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Notion of control systems

A control system in this talk is a dynamical system on which one can act
by using suitable controls.
Mathematically it often takes the form

Σ : ẏ = f(y, u),

where y is called the state and u is the control. The state can be in finite
dimension (then ẏ = f(y, u) is an ordinary differential equation) or in
infinite dimension (example: ẏ = f(y, u) is a partial differential equation).
A solution t ∈ [0, T ] "→ (y(t), u(t)) of ẏ(t) = f(y(t), u(t)) is called a
trajectory of the control system Σ. A map t ∈ [0, T ] "→ y(t) is also called
a trajectory of the control system Σ if there exists t ∈ [0, T ] "→ u(t) such
that ẏ(t) = f(y(t), u(t)).
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The cart-inverted pendulum: The equations

Let

y1 := ξ, y2 := θ, y3 := ξ̇, y4 := θ̇, u := F,(1)

The dynamics of the cart-inverted pendulum system is ẏ = f(y, u), with
y = (y1, y2, y3, y4) and

f :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y3
y4

mly24 sin y2 −mg sin y2 cos y2
M +m sin2 y2

+
u

M +m sin2 y2
−mly24 sin y2 cos y2 + (M +m)g sin y2 − u cos y2

(M +m sin2 y2)l

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.(2)



The baby stroller



The baby stroller: The dynamic equations of motion
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The baby stroller: The dynamic equations of motion

y1

y2

y3

ẏ1 = u1 cos y3, ẏ2 = u1 sin y3, ẏ3 = u2, n = 3, m = 2.(1)



Satellite



Satellite : The thrusters



Control of the attitude: Notations

η = (φ, θ,ψ) ∈ R3 are the Euler angles of a frame attached to the
satellite representing rotations with respect to a fixed reference frame,

ω = (ω1,ω2,ω3) ∈ R3 is the angular velocity of the frame attached to
the satellite with respect to the reference frame, expressed in the
frame attached to the satellite,

J is the inertia matrix of the satellite,

The b1, . . . , bm are m fixed independent vectors in R3 and uibi ∈ R3,
1 ! i ! m, are the torques applied to the satellite, the ui ∈ R,
1 ! i ! m, are the controls.



Control of the attitude: The dynamic equations of motion

ω̇ = J−1S(ω)Jω +
m
∑

i=1

uiJ
−1bi, η̇ = A(η)ω,(1)

where S(ω) is the matrix representation of the wedge-product, i.e.,

(2) S(ω) =

⎛

⎝

0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞

⎠ ,

and

(3) A(η) =

⎛

⎝

cos θ 0 sin θ
sin θ tan φ 1 − cos θ tanφ

− sin θ/ cosφ 0 cos θ/ cosφ

⎞

⎠ .

(Note that A(0) = Id.) The state of our control system is
(η1, η2, η3,ω1,ω2,ω3) ∈ R6 and the control is (u1, . . . , um) ∈ Rm.



A water-tank control system

u := F



Saint-Venant equations: Notations

D

x

vH

The horizontal velocity v is taken with respect to the one of the tank.



The model: Saint-Venant equations

Ht + (Hv)x = 0, t ∈ [0, T ], x ∈ [0, L],(1)

vt +

(

gH +
v2

2

)

x

= −u (t) , t ∈ [0, T ], x ∈ [0, L],(2)

v(t, 0) = v(t, L) = 0, t ∈ [0, T ],(3)

ṡ(t) = u (t) , t ∈ [0, T ],(4)

Ḋ(t) = s (t) , t ∈ [0, T ].(5)

u (t) is the horizontal acceleration of the tank in the absolute
referential,

g is the gravity constant,

s is the horizontal velocity of the tank,

D is the horizontal displacement of the tank.



The Euler/Navier-Stokes control system
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Euler control system

We denote by ν : ∂Ω → Rn the outward unit normal vector field to Ω. Let
T > 0. The Euler control system is

yt + (y ·∇)y +∇p = 0, div y = 0,(1)

y · ν = 0 on [0, T ]× (∂Ω \ Γ),(2)

This is an implicit formulation. If one wants to make it explicit, many
choices are in fact possible. For example, for n = 2, one can take

1 y · ν on Γ with
∫

Γ y · ν = 0,
2 curl y at the points of [0, T ]× Γ where y · ν < 0.



The Navier-Stokes control system

The Navier-Stokes control system is deduced from the Euler equations by
adding the linear term −∆y: the equation is now

yt −∆y + (y ·∇)y +∇p = 0, div y = 0.(1)

For the boundary condition, one requires now that

y = 0 on [0, T ]× (∂Ω \ Γ).(2)

For the control, one can take, for example, y on [0, T ]× Γ.



Controllability

Given two states y0 and y1, does there exist a control t ∈ [0, T ] "→ u(t)
which steers the control system from y0 to y1, i.e. such that

(

ẏ = f(y, u(t)), y(0) = y0
)

⇒
(

y(T ) = y1
)

?(1)



Example: Destroy waves
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Another example: Steady-state controllability
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Controllability of the Euler control system

Let y0, y1 : Ω → Rn be such that

div y0 = div y1 = 0, y0 · ν = y1 · ν = 0 on ∂Ω \ Γ.(1)

Does there exist y : [0, T ]× Ω → Rn and p : [0, T ] × Ω → R such that

yt + (y ·∇)y +∇p = 0, div y = 0,(2)

y · ν = 0 on [0, T ]× (∂Ω \ Γ),(3)

y(0, ·) = y0, y(T, ·) = y1?(4)
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Cart inverted pendulum control system
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Cart inverted pendulum: the equilibrium
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Instability of the equilibrium

C



Instability of the equilibrium
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Stabilization of the equilibrium

C
F : depends on the state

F is feedback



Double inverted pendulum (CAS, ENSMP/La Villette)
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Controllability of linear control systems

The control system is

ẏ = Ay +Bu, y ∈ R
n, u ∈ R

m,

where A ∈ Rn×n and B ∈ Rn×m.

