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Examples of applications (1)

Compound classification (e.g.
with Support Vector Machines)
according to their functions or
activities

J.C. Gertrudes, Machine Learning Techniques and Drug Design, Current Medicinal Chemistry, 2012, 19, 4289-4297.
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Examples of applications (2)

Compound classification (e.g. with SVMs) according to their
functions or activities

A. Lavecchia, Machine-learning approaches in drug discovery: methods and applications, Drug Discovery Today, Vol. 20, Nb 3
(2015).
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Examples of applications (3)

Protein structure prediction
(e.g. folding from sequence of
amino-acids)

C.A. Floudas, Computational Methods in Protein Structure Prediction, Biotechnology and Bioengineering, Vol. 97, No. 2, June
1, 2007.
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Examples of applications (4)

QSAR (Quantitative Structure-Activity Relationship) analysis

”Virtual screening” (search in the (huge) compound space to meet a
given target property : e.g. drugs)

Relationship between genome variation (e.g. mutation) and disease
risk (genotype-phenotype relation, predictive medicine, etc.)
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Molecular descriptors

Numerical representation
necessary (e.g. for input in a
neural network) : ”common
language” to represent
molecules.

Chemical graph theory /
chemical fingerprint (e.g. by
fragments).

Example : Coulomb matrix

Cij =

{
0.5Z 2.4

i if i=j
ZiZj

|~ri−~rj |otherwise

Yu-Chen Lo et al., Machine learning in chemoinformatics and drug discovery, Drug Discovery Today, Vol. 23, Nb 8 (2018).
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General idea : regression of scattering coefficients (1)

x︸︷︷︸
molecule

=

( rk︸︷︷︸
position

, zk︸︷︷︸
nuclear−charge

) ∈ R3 × Z


k∈[[1,N]]

7−→ f (x) ∈ R

f (x) : physical property of interest of the molecule (e.g. total energy)

x (all atomic positions and element types) : possible molecular
descriptor (not unique : cf. drug design context)

Approximation of f (x) by multilinear regression :

f̃a1,..,aq(x) = b+
M∑
i=1

ai︸︷︷︸
∈R

Cpi [x]

︸ ︷︷ ︸
linear

+
r∑

q=2

 ∑
i1<..<iq

ai1,..,iqCpi1 [x]..Cpiq [x]


︸ ︷︷ ︸

multilinear


(1)

Cpi [x] : (solid harmonic wavelet) scattering coefficient i.e. relevant
molecular descriptor.
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General idea : regression of scattering coefficients (2)

(
a∗1, .., a

∗
p

)
= arg min

(a1,..,ap)

∑
ν︸︷︷︸

Training−set

∣∣∣f̃a1,..,aq(xν)− f (xν)
∣∣∣2 : (locally)

optimal regression coefficients.

Training set


 xν︸︷︷︸

geometry

, f (xν)︸ ︷︷ ︸
energy


ν

: from ab-initio (DFT)

calculations.

Validation set : similar type of data (but different from the training
set)
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General idea (3)

Figure: Convolutional network (two wavelet scattering transform steps) [1, 2]
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Computation of wavelet scattering coefficients : outline (1)

x︸︷︷︸
geometry

−→ ρx(.)︸︷︷︸
density”channels”

−→ Sρx︸︷︷︸
wavelet−transform

(set of coefficients)

Three density channels (if available in the dataset) : core / valence /
bond density

”Näıve” (”surrogate”) core/valence density :

ρ
core/valence
x (u) =

∑
k

γkg(u− rk) (2)

g(v) = Ke−
v2

2σ2 , γk number of core/valence electrons at atom k (so
that ρx(.) integrates to

∑
k γk)

Invariance on permutation of atom indexes.
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Computation of wavelet scattering coefficients : outline (2)

Figure: Three density ”channels” (or ”guesses”) possibly used as input to the
convolutional neural network (core, valence and bond channel) [1, 2] – the ”full”
density channel is also added
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Computation of wavelet scattering coefficients : outline (3)

Surrogate bond density :

ρbondsx (u) = C
bonds∑
i↔j

γij
|ri − rj|

e
−

dij (u)2

2d2
0 (3)

dij(.) = distance to the bond (line) i − j

γij : number of electrons involved in the bond i − j

No prior, precise knowledge of the electronic density required
(”rough” guess).
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Solid harmonic wavelets (1)
Wavelets ψ(.) : localized both in time and in frequency.
Wavelets coefficients / decomposition (over a family of wavelets
scaled and translated from a ”mother” wavelet) : analogous to
Fourier decomposition.
More efficient to represent signal with discontinuities than Fourier.

