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What are shape/state constraints?

Estimation

Side information
↪→ compensates small number of

samples or excessive noise

Control

Physical constraints
↪→ provides feasible trajectories in

path-planning

Ubiquitous and both handled as a constrained optimization problem
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Problem statement

Given samples (xn, yn)n∈[N] ∈ (X×R)N , a loss L : (X×R×R)N → R∪{∞},
a regularizer Ω : R+ → R. For x ∈ X ⊂ Rd , f ∈ Cs(X,R), consider

f̄ ∈ arg min
f ∈ F

L(f ) = L
(

(xn, yn, f (xn))n∈[N]

)
+ Ω (‖f ‖F)

s.t. bi ≤ Di f (x), ∀ x ∈ Ki , ∀i ∈ [I] = [[1, I]].

where F is a Hilbert space of smooth functions from X to R, Di is a differ-
ential operator (Di =

∑
j γj∂

rj ), bi ∈ R is a lower bound, Ki is compact.

For non-finite Ki , we have an infinite number of constraints!

How can we make this optimization problem computationally tractable?
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In practice: nonparametric estimation under constraints

In statistics: nonnegative densities, non-crossing quantiles
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Qualitative priors have a great effect on the shape of solutions!
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Glimpse of content of the talk
From dealing with a real-valued problem f : x ∈ X ⊂ Rd → y ∈ R

f̄ ∈ arg min
f ∈ F

L(f ) = L
(

(xn, yn, f (xn))n∈[N]

)
+ Ω (‖f ‖F)

s.t. bi ≤ Di f (x), ∀ x ∈ Ki , ∀i ∈ [I] = [[1, I]].

ex: least-squares with monotonicity constraint

to a path-planning vector-valued problem f : t ∈ [0,T ]→ y ∈ RQ

Take F to be a Hilbert space of trajectories (e.g. Sobolev space)

min
f (·) ∈ F

g(f (T )) + ‖f ‖2F

s.t. f (0) = y0,
ci(t)>f (t) ≤ di(t), ∀ t ∈ [0,T ], ∀i ∈ [I].

ex: g(f (T )) = ‖yT − f (T )‖2RQ

Pierre-Cyril Aubin-Frankowski LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 6 / 33



Dealing with an infinite number of constraints: an overview

f̄ ∈ arg min
f ∈F

L(f ) s.t. ”bi ≤ Di f (x), ∀ x ∈ Ki , ∀i ∈ [I]”, Ki non-finite

Relaxing
Discretize constraint at “virtual“ samples {x̃m,i}m≤M ⊂ Ki ,
↪→ no guarantees out-of-samples [Agrell, 2019, Takeuchi et al., 2006]

Add constraint-inducing penalty, Ωcons(f ) = −λ
∫
Ki

min(0,Di f (x)−bi)dx
↪→ no guarantees, changes the problem objective [Brault et al., 2019]

Tightening
Replace F by algebraic subclass of functions satisfying the constraints
↪→ hard to stack constraints, Φ(x)>AΦ(x), Sum-Of-Squares [Hall, 2018]

Use only spaces F s.t. constraints have a “simple“ writing, e.g. splines
↪→ highly restricted functions classes [Papp and Alizadeh, 2014]

Our solution: discretize Ki but replace bi using RKHS geometry
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Reproducing kernel Hilbert spaces (RKHS) at a glance (1)

A RKHS (Fk , 〈·, ·〉Fk ) is a Hilbert space of real-valued1 functions over a set
X if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

∃ k : X× X→ R s.t. kx (·) = k(x , ·) ∈ Fk and f (x) = 〈f (·), kx (·)〉Fk

the topology of (Fk , 〈·, ·〉Fk ) is stronger than pointwise convergence
i.e. δx : f 7→ f (x) is continuous for all x for f ∈ Fk .

|f (x)− fn(x)| = |〈f − fn, kx 〉k | ≤ ‖f − fn‖k‖kx‖k = ‖f − fn‖k
√
k(x , x)

k is s.t. ∃Φk : X→ Fk s.t. k(x , y) = 〈Φk(x),Φk(y)〉Fk , Φk(x) = kx (·)

k is s.t. G = [k (xi , xj)]ni ,j=1 < 0 and Fk := span({kx (·)}x∈X), i.e. the
completion for the pre-scalar product 〈kx (·), ky (·)〉k,0 = k(x , y)