Theorem (Kalman’s rank condition)

The linear control system ẏ = Ay +Bu is controllable on [0, T ] if and only
if

Span {AiBu;u ∈ R
m, i ∈ {0, 1, . . . , n− 1}} = R

n.

Remark

This condition does not depend on T . This is no longer true for nonlinear
systems and for systems modeled by linear partial differential equations.



Small time local controllability

We assume that (ye, ue) is an equilibrium, i.e., f(ye, ue) = 0. Many
possible choices for natural definitions of local controllability. The most
popular one is Small-Time Local Controllability (STLC): the state
remains close to ye, the control remains to ue and the time is small.
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t = 0
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t = ε

|u(t)− ue| ! ε



The linear test

We consider the control system ẏ = f(y, u) where the state is y ∈ Rn and
the control is u ∈ Rm. Let us assume that f(ye, ue) = 0. We are
interested in the small-time local controllability of ẏ = f(y, u) around
(ye, ue). L. Nirenberg, besides to be a great mathematician, always give
great advices when you have no more idea to solve a given problem. I was
told that one of his famous advices is
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The linear test

We consider the control system ẏ = f(y, u) where the state is y ∈ Rn and
the control is u ∈ Rm. Let us assume that f(ye, ue) = 0. We are
interested in the small-time local controllability of ẏ = f(y, u) around
(ye, ue). L. Nirenberg, besides to be a great mathematician, always give
great advices when you have no more idea to solve a given problem. I was
told that one of his famous advices is

Have you tried to linearize?

We follow Nirenberg’s advice. The linearized control system at (ye, ue) is
the linear control system ẏ = Ay +Bu with

A :=
∂f

∂y
(ye, ue), B :=

∂f

∂u
(ye, ue).(1)

If the linearized control system ẏ = Ay +Bu is controllable, then
ẏ = f(y, u) is small-time locally controllable at (ye, ue).



Application to the cart-inverted pendulum

For the cart-inverted pendulum, the linearized control system around
(0, 0) ∈ R4 × R is ẏ = Ay +Bu with

A =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0
0 0 0 1

0 −
mg

M
0 0

0
(M +m)g

Ml
0 0

⎞

⎟

⎟

⎟

⎟

⎠

, B =
1

Ml

⎛

⎜

⎜

⎝

0
0
l
−1

⎞

⎟

⎟

⎠

.(1)

One easily checks that this linearized control system satisfies the Kalman
rank condition and therefore is controllable. Hence the cart-inverted
pendulum is small-time locally controllable at (0, 0) ∈ R4 × R.



The linear test and the controllability of the baby stroller

Let us recall that the baby stroller control system is

ẏ1 = u1 cos y3, ẏ2 = u1 sin y3, ẏ3 = u2, n = 3, m = 2.(1)

The linearized control system at (0, 0) ∈ R3 × R2 is

ẏ1 = u1, ẏ2 = 0, ẏ3 = u2,(2)

which is clearly not controllable. The linearized control system gives no
information on the small-time local controllability at (0, 0) ∈ R3 × R2 of
the baby stroller.



What to do if linearized control system is not controllable?

Question: What to do if

ẏ =
∂f

∂y
(ye, ue)y +

∂f

∂u
(ye, ue)u(1)

is not controllable?
In finite dimension: One uses iterated Lie brackets.



Lie brackets and iterated Lie brackets

Definition (Lie brackets)

[X,Y ](y) := Y ′(y)X(y) −X ′(y)Y (y).(1)

Iterated Lie brackets: [X, [X,Y ]], [[Y,X], [X, [X,Y ]]] etc. For simplicity,
from now on we assume that

f(y, u) = f0(y) +
m
∑

i=1

uifi(y) with f0(0) = 0.(2)

Drift: f0. Driftless control systems: f0 = 0. We denote by
Lie {f0, f1, . . . , fm} the smallest vector subspace E of C∞(Rn;Rn)
containing f0, f1,..., fm which is stable for the Lie bracket: if X ∈ E and
Y ∈ E , then [X,Y ] ∈ E .



Lie bracket for ẏ = u1f1(y) + u2f2(y)

a
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Lie bracket for ẏ = u1f1(y) + u2f2(y)
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y(2ε)



Lie bracket for ẏ = u1f1(y) + u2f2(y)

a
(u1, u2) = (η1, 0)

y(ε)

(u1, u2) = (0, η2)

y(2ε)

(u1, u2) = (−η1, 0)

y(3ε)



Lie bracket for ẏ = u1f1(y) + u2f2(y)

a
(u1, u2) = (η1, 0)

y(ε)

(u1, u2) = (0, η2)

y(2ε)

(u1, u2) = (−η1, 0)

y(3ε)

(u1, u2) = (0,−η2)

y(4ε)



Lie bracket for ẏ = u1f1(y) + u2f2(y)

a
(u1, u2) = (η1, 0)

y(ε)

(u1, u2) = (0, η2)

y(2ε)

(u1, u2) = (−η1, 0)

y(3ε)

(u1, u2) = (0,−η2)

y(4ε) ≃ a+ η1η2ε
2[f1, f2](a)

(ε → 0+)



Controllability of driftless control systems: Local
controllability

Theorem (P. Rashevski (1938), W.-L. Chow (1939))

Let O be a nonempty open subset of Rn and let ye ∈ O. Let us assume
that, for some f1, . . . , fm : O → Rn,

f(y, u) =
m
∑

i=1

uifi(y), ∀(y, u) ∈ O × R
m.(1)

Let us also assume that

{

h(ye); h ∈ Lie {f1, . . . , fm}
}

= R
n.(2)

Then the control system ẏ = f(y, u) is small-time locally controllable at
(ye, 0) ∈ Rn × Rm.