Figure: Real parts of 2D solid hamornic wavelets ψ2D
l,j (ψ2D

l (r , θ) = 1
2π

e−
1
2
r2
r le ilφ) : angular

momentum l = 0...4 from top to bottom and scale j = 0...4 from left to right [2]
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Solid harmonic wavelets (2)

Solid harmonic wavelets in 3D :

ψm
l (u) =

1(√
2π
)3

e−
|u|2

2 |u|l Ym
l

(
u

|u|

)
∈ C (4)

The Fourier transform of a wavelet is a wavelet :

ψ̂m
l (ω) = (−i)l e−

1
2
|ω|2 |ω|l Ym

l

(
ω

|ω|

)
(5)

Wavelets scaled at scale 2j :

ψm
l ,j(u) =

1

(2j)3
ψm
l

( u

2j

)
(6)
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Wavelet scattering transform : step 1 (1)

ρ(.)︸︷︷︸
density−channel

−→︸︷︷︸
1stconvolution

ρ ∗ ψm
l ,j −→︸︷︷︸

modulus−operator

U[j , l ]ρ −→ Sρ[j , l , q]

U[j , l ]ρ : u 7−→

√√√√ l∑
m=−l

∣∣∣(ρ ∗ ψm
l ,j

)
(u)
∣∣∣2 (7)

Sρ[j , l , q] =

∫
R3

|U[j , l ]ρ(u)|q du ∈ R (8)

First order solid harmonic wavelet scattering coefficients.

Rotational invariant.

Coefficients Sρ[j , l , q] for q = 2 exponent : encode pairwise
interactions (e.g. Coulomb) ? Why ? No correlations ρ(u)ρ(u′) ...

Encode both short (small j) and long-range (large j) interactions
contributions to the energy. Why ?
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Wavelet scattering transform : step 1 (2)

Figure: Solid harmonic wavelet scattering coefficient (moduli U[j , l ]ρ) [2] :
reminiscent of interference patterns / molecular orbitals ?
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Wavelet scattering transform : step 1 (3)

Modulus coefficients (functions) U[j , l ]ρ(.) are similar to multipole
moments :

U[j , l ]ρ(u) =

√√√√ l∑
m=−l

∣∣∣∣∫
R3

ρ(v)ψm
l ,j(u− v)dv

∣∣∣∣2 (9)

U[j , l ]ρ(u) =
1

23j

1

2lj

√√√√√√√√√√
l∑

m=−l

∣∣∣∣∣∣∣∣∣∣∣
∫
R3

|v − u|l Ym
l

(
u− v

|u− v|

)
ρ(v)e−

1
2 ( |u−v|

2j
)

2

dv︸ ︷︷ ︸
−→j−→+∞(Qm

l )C
u

∣∣∣∣∣∣∣∣∣∣∣

2

(10)

Multipole moments (of a charge distribution) of order l with respect
to expansion center u (using real spherical harmonics...) :

(Qm
l )u =

∫
R3

|v − u|l Ym
l

(
v − u

|v − u|

)
ρ(v)dv ∈ R (11)

Robert Benda (CERMICS) Machine learning for drug design, medicine and quantum chemistry : an introductionNovember 13, 2019 20 / 28



Wavelet scattering transform : step 1 (4)

In which sense modulus coefficients (functions) U[j , l ]ρ(.) are
”analogous to localized multipole moments” [1] ?

If ∀w ∈ {v|ρ(v) 6= 0} , |u−w| << 2j (i.e. at a large enough scale):

U[j , l ]ρ(u) ≈ 1

23j

1

2lj

√√√√ l∑
m=−l

∣∣∣(Qm
l

)C
u

∣∣∣2 (12)

where (Qm
l )Cu are defined analogously to (real) multipole moments but

with complex spherical harmonics.

Otherwise, for all j , U[j , l ]ρ(u) relates to the multipole moments
(with respect to center u) of the charge distribution ρ(.) localized by
a gaussian.

Robert Benda (CERMICS) Machine learning for drug design, medicine and quantum chemistry : an introductionNovember 13, 2019 21 / 28



Wavelet scattering transform : step 2

U[j , l ]ρ −→︸︷︷︸
(∗)

(U[j , l ]ρ) ∗ ψm
l ,j ′ −→︸︷︷︸

modulus

U[j ′, l ] (U[j , l ]ρ) =D U[j , j ′, l ]ρ

Step (∗) : second convolution, at larger scales (j ′ > j)

U[j , j ′, l ]ρ(u) = U[j ′, l ] (U[j , l ]ρ) (u) =

(
l∑

m=−l

∣∣(U[j , l ]ρ ∗ ψm
l ,j ′
)

(u)
∣∣2) 1

2

(13)

Final step :

U[j , j ′, l ]ρ −→ Sρ[j , j ′, l , q] =

∫
R3

∣∣U[j , j ′, l ]ρ(u)
∣∣q du (14)

Second order solid harmonic wavelet scattering coefficients.