1There is a natural extension to vector-valued RKHSs (more on this later).
Pierre-Cyril Aubin-Frankowski LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 8 / 33



Reproducing kernel Hilbert spaces (RKHS) at a glance (2)

There is a one-to-one correspondence between kernels k and RKHSs
(Fk , 〈·, ·〉Fk ). Changing X or 〈·, ·〉Fk changes the kernel k.2

for X ⊂ Rd , Sobolev spaces Hs(X) satisfying s > d/2 are RKHSs. For
X = Rd their (Matérn) kernels are well known. Classical kernels include

kGauss(x , y) = exp
(
−‖x − y‖2Rd/(2σ2)

)
klin(x , y) = 〈x , y〉Rd

if X ⊂ Rd is contained in the closure of its interior (e.g. [0,+∞[, for
d = 1), k ∈ Cs,s(X×X,R), D =

∑
j γj∂

rj a differential operator of order
at most s, then Fk ⊂ Cs(X,R) and reproducing formula for derivatives:

Dxk(x , ·) ∈ Fk ; Df (x) = 〈f (·),Dxk(x , ·)〉Fk

2It is hard to identify Fk given k, or k given Fk (more on this later).
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Two essential tools for computations

Representer Theorem (e.g. [Schölkopf et al., 2001])
Let L : (X× R× R)N → R ∪ {∞}, strictly increasing Ω : R+ → R, and

f̄ = arg min
f ∈Fk

L
(

(xn, yn, f (xn))n∈[N]

)
+ Ω (‖f ‖k)

Then ∃ (an)n∈[N] ∈ RN s.t. f̄ (·) =
∑

n∈[N] ank(xn, ·)

↪→ Optimal solutions lie in a finite dimensional subspace of Fk .

Finite number of evaluations =⇒ finite number of coefficients

Kernel trick

〈
∑
n∈[N]

ank(xn, ·),
∑

m∈[M]
a′mk(x ′m, ·)〉k =

∑
n∈[N]

∑
m∈[N′]

ana′mk(xn, x ′m)

↪→ On this finite dimensional subspace, no need to know (Fk , 〈·, ·〉Fk ).
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Example: 1D monotonic kernel ridge regression (KRR)
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min
f ∈Fk

1
N

N∑
n=1
|yn − f (xn)|2 + λ ‖f ‖2Fk

Applying the representer theorem

Unconstrained KRR f̄ =
∑N

n=1 αnkxn ,
α = (G + Nλ · Id)−1y
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Example: 1D monotonic kernel ridge regression (KRR)
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noisy data

min
f ∈Fk

1
N

N∑
n=1
|yn − f (xn)|2 + λ ‖f ‖2Fk

s.t. 0 ≤ f ′(x), ∀x ∈ [0, 2]

Unconstrained KRR f̄ =
∑N

n=1 αnkxn ,
α = (G + Nλ · Id)−1y

here is not monotonic on [0, 2]!

Infinite number of evaluations ⇒ no representer theorem!
How to modify the problem to ensure constraint satisfaction?
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Example: 1D monotonic kernel ridge regression (KRR)
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KRR solution
noisy data

min
f ∈Fk

1
N

N∑
n=1
|yn − f (xn)|2 + λ ‖f ‖2Fk

s.t. ηm‖f ‖k ≤ f ′(x̃m), ∀m ∈ [M]

Unconstrained KRR f̄ =
∑N

n=1 αnkxn ,
α = (G + Nλ · Id)−1y

vs
Second-Order Cone

(SOC) constrained KRR

Second-Order Cone constraints: {f | ‖Af + b‖k ≤ c>f + d}
SOC comes from adding a buffer, ηm > 0, to a discretization, {x̃m}m∈[M]

LP⊂ QP ⊂ SOCP ⊂ SDP
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Example: 1D monotonic kernel ridge regression (KRR)
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min
f ∈Fk

1
N

N∑
n=1
|yn − f (xn)|2 + λ ‖f ‖2Fk

s.t. ηm‖f ‖k ≤ f ′(x̃m), ∀m ∈ [M]