The baby stroller system: Controllability

ẏ1 = u1 cos y3, ẏ2 = u1 sin y3, ẏ3 = u2, n = 3, m = 2.(1)

This system can be written as ẏ = u1f1(y) + u2f2(y), with

f1(y) = (cos y3, sin y3, 0), f2(y) = (0, 0, 1).(2)

One has

[f1, f2](y) = (sin y3,− cos y3, 0).(3)

Hence f1(0), f2(0) and [f1, f2](0) all together span all of R3. This implies
the small-time local controllability of the baby stroller at (0, 0) ∈ R3 × R2.



Drift and the Lie algebra rank condition

We consider the control affine system ẏ = f0(y) +
∑m

i=1 uifi(y) with
f0(0) = 0. One says that this control system satisfies the Lie algebra
rank condition at 0 ∈ Rn if

{

h(0); h ∈ Lie {f0, f1, . . . , fm}
}

= R
n.(1)

One has the following theorem.

Theorem (R. Hermann (1963) and T. Nagano (1966))

If the fi’s are analytic in a neighborhood of 0 ∈ Rn and if the control
system ẏ = f0(y) +

∑m
i=1 fi(y) is small-time locally controllable at

(0, 0) ∈ Rn × Rm, then this control system satisfies the Lie algebra rank
condition at 0 ∈ Rn.



Lie bracket for ẏ = f0(y) + uf1(y), with f0(a) = 0

a



Lie bracket for ẏ = f0(y) + uf1(y), with f0(a) = 0

a

u = −η

y(ε)



Lie bracket for ẏ = f0(y) + uf1(y), with f0(a) = 0

a

u = −η

y(ε)
u = η

y(2ε)



Lie bracket for ẏ = f0(y) + uf1(y), with f0(a) = 0

a

u = −η

y(ε)
u = η

y(2ε) ≃ a+ ηε2[f0, f1](a)
ε → 0+



The Kalman rank condition and the Lie algebra rank
condition

Let us write the linear control system ẏ = Ay +Bu as
ẏ = f0(y) +

∑m
i=1 uifi(y) with

f0(y) = Ay, fi(y) = Bi, Bi ∈ R
n, (B1, . . . , Bm) = B.(1)

The Kalman rank condition is equivalent to the Lie algebra rank condition
at 0 ∈ Rn.
Hence the Lie algebra rank condition is sufficient for two important cases,
namely Linear systems and driftless control systems.



With a drift term: Not all the iterated Lie brackets are good

We take n = 2 and m = 1 and consider the control system

ẏ1 = y22, ẏ2 = u,(1)

where the state is y := (y1, y2) ∈ R2 and the control is u ∈ R. This
control system can be written as ẏ = f0(y) + uf1(y) with

f0(y) = (y22 , 0), f1(y) = (0, 1).(2)

One has [f1, [f1, f0]] = (2, 0) and therefore f1(0) and [f1, [f1, f0]](0) span
all of R2. However the control system (1) is clearly not small-time locally
controllable at (0, 0) ∈ R2 ×R.



References for sufficient or necessary conditions for
small-time local controllability when there is a drift term

A. Agrachev (1991),

A. Agrachev and R. Gamkrelidze (1993),

R. M. Bianchini and Stefani (1986),

H. Frankowska (1987),

M. Kawski (1990),

H. Sussmann (1983, 1987),

A. Tret’yak (1990),

K. Beauchard and F. Marbach (2017).



The under-actuated satellite

ω̇ = J−1S(ω)Jω +
m
∑

i=1

uiJ
−1bi, η̇ = A(η)ω,(1)

with S(ω)x := x ∧ ω. One has A(0) = Id. The vectors b1, . . . , bm are
independent. If m = 3, the linearized control system around the equilibrium
(0, 0) ∈ R6 × R3 is controllable and the control system is small-time locally
controllable at (0, 0) ∈ R6 ×R3. We now turn to the case where m = 2.
One easily sees that the linearized control system around the equilibrium
(0, 0) ∈ R6 × R2 is not controllable. However, if

Span {b1, b2, S(ω)J
−1ω; ω ∈ Span {b1, b2}} = R

3,(2)

then the control system (1) is small-time locally controllable at
(0, 0) ∈ R6 × R2. (This follows from a sufficient condition for local
controllability proved by H. Sussmann in 1987.)



Iterated Lie brackets and PDE control systems

Iterative Lie brackets have been used successfully for some control PDE
systems:

Euler and Navier Stokes control systems (different from the one
considered here): A. Agrachev and A. Sarychev (2005); A. Shirikyan
(2006, 2007), H. Nersisyan (2010),

Schrödinger control system: T. Chambrion, P. Mason, M. Sigalotti
and U. Boscain (2009), U. Boscain, F. Chittaro, P. Mason, M.
Sigalotti (2012), U. Boscain, M. Caponigro, T. Chambrion, and M.
Sigalotti (2012).

However, for many PDE, one does not know how to use them.



A problem with Lie brackets for PDE control systems

Consider the simplest PDE control system

yt + yx = 0, x ∈ [0, L], y(t, 0) = u(t).(1)

It is a control system where, at time t, the state is y(t, ·) : (0, L) → R and
the control is u(t) ∈ R. Formally it can be written in the form
ẏ = f0(y) + uf1(y). Here f0 is linear and f1 is constant.



