# Functionals of the size and height on conditioned BGW trees

### Michel Nassif with R. Abraham and J.-F. Delmas

CERMICS (ENPC)

August 2020

Michel Nassif with R. Abraham and J.-F. Delmas Functionals of the size and height on conditioned BGW trees



| Introduction | Scaling limits of BGW trees | Main results |
|--------------|-----------------------------|--------------|
| •0000        | O                           | 0000         |
|              |                             |              |

# Notations for finite trees

Let  $\boldsymbol{t}$  be a finite rooted ordered tree.

For every vertex  $v \in \mathbf{t}$ ,  $\mathbf{t}_v$  is the subtree of  $\mathbf{t}$  above v.



- $|\mathbf{t}|$  is its size,  $\mathfrak{h}(\mathbf{t})$  its height.
- **t**<sup>°</sup> is the set of internal vertices of **t**.

| Introduction | Scaling limits of BGW trees |  |
|--------------|-----------------------------|--|
| 0000         |                             |  |
|              |                             |  |

### Framework

We consider  $\tau^n$  a Bienaymé-Galton-Watson (BGW) tree conditioned to have size *n* with offspring distribution  $\xi$  satisfying:

- $\xi$  is critical, i.e.  $\mathbb{E}[\xi] = 1$ ,
- $\xi$  belongs to the domain of attraction of a stable distribution with index  $\gamma \in (1, 2]$ , i.e.  $\exists (b_n, n \ge 1)$  such that

$$\frac{1}{b_n}\left(\sum_{k=1}^n \xi_k - n\right) \xrightarrow[n\to\infty]{(d)} X,$$

where (ξ<sub>n</sub>, n ≥ 1) is a sequence of i.i.d. random variables with the same distribution as ξ and X has Laplace transform E [exp(-λX)] = exp(λ<sup>γ</sup>),
the sequence (b<sub>n</sub>, n ≥ 1) satisfies

$$\underline{b} n^{1/\gamma} \leqslant b_n \leqslant \overline{b} n^{1/\gamma}, \quad \forall n \ge 1,$$

for some constants  $0 < \underline{b} < \overline{b} < \infty$ .

・ロト ・四ト ・ヨト

| Introduction | Scaling limits of BGW trees |  |
|--------------|-----------------------------|--|
| 00000        |                             |  |
|              |                             |  |

# Additive functionals

A functional F on (finite rooted ordered) trees is called additive if it satisfies the recursion

$$F(\mathbf{t}) = \sum_{i=1}^{d} F(\mathbf{t}_i) + f(\mathbf{t}),$$

where  $\mathbf{t}_1, \ldots, \mathbf{t}_d$  are the branches (= subtrees rooted at the children of the root) of  $\mathbf{t}$  and f is a toll function.

#### Remark.

$$F(\mathbf{t}) = \sum_{w \in \mathbf{t}} f(\mathbf{t}_w),$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

CERMICS (ENPC)

where  $\mathbf{t}_w$  is the subtree of  $\mathbf{t}$  above w.

Functionals of the size and height on conditioned BGW trees

## Examples of additive functionals

#### Total path length

$$P(\mathbf{t}) = \sum_{v \in \mathbf{t}} d(\emptyset, v) = \sum_{w \in \mathbf{t}} |\mathbf{t}_w| - |\mathbf{t}|.$$

Wiener index

$$W(\mathbf{t}) = \sum_{u,v \in \mathbf{t}} d(u,v) = 2|\mathbf{t}| \sum_{w \in \mathbf{t}} |\mathbf{t}_w| - 2 \sum_{w \in \mathbf{t}} |\mathbf{t}_w|^2.$$

 Shao and Sokal's B<sub>1</sub> index [Shao and Sokal (1990)] used to assess the balance of a phylogenetic tree

$$B_1(\mathbf{t}) = \sum_{\substack{w \in \mathbf{t}^\circ \ w 
eq \emptyset}} rac{1}{\mathfrak{h}(\mathbf{t}_w)},$$

Image: A matrix

where  $\boldsymbol{t}^\circ$  is the set of internal vertices of  $\boldsymbol{t}.$ 

Michel Nassif with R. Abraham and J.-F. Delmas

Functionals of the size and height on conditioned BGW trees

▶ **4 3** ▶

### Known results in the global regime

Fill and Kapur (2003) showed that for the Catalan model (i.e.  $\mathbb{P}(\xi = 0) = \mathbb{P}(\xi = 2) = 1/2$ ) for  $\alpha > 1/2$ ,

$$n^{-(\alpha+1/2)}\sum_{w\in\tau^n}|\tau^n_w|^{lpha}\xrightarrow[n o\infty]{(d)}Z_{lpha},$$

where  $Z_{\alpha}$  is characterized by its moments.

- Fill and Janson (2007) announced that  $Z_{\alpha}$  can be represented as a functional of the Brownian excursion and later generalized the result for arbitrary offspring distribution with finite variance.
- When the offspring distribution has infinite variance but lies in the domain of attraction of a stable distribution, **Delmas**, **Dhersin and Sciauveau** (2018) proved convergence for  $\alpha \ge 1$  towards a functional of the stable Lévy tree and conjectured a phase transition at  $\alpha = 1/\gamma$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

| Introduction<br>00000 | Scaling limits of BGW trees<br>● | Main results<br>0000 |
|-----------------------|----------------------------------|----------------------|
|                       |                                  |                      |
|                       |                                  |                      |

# Scaling limits of BGW trees

The stable Lévy tree with index  $\gamma \in (1, 2]$  is the real tree coded by the height process with index  $\gamma$ , see Le Gall and Le Jan (1998), Duquesne and Le Gall (2002).