Unconstrained KRR f̄ =
∑N

n=1 αnkxn ,
α = (G + Nλ · Id)−1y

vs
Second-Order Cone

(SOC) constrained KRR

Second-Order Cone constraints: {f | ‖Af + b‖k ≤ c>f + d}
SOC comes from adding a buffer, ηm > 0, to a discretization, {x̃m}m∈[M]

“b ≤ Df (x), ∀x ∈ K“⇐ “b + ηm‖f (·)‖ ≤ Df (x̃m), ∀m ∈ [M]“
This choice is related to continuity moduli.
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Deriving SOC constraints through continuity moduli
Take δ ≥ 0 and x s.t. ‖x − x̃m‖ ≤ δ

|Df (x)− Df (x̃m)| = |〈f (·),Dxk(x , ·)− Dxk(x̃m, ·)〉k |
≤ ‖f (·)‖k sup

{x | ‖x−x̃m‖≤δ}
‖Dxk(x , ·)− Dxk(x̃m, ·)‖k︸ ︷︷ ︸

ηm(δ)

ωm(Df , δ) := sup
{x | ‖x−x̃m‖≤δ}

|Df (x)− Df (x̃m)| ≤ ηm(δ)‖f (·)‖k

For a covering K =
⋃
m∈[M] BX(x̃m, δm)

“b ≤ Df (x), ∀x ∈ K“⇔ “b + ωm(Df , δ) ≤ Df (x̃m), ∀m ∈ [M]“

Since the kernel is smooth, δ → 0 gives ηm(δ)→ 0.

There is also a geometrical interpretation for this choice of ηm.
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{x | ‖x−x̃m‖≤δ}

|Df (x)− Df (x̃m)| ≤ ηm(δ)‖f (·)‖k

For a covering K ⊂
⋃
m∈[M] BX(x̃m, δm)

“b ≤ Df (x), ∀x ∈ K“⇐“b + ωm(Df , δ) ≤ Df (x̃m), ∀m ∈ [M]“
⇐ “b + ηm‖f (·)‖ ≤ Df (x̃m), ∀m ∈ [M]

Since the kernel is smooth, δ → 0 gives ηm(δ)→ 0.
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Support Vector Machine (SVM) is about separating red and green points
by blue hyperplane.
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𝑥 𝑚 

𝐷𝑥𝑘𝑥 𝑚 

Φ𝐷 

Φ𝐷
−1 

Using the nonlinear embedding ΦD : x 7→ Dxk(x , ·), the idea is the same.
Consider only the green points, it looks like one-class SVM.
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𝑥 𝑚 

𝐷𝑥𝑘𝑥 𝑚 

Φ𝐷 

Φ𝐷
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The green points are now samples of a compact set K.
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𝑥 𝑚 
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The image ΦD(K) looks ugly...
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𝑥 𝑚 
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𝜂 

The image ΦD(K) looks ugly, can we cover it by balls? How to choose η?
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𝑥 𝑚 
δ 

𝐷𝑥𝑘𝑥 𝑚 

Φ𝐷 

Φ𝐷
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First cover K ⊂
⋃
{x̃m + δB}, and then look at the images ΦD({x̃m + δB})
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𝑥 𝑚 
δ 

𝜂 
𝐷𝑥𝑘𝑥 𝑚 

Φ𝐷 

Φ𝐷
−1 

Cover the ΦD({x̃m + δB}) with tiny balls! This is how SOC was defined.
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Main theorem
(fη, bη) ∈ arg min

f ∈ Fk , b ∈ B
L(f ) = L

(
b, (xn, yn, f (xn))n∈[N]

)
+ Ω (‖f ‖k)

s.t. bi + ηi ,m‖f (·)‖k ≤ Di f (x̃m,i), ∀m ∈ [Mi ], ∀i ∈ [I].
where B is a closed convex constraint set over (bi)i∈[I]. If Ω(·) is strictly
increasing, then

Theoretical guarantees [Aubin-Frankowski and Szabó, 2020]
i) The finite number of SOC constraints is tighter than the infinite

number of affine constraints.
ii) Representer theorem (optimal solutions have a finite expression)

fη =
∑

i∈[I],m∈[Mi ] ãi ,mDi ,xk (x̃i ,m, ·) +
∑

n∈[N] ank(xn, ·)
iii) If L is µ-strongly convex, we have bounds: computable/theoreticala