Lie bracket for ẏ = f0(y) + uf1(y), with f0(a) = 0

a

u = −η

y(ε)
u = η

y(2ε) ≃ a+ ηε2[f0, f1](a)
ε → 0+



Problems of the Lie brackets for PDE control systems
(continued)

Let us consider, for ε > 0, the control defined on [0, 2ε] by

u(t) := −η for t ∈ (0, ε), u(t) := η for t ∈ (ε, 2ε).(1)

Let y : (0, 2ε) × (0, L) → R be the solution of the Cauchy problem

yt + yx = 0, t ∈ (0, 2ε), x ∈ (0, L),(2)

y(t, 0) = u(t), t ∈ (0, 2ε), y(0, x) = 0, x ∈ (0, L).(3)

Then one readily gets, if 2ε ! L,

y(2ε, x) = η, x ∈ (0, ε), y(2ε, x) = −η, x ∈ (ε, 2ε),(4)

y(2ε, x) = 0, x ∈ (2ε, L).(5)



Problems of the Lie brackets for PDE control systems
(continued)

∣

∣

∣

∣

y(2ε, ·) − y(0, ·)

ε2

∣

∣

∣

∣

L2(0,L)

→ +∞ as ε→ 0+.(1)

For every φ ∈ H2(0, L), one gets after suitable computations

lim
ε→0+

∫ L

0
φ(x)

(

y(2ε, x) − y(0, x)

ε2

)

dx = −ηφ′(0).(2)

So, in some sense, we could say that [f0, f1] = δ′0. Unfortunately it is not
clear how to use this derivative of a Dirac mass at 0.



Controllability of yt + yx = 0, x ∈ [0, L], y(t, 0) = u(t)
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Controllability of yt + yx = 0, x ∈ [0, L], y(t, 0) = u(t)
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t
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Controllability of yt + yx = 0, x ∈ [0, L], y(t, 0) = u(t)

xL

t

(0, 0)

T

Case 1: T < L

y0(x)

u(t)

not controllable



Controllability of yt + yx = 0, x ∈ [0, L], y(t, 0) = u(t)

xL

t

(0, 0)

T

Case 2: T > L
controllable

y0(x)

u(t)



Controllability of control systems modeled by linear PDE

There are lot of powerful tools to study the controllability of linear control
systems in infinite dimension. The most popular ones are based on the
duality between observability and controllability. This leads to try to prove
observability inequalities. There are many methods to prove this
observability inequalities. For example:

Ingham’s inequalities and harmonic analysis: D. Russell (1967),

Multipliers method: Lop Fat Ho (1986), J.-L. Lions (1988),

Microlocal analysis: C. Bardos-G. Lebeau-J. Rauch (1992),

Carleman’s inequalities: A. Fursikov, O. Imanuvilov, G. Lebeau and
L. Robbiano (1993-1996).

(However there are still plenty of open problems.) What to do if the
linearized control system around the equilibrium of interest is not
controllable?
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A method to avoid Lie brackets: The return method (JMC
(1992))
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A method to avoid Lie brackets: The return method (JMC
(1992))
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The return method: An example in finite dimension

We go back to the baby stroller control system

ẏ1 = u1 cos y3, ẏ2 = u1 sin y3, ẏ3 = u2.(1)

For every ū : [0, T ] → R2 such that, for every t in [0, T ],
ū(T − t) = −ū(t), every solution ȳ : [0, T ] → R3 of

˙̄y1 = ū1 cos ȳ3, ˙̄y2 = ū1 sin ȳ3, ˙̄y3 = ū2,(2)

satisfies ȳ(0) = ȳ(T ). The linearized control system around (ȳ, ū) is

{

ẏ1 = −ū1y3 sin ȳ3 + u1 cos ȳ3, ẏ2 = ū1y3 cos ȳ3 + u1 sin ȳ3,
ẏ3 = u2,

(3)

which is controllable if (and only if) ū ̸≡ 0. We have got the controllability
of the baby stroller system without using Lie brackets. We have only used
controllability results for linear control systems.



Return method: References

Stabilization of driftless systems in finite dimension: JMC (1992),

Euler equations of incompressible fluids: JMC (1993,1996), O. Glass
(1997,2000), O. Glass-Th. Horsin (2010, 2012, 2016),

Control of driftless systems in finite dimension: E.D. Sontag (1995),

Navier-Stokes equations: JMC (1996), JMC and A. Fursikov (1996),
A. Fursikov and O. Imanuvilov (1999), S. Guerrero, O. Imanuvilov and
J.-P. Puel (2006), JMC and S. Guerrero (2009), M. Chapouly (2009),
JMC and P. Lissy (2014),

Saint-Venant equations: JMC (2002),

Vlasov Poisson: O. Glass (2003),



Return method: References (continued)

Isentropic Euler equations: O. Glass (2006),

Schrödinger equation: K. Beauchard (2005), K. Beauchard and JMC
(2006),

Hyperbolic/wave equations: JMC, O. Glass and Z. Wang (2009), F.
Alabau, JMC and G. Olive (2017), C. Zhang (2017),

Ensemble controllability of Bloch equations: K. Beauchard, JMC and
P. Rouchon (2010),

Parabolic systems: JMC, S. Guerrero and L. Rosier (2010), JMC and
J.-Ph. Guilleron (2017),

Uniform controllability of scalar conservation laws in the vanishing
viscosity limit: M. Léautaud (2010).