”Multiscale coupling” coefficient (substructures scales 2j and 2j
′
)

interpreted as van der Waals (dispersion) interaction terms ∝ C α1α2
R6 ...
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Final regression

Case of linear regression :

f̃~p(x) = b+
Scale∑
j

Moment∑
l

∑
q

w j
l,q Sρ[j , l , q]︸ ︷︷ ︸

local−terms+Coulomb?

+
Scale∑
j

Scale∑
j′>j

Moment∑
l

∑
q

w j,j′

l,q Sρ[j , j ′, l , q]︸ ︷︷ ︸
induction+dispersion?

(15)

”Analogous to perturbation expansion” (cf. SAPT theory)

~p =
{
w j
l ,q,w

j ,j ′

l ,q

}
l=0..L,j=0..J,j<j ′,q=0..Q

: set of parameters to optimize

In fact : sum also on the three different density channels ρx(.) ?

Relatively small number of scattering coefficients.

Bilinear regression : additional products of scattering coefficients
Sρ[j1, l1, q1]Sρ[j2, j

′
2, l2, q2], more coefficients to fit.

Linear vs. bilinear vs. trilinear regression ? Overfitting ? What is the
right ”functional form” to assume ?
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Comparison to usual ”force fields”

”Physical” functional form near equilibrium :

Up (~r1, .., ~rN ) =
∑
bonds

kb (b − b0)2 +
∑
angles

kθ (θ − θ0)2 +
∑

dihedrals

kφ (1 + cos(nφ− δ)) +
∑

impropers

kχ (χ− χ0)2

+
∑

i<j|d(i,j)≥M

C
qi qj

4πεrij︸ ︷︷ ︸
electrostatic

+
∑

i<j|d(i,j)≥M

εij

[(
σij

rij

)12

−
(
σij

rij

)6]
︸ ︷︷ ︸

dispersion(vdW )

(16)

Set of parameters to optimize :

p =
({

k
ij
b

}{
b
ij
0

}
,
{
k
ijk
θ

}{
θ
ijk
0

}
,
{
k
ijkl
φ

}{
nijkl

}
,
{
kabcd

}
,
{
χ
abcd
0

}
, {qi} ,

{
εij , σij

}
i<j|d(i,j)≥3

)
(17)

Cheap computationnaly.

Used to perform long simulations of molecules (molecular dynamics).
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Why does multilinear regression of wavelet scattering
coefficients work so well (1) ?

Electrostatic (long-range interaction) energy terms in (e.g.)
polarizable force fields (multipolar expansion of the interaction

energy between two multipoles [qi , ~di ,
¯̄
Q i ] and [qj , ~dj ,

¯̄
Q j ] at atoms i

and j) :

qiqj∣∣~ri − ~rj ∣∣︸ ︷︷ ︸
charge−charge

−

(
qj ~di − qi ~dj

)
.
(
~ri − ~rj

)
2
∣∣~ri − ~rj ∣∣3︸ ︷︷ ︸

charge−dipole

+
~di ~dj∣∣~ri − ~rj ∣∣3 − 3

[
~di .
(
~ri − ~rj

)] [
~dj .
(
~ri − ~rj

)]
∣∣~ri − ~rj ∣∣5︸ ︷︷ ︸

dipole−dipole

−
qiTr

(
¯̄
Q j
)

+ qjTr
(

¯̄
Q i
)

∣∣~ri − ~rj ∣∣3 + 3
qj
(
~ri − ~rj

)T ¯̄
Q i
(
~ri − ~rj

)
+ qi

(
~ri − ~rj

)T ¯̄
Q j
(
~ri − ~rj

)∣∣~ri − ~rj ∣∣5︸ ︷︷ ︸
charge−quadrupole

(18)

qi (atomic charge), ~di (dipole),
¯̄
Q i (quadrupole) are (local)

molecular descriptors.
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Why does multilinear regression of wavelet scattering
coefficients work so well (2) ?

Equation 18 is an approximation (at angular moment of order 2) of :

1

2

(∫
ρi (~r)Vj(~r)d~r +

∫
ρj(~r)Vi (~r)d~r

)
(19)

Bilinear regression should work better than linear regression :
products charge-dipole, dipole-dipole, charge-quadrupole in the
”physical” expression of the electrostatic energy i.e. products of two
molecular descriptors only ?

Trilinear should not (physically) give better results than bilinear
regression – at least concerning description of long-range electrostatic
interactions ?
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Discussion

Transferability of the approximated function f̃ (x) to larger molecules
? Increase number of scales (j) ? (=⇒ more scattering terms)

Transferability to other chemical contexts (e.g. chemical reaction =⇒
no training on the bond channel) ?

Training data set : symmetric configurations of the molecule ? Or
impose ”by hand” the symmetries (e.g. by symmetry invariant
coefficients) as here.

Interpretation of the first/second order scattering coefficients as
physical interaction terms (cf. short-range / long-range interactions) ?

To what extent (and how) do scattering coefficients ”account for
different types of interactions at different scales” ?
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Questions ?
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