‖fη − f̄ ‖k ≤ min

√2(L(fη)− L(fη=0))
µ

,

√
Lf̄ ‖η‖∞

µ


aAssuming B = RI for the a priori bound to hold.
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Discussion
(i) This theorem holds for given samples (xn, yn)n∈[N] (optimization

rather than statistical properties - no asymptotics)
(ii) The representer theorem provides an equivalent finite-dimensional

problem of size N + M with SOC constraints ∼ O((N + M)3)
(iii) Better bound ≡ smaller η ≡ smaller δ ≡ larger M ≡ costly in time
(iv) The virtual points can be chosen among the samples (recycling)

KRR example
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Joint quantile regression (JQR): airplane data

Airplane trajectories at takeoff have increasing altitude.
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should be

non-crossing

Data provided by ENAC
(flights Paris→Toulouse)
[Nicol, 2013]

Two shape constraints jointly handled with 15k samples.
Works with higher dimensions too!

Pierre-Cyril Aubin-Frankowski LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 16 / 33



Kernel ridge regression (KRR): trajectory reconstruction
Very noisy GPS data: six non-overtaking cars in a traffic jam
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Forward trajectories also
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security distance

Data from IFSTTAR
(MOCoPo Project)
[Buisson et al., 2016]

(In Kernel Regression for Vehicle Trajectory Reconstruction under Speed and
Inter-vehicular Distance Constraints, PCAF and Nicolas Petit and Zoltán Szabó
IFAC World Congress 2020)
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Teaser slide

This approach works as well for
Other compact coverings than balls, iterative covering

SDP constraints (e.g. convexity for d ≥ 2): 0 4 Hess(f )(x)

Vector-valued functions f : X→ RQ

Other applications: finance, control theory,...

Control: Take Fk to be a Hilbert space of trajectories [0,T ]→ RQ

min
x(·) ∈ Fk

g(x(T )) + ‖x(·)‖2k

s.t. x(0) = x0,
ci(t)>x(t) ≤ di(t), ∀ t ∈ [0,T ], ∀i ∈ [I].
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Partial conclusion/Take-home message

We have seen how to tighten an infinite number of affine constraints over
a compact set into finitely many SOC constraints in RKHSs
↪→ we have a representer theorem!

tightening intractable constraints is the only way to have guarantees

but tightening is “harder“ to perform (here computationally)

Covering schemes suffer from the curse of dimensionality!
X ⊂ Rd , d � 1

But the control problem is only defined over X = [0,T ] (d = 1)!
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𝑥 𝑚 
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Φ𝐷
−1 

End of first part
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Linearly-constrained Linear Quadratic Regulator (LQR)

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints

min
x(·),u(·)

g(x(T )) +
∫ T

0
[x(t)>Q(t)x(t) + u(t)>R(t)u(t)]dt

s.t. x(0) = x0,
x ′(t) = A(t)x(t) + B(t)u(t), a.e. in [0,T ],
ci(t)>x(t) ≤ di(t), ∀ t ∈ [0,T ], ∀ i ∈ [[1,P]],

with state x(t) ∈ RN , control u(t) ∈ RM , A(·) ∈ L1(0,T ), B(·) ∈ L2(0,T ),
Q(t) < 0 and R(t) < r IdM
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Linearly-constrained Linear Quadratic Regulator (LQR)

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints with Q ≡ 0 and R ≡ IdM

min
x(·),u(·)

g(x(T )) +
∫ T

0
‖u(t)‖2RM dt

s.t. x(0) = x0,
x ′(t) = A(t)x(t) + B(t)u(t), a.e. in [0,T ],
ci(t)>x(t) ≤ di(t), ∀ t ∈ [0,T ], ∀ i ∈ {1, . . . ,P},

with state x(t) ∈ RN , control u(t) ∈ RM , A(·) ∈ L1(0,T ), B(·) ∈ L2(0,T ),
x(·) : [0,T ]→ RN absolutely continuous and u(·) ∈ L2(0,T ).
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Why are state constraints difficult to study?

Theoretical obstacle: Pontryagine’s Maximum Principle involves not only
an adjoint vector p(t) but also measures/BV functions ψ(t) supported at
times where the constraints are saturated. You cannot just backpropagate
the Hamiltonian system from the transversality condition.