The Euler control system
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Controllability problem

We denote by ν : ∂Ω → Rn the outward unit normal vector field to Ω. Let
T > 0. Let y0, y1 : Ω → Rn be such that

div y0 = div y1 = 0, y0 · ν = y1 · ν = 0 on ∂Ω \ Γ.(1)

Does there exist y : [0, T ]× Ω → Rn and p : [0, T ] × Ω → R such that

yt + (y ·∇)y +∇p = 0, div y = 0,(2)

y · ν = 0 on [0, T ]× (∂Ω \ Γ),(3)

y(0, ·) = y0, y(T, ·) = y1?(4)

For the control, many choices are in fact possible. For example, for n = 2,
one can take

1 y · ν on Γ with
∫

Γ y · ν = 0,
2 curl y at the points of [0, T ]× Γ where y · ν < 0.



A case without controllability

Σ

Ω

∂Ω

Γ
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Proof of the noncontrollability

Let us give it only for n = 2. Let γ0 be a Jordan curve in Ω. Let, for
t ∈ [0, T ], γ(t) be the Jordan curve obtained, at time t ∈ [0, T ], from the
points of the fluids which, at time 0, were on γ0. The Kelvin law tells us
that, if γ(t) does not intersect Γ,

∫

γ(t)
y(t, ·) ·

−→
ds =

∫

γ0

y(0, ·) ·
−→
ds, ∀t ∈ [0, T ],(1)

We take γ0 := Σ. Then γ(t) = Σ for every t ∈ [0, T ]. Hence, if

∫

Σ
y1 ·

−→
ds ̸=

∫

Σ
y0 ·

−→
ds,(2)

one cannot steer the control system from y0 to y1.
More generally, for every n ∈ {2, 3}, if Γ does not intersect every
connected component of the boundary ∂Ω of Ω, the Euler control system is
not controllable. This is the only obstruction to the controllability of the
Euler control system.



Controllability of the Euler control system

Theorem (JMC for n = 2 (1996), O. Glass for n = 3 (2000))

Assume that Γ intersects every connected component of ∂Ω. Then the
Euler control system is globally controllable in every time: For every T > 0,
for every y0, y1 : Ω → Rn such that

div y0 = div y1 = 0, y0 · ν = y1 · ν = 0 on ∂Ω \ Γ,(1)

there exist y : [0, T ]× Ω → Rn and p : [0, T ]× Ω → R such that

yt + (y ·∇)y +∇p = 0, div y = 0,(2)

y · ν = 0 on [0, T ] × (∂Ω \ Γ)(3)

y(0, ·) = y0, y(T, ·) = y1.(4)



Comments on the proof

First try: One studies the controllability of the linearized control system
around 0. This linearized control system is the control system

yt +∇p = 0, div y = 0, y · ν = 0 on [0, T ]× (∂Ω \ Γ).(1)

For simplicity we assume that n = 2. Taking the curl of the first equation,
on gets,

(2) (curl y)t = 0.

Hence curl y remains constant along the trajectories of the linearized
control system. Hence the linearized control system is not controllable.



The return method and the controllability of the Euler
equations

One looks for (ȳ, p̄) : [0, T ]× Ω → Rn × R such that

ȳt + (ȳ ·∇ȳ) +∇p̄ = 0, div ȳ = 0,(1)

ȳ · ν = 0 on [0, T ]× (∂Ω \ Γ),(2)

ȳ(T, ·) = ȳ(0, ·) = 0,(3)

the linearized control system around (ȳ, p̄) is controllable.(4)



Construction of (ȳ, p̄)

Take θ : Ω → R such that

∆θ = 0 in Ω,
∂θ

∂ν
= 0 on ∂Ω \ Γ.

Take α : [0, T ] → R such that α(0) = α(T ) = 0. Finally, define
(ȳ, p̄) : [0, T ] × Ω → R2 × R by

ȳ(t, x) := α(t)∇θ(x), p̄(t, x) := −α̇(t)θ(x)−
α(t)2

2
|∇θ(x)|2.(1)

Then (ȳ, p̄) is a trajectory of the Euler control system which goes from 0 to
0.



Controllability of the linearized control system around (ȳ, p̄)
if n = 2

The linearized control system around (ȳ, p̄) is

{

yt + (ȳ ·∇)y + (y ·∇)ȳ +∇p = 0, div y = 0 in [0, T ]× Ω,
y · ν = 0 on [0, T ]× (∂Ω \ Γ).

(1)

Again we assume that n = 2. Taking once more the curl of the first
equation, one gets

(curl y)t + (ȳ ·∇)(curl y) = 0.(2)

This is a simple transport equation on curl y. If there exists a ∈ Ω such
that ∇θ(a) = 0, then ȳ(t, a) = 0 and (curl y)t(t, a) = 0 showing that (2)
is not controllable. This is the only obstruction: If ∇θ does not vanish in
Ω, one can prove that (2) (and then (1)) is controllable if

∫ T
0 α(t)dt is

large enough.
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A good θ for n = 2 and Ω simply connected

Ω
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Γ
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g : ∂Ω → R
∫

∂Ω gds = 0,
{g > 0} = Γ+, {g < 0} = Γ−

∆θ = 0,
∂θ
∂ν = g on ∂Ω

∇θ



From local controllability to global controllability

A simple scaling argument: if (y, p) : [0, 1] × Ω :→ Rn × R is a trajectory
of our control system, then, for every ε > 0, (yε, pε) : [0, ε] × Ω → Rn × R

defined by

yε(t, x) :=
1

ε
y

(

t

ε
, x

)

, pε(t, x) :=
1

ε2
p

(

t

ε
, x

)

(1)

is also a trajectory of our control system.
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An example in finite dimensional

We consider the following control system

ẏ = F (y) +Bu(t),(1)

where the state is y ∈ Rn, the control is u ∈ Rm, B is a n×m matrix and
F ∈ C1(Rn;Rn) is quadratic: F (λy) = λ2F (y), ∀λ ∈ [0,+∞), ∀y ∈ Rn.
We assume that there exists a trajectory
(ȳ, ū) ∈ C0([0, T0];Rn)× L∞((0, T0);Rm) of the control system (1) such
that the linearized control system around (ȳ, ū) is controllable and such
that ȳ(0) = ȳ(T0) = 0.