Assume that the offspring distribution is critical and lies in the domain of attraction of a stable distribution with index  $\gamma \in (1, 2]$ .

Theorem (Aldous (1991), Duquesne (2003))

Let  $\tau^n$  be a BGW( $\xi$ ) conditioned to have n vertices. We have the convergence in distribution

$$\frac{b_n}{n} \tau^n \xrightarrow[n \to \infty]{(d)} \mathcal{T}$$

for the Gromov-Hausdorff-Prokhorov distance, where  $\mathcal{T}$  is the stable Lévy tree with index  $\gamma$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

CERMICS (ENPC)

Functionals of the size and height on conditioned BGW trees

Main results

# Convergence of polynomial functionals of the mass and height

Assume that  $\xi$  is critical and lies in the domain of attraction of a stable distribution with index  $\gamma \in (1, 2]$ . Furthermore, assume that  $\underline{b}n^{1/\gamma} \leq b_n \leq \overline{b}n^{1/\gamma}$ .

#### Theorem

 If γα + (γ − 1)β > 1, we have the convergence in distribution and of the first moment

$$\frac{b_n^{1+\beta}}{n^{1+\alpha+\beta}}\sum_{w\in\tau^{n,\circ}}|\tau_w^n|^{\alpha}\mathfrak{h}(\tau_w^n)^{\beta}\xrightarrow[n\to\infty]{(d)+\mathrm{mean}}Z_{\alpha,\beta}.$$

• If  $\gamma \alpha + (\gamma - 1)\beta \leqslant 1$ , we have

$$\frac{b_n^{1+\beta}}{n^{1+\alpha+\beta}}\sum_{w\in\tau^{n,\circ}}|\tau_w^n|^{\alpha}\mathfrak{h}(\tau_w^n)^{\beta}\xrightarrow[n\to\infty]{(d)+\mathrm{mean}}Z_{\alpha,\beta}=\infty.$$

Michel Nassif with R. Abraham and J.-F. Delmas

Functionals of the size and height on conditioned BGW trees

CERMICS (ENPC)

イロト イポト イヨト イヨト

| Introduction | Scaling limits of BGW trees | Main results |
|--------------|-----------------------------|--------------|
| 00000        | O                           | 0●00         |
|              |                             |              |

# The limit

#### Remark.

- Phase transition at  $\gamma \alpha + (\gamma 1)\beta = 1$  & compensation.
- One can add leaves when possible ( $\beta \ge 0$ ).

 $Z_{\alpha,\beta}$  has the following representation in terms of the stable Lévy tree  $\mathcal{T}$  with index  $\gamma$ :

$$Z_{lpha,eta} = \int_{\mathcal{T}} \mathfrak{m}(\mathcal{T}_y)^{lpha} \mathfrak{h}(\mathcal{T}_y)^{eta} \, \ell(\mathrm{d} y),$$

where  $\ell$  is the length measure on  $\mathcal{T}$ . Here  $\mathcal{T}_y$  is the subtree above y,  $\mathfrak{m}(\mathcal{T}_y)$  is its mass and  $\mathfrak{h}(\mathcal{T}_y)$  its height.

<ロト <回ト < 回ト < ヨト

# First moment of $Z_{\alpha,\beta}$

#### Proposition

For every  $\alpha, \beta \in \mathbb{R}$  such that  $\gamma \alpha + (\gamma - 1)\beta > 1$ , we have

$$\mathbb{E}\left[Z_{lpha,eta}
ight] = rac{1}{|\mathsf{\Gamma}(-1/\gamma)|} \, \mathsf{B}(lpha+eta(1-1/\gamma)-1/\gamma,1-1/\gamma) \, \mathbb{E}\left[\mathfrak{h}(\mathcal{T})^eta
ight].$$

In particular, in the Brownian case ( $\gamma = 2$ ), we have

$$\mathbb{E}\left[Z_{\alpha,\beta}\right] = \pi^{(\beta-1)/2}\xi(\beta) \mathsf{B}\left(\alpha + \beta/2 - 1/2, 1/2\right),$$

where  $\xi$  is the Riemann xi function defined by

$$\xi(s) = rac{1}{2}s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s), \quad \forall s \in \mathbb{C}.$$

Michel Nassif with R. Abraham and J.-F. Delmas

Functionals of the size and height on conditioned BGW trees

► E ∽ ९ ( CERMICS (ENPC)

< ロ > < 部 > < き > < き > ...

#### Recap of the finite variance case

Assume that  $\xi$  is critical and has finite variance. Asymptotic behavior of

$$\sum_{w\in\tau^{n,\circ}}|\tau^n_w|^{\alpha}\mathfrak{h}(\tau^n_w)^{\beta}$$

- $2\alpha + \beta > 1$ : converges in distribution to  $Z_{\alpha,\beta}$  (functional of the Brownian excursion) after rescaling by  $n^{\alpha+(1+\beta)/2}$ .
- $2\alpha + \beta < 0$ : CLT after recentering and rescaling by  $\sqrt{n}$  using Janson (2016) & Addario-Berry, Devroye and Janson (2013).
- $0 \leq 2\alpha + \beta \leq 1$ : only known for  $\beta = 0$ .

**Remark.** Shao and Sokal's  $B_1$  index ( $\alpha = 0, \beta = -1$ ) lies in the region  $2\alpha + \beta < 0$ .

・ロト ・四ト ・ヨト