Numerical obstacle: Time discretization of constraints may fail e.g.

Speed cameras in traffic control

In between two cameras, drivers
always break the speed limit.
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Objective: Turn the state-constrained LQR into “KRR“

We have a vector space S of trajectories x(·) : [0,T ]→ RN

S := {x(·) | ∃ u(·) ∈ L2(0,T ) s.t. x ′(t) = A(t)x(t) + B(t)u(t) a.e. }

The space of trajectories S depends on T , A(·), B(·).

LQR (Linear Quadratic Regulator)

min
x(·)∈S

u(·)∈L2(0,T )

g(x(T )) + ‖u(·)‖2L2(0,T )

x(0) = x0
ci(t)>x(t) ≤ di(t), t ∈ [0,T ], i ≤ P

“KRR“ (Kernel Ridge Regression)

min
x(·)∈S

g(x(T )) + λ ‖x(·)‖2S

x(0) = x0
ci(t)>x(t) ≤ di(t), t ∈ [0,T ], i ≤ P

Is S a RKHS? For which inner product?
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Vector-valued reproducing kernel Hilbert space (vRKHS)

Definition (vRKHS)

Let T be a non-empty set. A Hilbert space (FK , 〈·, ·〉K ) of RN -vector-
valued functions defined on T is a vRKHS if there exists a matrix-valued
kernel K : T × T → RN×N such that the reproducing property holds:

K (·, t)p ∈ FK , p>f (t) = 〈f ,K (·, t)p〉K , for t ∈ T, p ∈ RN , f ∈ FK

Necessarily, K has a Hermitian symmetry: K (s, t) = K (t, s)>

There is also a one-to-one correspondence between K and (FK , 〈·, ·〉K )
[Micheli and Glaunès, 2014], so changing T or 〈·, ·〉K changes K .
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Representer theorem in vRKHSs

Theorem (Representer theorem with SOC constraints)

Let (FK , 〈·, ·〉K ) be a vRKHS defined on a set T. For a “loss“ L : RN0 →
R ∪ {+∞}, strictly increasing “regularizer“ Ω : R+ → R, and constraints
di : RNi → R, consider the optimization problem

f̄ ∈ arg min
f ∈FK

L
(
c>0,1f (t0,1), . . . , c>0,N0f (t0,N0)

)
+ Ω (‖f ‖K )

s.t. λi‖f ‖K ≤ di(c>i ,1f (ti ,1), . . . , c>i ,Ni f (ti ,Ni )), ∀ i ∈ [[1,P]].

Then there exists {pi ,m}m∈[[1,Ni ]] ⊂ RN and αi ,m ∈ R such that

f̄ =
∑P

i=0
∑Ni

m=1 K (·, ti ,m)pi ,m with pi ,m = αi ,mci ,m.
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Application to linear control systems with quadratic cost

S := {x(·) ∈W 1,1 | ∃ u(·) ∈ L2(0,T ) s.t. x ′(t) = A(t)x(t)+B(t)u(t) a.e. }
Given x(·) ∈ S, for the pseudoinverse B(t)	 of B(t), set

u(t) := B(t)	[x ′(t)− A(t)x(t)] a.e. in [0,T ].

〈x1(·), x2(·)〉K := x1(0)>x2(0) +
∫ T

0
u1(t)>u2(t)dt

Lemma

(S, 〈·, ·〉K ) is a vRKHS with uniformly continuous K (·, ·).

‖ · ‖K is a Sobolev-like norm split into two semi-norms

‖x(·)‖2K = ‖x(0)‖2︸ ︷︷ ︸
‖x(·)‖2K0

+
∫ T

0
‖B(t)	(x ′(t)− A(t)x(t))‖2dt︸ ︷︷ ︸

‖x(·)‖2K1

.
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Splitting S into subspaces and identifying their kernels

S0 := {x(·) | x ′(t) = A(t)x(t), a.e. in [0,T ]} ‖x(·)‖2K0 = ‖x(0)‖2

Su := {x(·) | x(·) ∈ S and x(0) = 0} ‖x(·)‖2K1 = ‖u(·)‖2L2(0,T ).

As S = S0 ⊕ Su, K = K0 + K1.