Remark

One has F (0) = 0. Hence (0, 0) is an equilibrium of the control system
(1). The linearized control system around this equilibrium is ẏ = Bu, which
is not controllable if (and only if) B is not onto.



Let A be a n× n matrix and let us consider the following control system

ẏ = Ay + F (y) +Bu(t),(1)

where the state is y ∈ Rn, the control is u ∈ Rm. For the application to
incompressible fluids, (1) is the Euler control system and (1) is the
Navier-Stokes control system.
One has the following theorem.

Theorem

Under the above assumptions, the control system (1) is globally
controllable in arbitrary time: For every T > 0, for every y0 ∈ Rn and for
every y1 ∈ Rn, there exists u ∈ L∞((0, T );Rm) such that

(

ẏ = f(y, u(t)), y(0) = y0
)

⇒
(

y(T ) = y1
)

.



Proof of the controllability theorem

Let y0 ∈ Rn and y1 ∈ Rn. Let

G : R× L∞((0, T0);Rm) → Rn

(ε, ũ) "→ ỹ(T0)− εy1

where ỹ : [0, T0] → Rn is the solution of

(2) ˙̃y = F (ỹ) + εAỹ +Bũ(t), ỹ(0) = εy0.

The map G is of class C1 in a neighborhood of (0, ū). One has
G(0, ū) = 0. Moreover G′

ũ(0, ū)v = y(T0) where y : [0, T0] → Rn is the
solution of

(3) ẏ = F ′(ȳ)y +Bv, y(0) = 0.

Hence G′
ũ(0, ū) is onto. Therefore, using the implicit function theorem,

there exist ε0 > 0 and a C1-map ε ∈ (−ε0, ε0) "→ ũε ∈ L∞((0, T0);Rm)
such that

G(ε, ũε) = 0, ∀ε ∈ (−ε0, ε0),(4)

ũ0 = ū.(5)



Let ỹε : [0, T0] → Rn be the solution of the Cauchy problem
˙̃yε = F (ỹε) + εAỹε +Bũε(t), ỹε(0) = εy0. Then ỹε(T0) = εy1. Let
y : [0, εT0] → Rn and u : [0, εT0] → Rm be defined by

y(t) :=
1

ε
ỹε

(

t

ε

)

, u(t) :=
1

ε2
ũε

(

t

ε

)

.

Then ẏ = F (y) +Ay +Bu, y(0) = y0 and y(εT0) = y1. This concludes
the proof of the controllability theorem if T is small enough. If T is not
small, it suffices, with ε > 0 small enough, to go from y0 to 0 during the
interval of time [0, ε], stay at 0 during the interval of time [ε, T − ε] and
finally go from 0 to y1 during the interval of time [T − ε, T ].



A drawback of this strategy

However this strategy has a serious drawback in the case of partial
differential equations if “Ay requires more derivatives on y that F (y)”. For
example it seems difficult to deduce from the controllability of

(1) yt + yx = 0, y(t, 0) = u(t), x ∈ (0, L),

in time T > L the (null) controllability of

(2) yt + yx − εyxx = 0, y(t, 0) = u(t), y(t, L) = v(t), x ∈ (0, L),

in time T > L if ε > 0 is small enough. So, let us propose a slightly
different strategy (requiring stronger assumptions).



A slightly different strategy

Let us, moreover, assume that the control system

(1) ẏ = Ay + F (y) +Bu

where the state is y ∈ Rn and the control is u ∈ Rm is locally controllable
in small time. Then one can proceed in the following way in order to get
the global null controllability in small time of ẏ = Ay + F (y) +Bu. We
want to send y0 to 0 to 0 in small time by using a suitable control u.
Again we perform the following scaling

(2) z(t) := εy(εt), w(t) := ε2u(εt).

Then ẏ = Ay + F (y) +Bu is equivalent to ż = εAz + F (z) +Bw. We
then look for z and v of the following form

(3) z = ȳ + εz1 + ε2z2 + . . . , w = ū+ εv1 + ε2v2 + . . .



Then, identifying the orders in εp, p ∈ {0, 1} in ż = εz + F (z) +Bw one
gets

˙̄y = F (ȳ) +Bū,(1)

ż1 = Aȳ +
∂F

∂y
(ȳ, ū)z1 +

∂F

∂u
(ȳ, ū)w1.(2)

Note that, from our assumption on (ȳ, ū), (1) holds. For the initial data,
we have

(3) z̄(0) = 0, z1(0) = y0.

From (1) and the properties of (ȳ, ū), one has ȳ(T0) = 0. From our
assumption of controllability of the linearized control around (ȳ, ū) one gets
the existence of v1 such that z1(T0) = 0. So, with this w1, z(T0) is of
order ε2. Going back to the y variable one gets that y(εT0) is of order ε.
Then using the local controllability in small time of ẏ = Ay + F (y) +Bu,
one gets that, for every τ > 0, we can find a control allowing us to go for
the control system ẏ = Ay + F (y) +Bu from y(εT0) to 0 during the
interval of time [εT0, εT0 + τ ].



This gives again the global null controllability in small time of

(1) ẏ = Ay + F (y) +Bu.

