∈ [0, 1], we consider the assertion P(s) :

” There exists u ∈ H1
loc(Rd) solution in D′(Rd) to

− div ((aper + sã)∇u) = div(f ),

such that ∇u ∈ B2(Rd)”.

We define I = {s ∈ [0, 1], P(s) is true} .

Lemma 1 ⇒ I is not empty.

Lemma 2 ⇒ I is both open and closed for the topology of [0, 1].

Using an argument of connexity, I = [0, 1] ⇒ s = 1 ∈ I.

4Proof adapted from [Blanc, Le Bris, Lions 2018]
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Existence of the corrector

Remarks

The corrector satisfies ∇wp ∈ L2per + B2(Rd), its gradient shares the
same structure ”periodic + B2” as the coefficient a.

The proof of existence is heavily based upon the geometric
distribution of the xk . In particular, Assumption (H2), which ensures
the distance between the points xk to scale exponentially far from the
origin, is essential in our approach.
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Application to homogenization

Proposition : Homogenization result

Let uε the sequence of solutions in H1
0 (Ω) to{

− div((aper + ã)(./ε)∇uε) = f in Ω,
uε = 0 in ∂Ω.

Then the homogenized (weak-H1(Ω) and strong-L2(Ω)) limit u∗ obtained
when ε→ 0 is the solution to{

− div(a∗per∇u∗) = f on Ω
u∗(x) = 0. in ∂Ω.

As expected, the homogenized coefficient is identical to the periodic
homogenized coefficient.
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Application to homogenization

Theorem 2 : Convergence results

Assume d ≥ 3 and Ω is a C 2,1-bounded domain. Let Ω1 ⊂⊂ Ω. We define

uε,1 = u∗ + ε

d∑
i=1

∂iu
∗wei (./ε) where wei is solution to corrector equation

for p = ei and u∗ ∈ H1(Ω) is the homogenized limit. Then Rε = uε − uε,1

satisfies the following estimates :

‖Rε‖L2(Ω) ≤ C1ε‖f ‖L2(Ω),

‖∇Rε‖L2(Ω1) ≤ C2ε‖f ‖L2(Ω),

where C1 and C2 are two positive constants independent of f and ε.
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Thank you for your attention !
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