Since dim(S0) = N, for ΦA(t, s) ∈ RN,N

the state-transition matrix s → t of x ′(τ) = A(τ)x(τ)
K0(s, t) = ΦA(s, 0)ΦA(t, 0)>

Only using the reproducing property and that for x(·) ∈ S,

x(t) = ΦA(t, 0)x(0) +
∫ t

0
ΦA(t, τ)B(τ)u(τ)dτ. (1)

For fixed t, define control matrix Ut(s) :=
{

B(s)>ΦA(t, s)> ∀s ≤ t,
0 ∀s > t.

∂1K1(s, t) = A(s)K1(s, t) + B(s)Ut(s) a.e. in [0,T ] with K1(0, t) = 0.

K1(s, t) =
∫ min(s,t)

0
ΦA(s, τ)B(τ)B(τ)>ΦA(t, τ)>dτ .
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Examples: controllability Gramian/transversality condition

Steer a point from (0, 0) to (T , xT ), with e.g. g(x(T )) = ‖xT − x(T )‖2N

Exact planning (x(T ) = xT )

min
x(·)∈S
x(0)=0

χxT (x(T )) + 1
2‖u(·)‖2L2(0,T )

Relaxed planning (g ∈ C1 convex)

min
x(·)∈S
x(0)=0

g(x(T )) + 1
2‖u(·)‖2L2(0,T )

As, x(0) = 0, applying the representer theorem: ∃ pT , x̄(·) = K1(·,T )pT

Controllability Gramian

K1(T ,T ) =

∫ T

0

ΦA(T , τ)B(τ)B(τ)>ΦA(T , τ)>dτ

x̄(T ) = xT ⇔ xT ∈ Im(K1(T ,T ))

Transversality Condition

0 = ∇
(
p 7→ g(K1(T ,T )p) +

1
2
p>K1(T ,T )p

)
(pT )

= K1(T ,T )(∇g(K1(T ,T )pT ) + pT ).

Take pT = −∇g(x̄(T ))
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From affine state constraints to SOC constraints
Take (tm, δm) such that [0,T ] ⊂ ∪m∈[[1,NP ]][tm − δm, tm + δm], take

ηi(δm, tm) := sup
t ∈ [tm−δm,tm+δm]∩[0,T ]

‖K (·, tm)ci(tm)− K (·, t)ci(t)‖K ,

di(δm, tm) := inf
t ∈ [tm−δm,tm+δm]∩[0,T ]

di(t).

We have strengthened SOC constraints that enable a representer theorem

ηi(δm, tm)‖x(·)‖K+ ci(tm)>x(tm) ≤ di(δm, tm), ∀m ∈ [[1,NP ]],∀ i ∈ [[1,P]]

⇓

ci(t)>x(t) ≤ di(t), ∀ t ∈ [0,T ], ∀ i ∈ [[1,P]]

Lemma (Uniform continuity of tightened constraints)

As K (·, ·) is UC, if ci(·) and di(·) are C0-continuous, when δ → 0+, ηi(·, t)
converges to 0 and di(·, t) converges to di(t), uniformly w.r.t. t.
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Main theorem

(H-gen) A(·) ∈ L1(0,T ) and B(·) ∈ L2(0,T ), ci(·) and di(·) are C0.
(H-sol) ci(0)x0 < di(0) and there exists a trajectory x ε(·) ∈ S satisfying

strictly the affine constraints, as well as the initial condition.3

(H-obj) g(·) is convex and continuous.

Theorem (Existence and Approximation by SOC constraints)

Both the original problem and its strengthening have unique optimal
solutions. For any ρ > 0, there exists δ̄ > 0 such that for all (δm)m∈[[1,N0]],
with [0,T ] ⊂ ∪m∈[[1,N0]][tm − δm, tm + δm] satisfying δ̄ ≥ maxm∈[[1,N0]] δm,

1
γK
· sup
t∈[0,T ]

‖x̄η(t)− x̄(t)‖ ≤ ‖x̄η(·)− x̄(·)‖K ≤ ρ.

with γK := supt∈[0,T ], p∈BN

√
p>K (t, t)p.