It requires an extra property, namely, the local null controllability in small
time of (1), but it avoids the use of the inverse mapping theorem which is
a serious problem in the pde framework if “Ay requires more derivatives on
y that F (y)”.



Morality

The “morality” behind these strategies is that in some cases the quadratic
term F (y) is the leading term compared to the linear term Ay for the
global controllability: Ay is just an annoying perturbations (which can
however be used when we are close enough to 0).
Let us try to apply this method to the global null controllability of the
Navier-Stokes equation. As one can see by looking at the proof of the
controllability theorem, this method works requires to have a (good)
convergence of the solution of the Navier-Stokes equations to the solution
of the Euler equations when the viscosity tends to 0. This is the case on
manifolds without boundary, which, in our situation, corresponds to the
case where the control is on the full boundary of Ω: Γ := ∂Ω (or in the
case of interior control on a manifold without boundary). This is why we
(JMC and A. Fursikov (1996)) are able to prove the global controllability of
the Navier-Stokes only if the control is on the full boundary. When the
control is only on part of the boundary, the global controllability is a
challenging open problem.



Let us recall that, for manifolds with boundary, this convergence is not
known even in dimension n = 2 if there is no control. More precisely, let us
assume that Ω is of class C∞, that n = 2 and that ϕ ∈ C∞

0 (Ω;R2) is such
that div ϕ = 0. Let T > 0. Let y ∈ C∞([0, T ] × Ω;R2) and
p ∈ C∞([0, T ] × Ω) be the solution to the Euler equations

(E)

⎧

⎨

⎩

yt + (y ·∇)y +∇p = 0, div y = 0, in (0, T ) × Ω,
y · ν = 0 on [0, T ]× ∂Ω,
y(0, ·) = ϕ on Ω.

Let ε ∈ (0, 1]. Let yε ∈ C∞([0, T ] × Ω;R2) and pε ∈ C∞([0, T ] × Ω) be
the solution to the Navier-Stokes equations

(NS)

⎧

⎨

⎩

yεt − ε∆yε + (yε ·∇)yε +∇pε = 0, div yε = 0, in (0, T ) × Ω,
yε = 0 on [0, T ]× ∂Ω,
y(0, ·) = ϕ on Ω.

One knows that there exists C > 0 such that

(1) |yε|C0([0,T ];L2(Ω;R2)) ! C, ∀ε ∈ (0, 1].



One has the following challenging open problems.

Open problems (Convergence of Navier-Stokes to Euler as the viscosity tends
to 0)

(i) Does yε converge weakly to y in L2((0, T )× Ω;R2) as ε→ 0+?

(ii) Let K be a compact subset of Ω and m be a positive integer. Does
yε|[0,T ]×K converge to y|[0,T ]×K in Cm([0, T ] ×K;R2) as ε→ 0+?

(Of course, due to the difference of boundary conditions between the
Euler equations and the Navier-Stokes equations, one does not have a
positive answer to this last question if K = Ω.)



The Navier Stokes equations with the Navier slip boundary
condition

Let Ω be a smooth bounded non empty open subset of Rn, n ∈ {2, 3}. We
are interested in the Navier-Stokes equations

(1)

{

yt −∆y + (y ·∇) y +∇p = 0, t ∈ [0, T ], x ∈ Ω,
div y = 0, t ∈ [0, T ], x ∈ Ω,

where, at time t ∈ [0, T ] and at the position x ∈ Ω, y(t, x) ∈ Rn is the
velocity of the viscous incompressible fluid. We assume that we are able to
prescribe y on a non empty open subset Γ of ∂Ω.



The Navier slip boundary condition

The Navier slip boundary conditions are

(1) y · ν = 0 and [D(y)ν +Ay]
tan

= 0 on ∂Ω \ Γ.

For a vector field f , we introduce [f ]
tan

its tangential part and D(f) the
rate of strain tensor (or shear stress) which are defined by:

(2) [f ]
tan

:= f − (f · ν)ν, Dij(f) :=
1

2

(

f j
xi
+ f i

xj

)

.

Eventually, in (1), A is a smooth matrix valued function on ∂Ω, describing
the friction near the boundary. This is a generalization of the usual
condition involving a single scalar parameter α ≥ 0 (i.e. A = αId). For flat
boundaries, such a scalar coefficient measures the amount of friction.
When α = 0 and the boundary is flat, the fluid slips along the boundary
without friction and there is no boundary layers. When α→ +∞, the
friction is so intense that the fluid is almost at rest near the boundary;
condition (1) converges to the Dirichlet condition.



The controllability problem of the Navier control system

The question of small time global exact null controllability asks whether,
for any T > 0 and any initial data y0 (in some appropriate space), there
exists a trajectory y defined on [0, T ]×Ω, which is a solution to the Navier
control system

(1)

⎧

⎨

⎩

yt + (y ·∇) y −∆y +∇p = 0 in (0, T ) × Ω
div y = 0,
y · ν = 0 and [D(y)ν +Ay]

tan
= 0 on (0, T )× (∂Ω \ Γ),

satisfying y(0, ·) = y0 and y(T, ·) = 0. In this formulation, we see
system (1) as an under-determined system. The controls used are the
(implicit) boundary conditions on Γ and can be recovered from the
constructed trajectory y itself.



Main result

Theorem (JMC, F. Marbach and F. Sueur (2020))

Assume that Γ is an open subset of ∂Ω which meets every connected
component of ∂Ω. Let T > 0 and y0 ∈ L2(Ω) be such that div y0 = 0
and y0 · ν = 0 on ∂Ω \ Γ. Then there exists a solution of the Navier
control system such that y(0, ·) = y0 and y(T, ·) = 0.

Prior result: Global approximate controllability in W−1,∞(Ω) in small time,
with a better convergence on compact subsets of Ω (JMC 1996). However
W−1,∞(Ω) is not enough to get the null controllability with a local
controllability result.



Open problems

1 Can one replace “Γ meets every connected component of ∂Ω” by “Γ is
nonempty and Ω is connected”?

2 In dimension 2 our solutions are strong if the initial data is smooth
(and satisfies the Navier slip boundary condition). We do not know if
this property holds in dimension 3.

3 A main remaining challenging open problem: The case of the no-slip
condition (problem raised by J.-L. Lions in the late 80’s).



Key ingredients for our global controllability result for the
Navier-Stokes equations with the Navier slip boundary
condition

There are five main ingredients

1 The return method together with the idea to consider by scaling the
Navier-Stokes as some kind of perturbation of the Euler equation
(JMC (1992, 1996)),

2 The controllability of the Euler equation (JMC (1996), 0. Glass
(2002)),

3 The description of the evolution of the boundary layer due to D.
Iftimie and F. Sueur (2011),

4 The dissipation method due to F. Marbach (2014),

5 The local null controllability result due to S. Guerrero (2006) (for the
no-slip boundary condition: O. Imanuvilov (2001) and E.
Fernández-Cara, S. Guerrero, O. Imanuvilov and J.-P. Puel (2004)).



Preparation of the boundary layer profile

When there is no more control (let say for T ≥ T0) the boundary layer
equation reduces to the following heat equations on the half line ξ ≥ 0
(where the slow variable x ∈ Ω, x close to ∂Ω plays the role of a
parameter):

(1)

{

vt − vξξ = 0, (t, ξ, x) ∈ [T0,+∞)× R+ ×Ω,
vξ(t, x, 0) = 0 (t, x) ∈ [T0,+∞)× Ω.

There is a natural dissipation on [T0,+∞). Unfortunately this dissipation is
not good enough for our purpose. However this dissipation turns out to be
good enough if if the function v at time T0 satisfies the following moment
properties holds for x ∈ Ω, x close to ∂Ω,

(2)

∫ +∞

0
ξkv(T0, x, ξ)dξ = 0, ∀k ∈ {0, 1, 2, 3}.

Property (2) can be obtained by using controllability properties of the
boundary layer equation during the interval of time [0, T0] (even if this
controllability is not sufficient to get v(T0, ·, ·) = 0 since ξ ∈ [0,+∞)).



Preparation of the boundary layer profile

Γ
Ω

Boundary layer

It is not possible to control the boundary layer. However we have a good
enough control on it: we can modify so that it then dissipates quickly.
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Main difficulty for the return method: Return to the initial
state

Initial state

Intermediate state

It is difficult to return to the initial state.
“Once the toothpaste is out of the tube, it’s going to be very hard to get it
back in.” H.R. Haldeman, 1973.



Toy model

T

{

T1
{

ẏ1 = y2, ẏ2 = −y1 + u,
T2

{

ẏ3 = y4, ẏ4 = −y3 + 2y1y2,

where the state is y = (y1, y2, y3, y4) ∈ R4 and the control is u ∈ R.
The linearized control system of T around (ye, ue) := (0, 0) is

ẏ1 = y2, ẏ2 = −y1 + u, ẏ3 = y4, ẏ4 = −y3,(1)

which is not controllable.



Controllability of the toy model

If y(0) = 0,

y3(T ) =

∫ T

0
y21(t) cos(T − t)dt,(1)

y4(T ) = y21(T )−

∫ T

0
y21(t) sin(T − t)dt.(2)

Hence T is not controllable in time T ! π. Using explicit computations
one can show that T is (locally) controllable in time T > π.

Remark

For linear systems in finite dimension, the controllability in large time
implies the controllability in small time. This is no longer for linear PDE.
This is also no longer true for nonlinear systems in finite dimension.



How to recover the large-time local controllability of T

The first point is at least to find a trajectory such that the linearized
control system around it is controllable. We try the simplest possible
trajectories, namely equilibrium points. Let γ ∈ R and define

((yγ1 , y
γ
2 , y

γ
3 , y

γ
4 ), u

γ) := ((γ, 0, 0, 0), γ).(1)

Then ((yγ1 , y
γ
2 , y

γ
3 , y

γ
4 ), u

γ) is an equilibrium of T . The linearized control
system of T at this equilibrium is

ẏ1 = y2, ẏ2 = −y1 + u, ẏ3 = y4, ẏ4 = −y3 + 2γy2,(2)

which is controllable if (and only if) γ ̸= 0.
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Construction of the blue trajectory

One uses quasi-static deformations. Let g ∈ C2([0, 1];R) be such that

g(0) = 0, g(1) = 1.

Let ũ : [0, 1/ε] → R be defined by

ũ(t) := γg(εt), t ∈ [0, 1/ε].

Let ỹ := (ỹ1, ỹ2, ỹ3, ỹ4) : [0, 1/ε] → R4 be defined by requiring

˙̃y1 = ỹ2, ˙̃y2 = −ỹ1 + ũ, ˙̃y3 = ỹ4, ˙̃y4 = −ỹ3 + 2ỹ1ỹ2,(1)

ỹ(0) = 0.(2)

One easily checks that

ỹ(1/ε) → (γ, 0, 0, 0) as ε→ 0.



Quasi-static deformations: Applications

• The quasi-static deformation method has been introduced in JMC (2002)
to prove the controllability of the water-tank control system.

u := F

• The quasi-static deformation method has also been used for the control
of Schrödinger equation: K. Beauchard (2005), K. Beauchard and JMC
(2006).
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