3(H-sol) is implied for instance by an inward-pointing condition at the boundary.
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Numerical example: constrained pendulum - definition
Constrained pendulum when controlling the third derivative of the angle

min
x(·),w(·),u(·)

− ẋ(T ) + λ‖u(·)‖2L2(0,T ) λ� 1

x(0) = 0.5, ẋ(0) = 0, w(0) = 0, x(T/3) = 0.5, x(T ) = 0
ẍ(t) = −10 x(t) + w(t), ẇ(t) = u(t), a.e. in [0,T ]
ẋ(t) ∈ [−3,+∞[, w(t) ∈ [−10, 10], ∀ t ∈ [0,T ]

x(t) w(t) 

ẋ(t) 

ẇ(t)=u(t) 

Pierre-Cyril Aubin-Frankowski LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 30 / 33



Numerical example: constrained pendulum - definition
Constrained pendulum when controlling the third derivative of the angle

min
x(·),w(·),u(·)

− ẋ(T ) + λ‖u(·)‖2L2(0,T ) λ� 1

x(0) = 0.5, ẋ(0) = 0, w(0) = 0, x(T/3) = 0.5, x(T ) = 0

ẍ(t) = −10 x(t) + w(t), ẇ(t) = u(t), a.e. in [0,T ]

ẋ(t) ∈ [−3,+∞[, w(t) ∈ [−10, 10], ∀ t ∈ [0,T ]

Converting affine state constraints to SOC constraints, applying rep. thm

ηẋ‖x(·)‖K − ẋ(tm) ≤ -3,
ηw‖x(·)‖K + w(tm) ≤ 10,
ηw‖x(·)‖K − w(tm) ≤ 10

x̄(·) = K (·, 0)p0 + K (·,T/3)pT/3

+ K (·,T )pT +
M∑

m=1
K (·, tm)pm

Most of computational cost is related to the “controllability Gramians“
K1(s, t) =

∫min(s,t)
0 e(s−τ)ABB>e(t−τ)A>dτ which we have to approximate.

Pierre-Cyril Aubin-Frankowski LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 30 / 33



Numerical example: constrained pendulum - illustration
Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints. Grayed areas: constraints over [0,T ].

Angle x(·) Velocity ẋ(·) Couple w(·)
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Figure: Comparison of SOC constraints (guaranteed ηw ) vs discretized constraints
(ηw = 0) for NP = 200.
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Numerical example: constrained pendulum - illustration
Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints. Grayed areas: constraints over [0,T ].

Angle x(·) Velocity ẋ(·) Couple w(·)
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Figure: Comparison of SOC constraints (guaranteed ηw ) vs discretized constraints
(ηw = 0) for NP = 200 - Chattering phenomenon!.
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Numerical example: constrained pendulum - illustration
Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints. Grayed areas: constraints over [0,T ].
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Figure: Comparison of SOC constraints for varying NP and guaranteed ηw .
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Numerical example: constrained pendulum - illustration
Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints. Grayed areas: constraints over [0,T ].
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Figure: Comparison of SOC constraints for varying ηw and NP = 200.
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Pushing RKHSs beyond/Revisiting classical LQR

For RKHSs

Control constraints do not correspond to continuous evaluations
↪→ limits of RKHS pointwise theory (e.g. x ′ = u ∈ L2([0,T ], [−1, 1]) a.e.)

Successive linearizations of nonlinear system lead to changing kernels
↪→ a single kernel may not be sufficient (e.g. x ′ = f[xn(·)]x + f[un(·)]u a.e.)

Non-quadratic costs for linear systems do not lead to Hilbert spaces
↪→ you may need Banach kernels (e.g. ‖u(·)‖2L2(0,T ) → ‖u(·)‖L1(0,T ))

For control theory

To each evaluation at time t corresponds a covector pt ∈ RN

↪→ Representer theorem well adapted for state constraints, but unsuitable
for control constraints. Reverts the difficulty w.r.t. PMP approach.

The Gramian of controllability generates trajectories
↪→ This allows for close-form solutions in continuous-time
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General conclusion

Shape constraints in RKHSs
We have seen how to tighten in RKHSs an infinite number of pointwise
affine constraints over a compact set into finitely many SOC constraints.

tightening intractable constraints is the only way to have guarantees

compact coverings in infinite dimensional spaces provide a solution

Linear Quadratic Regulator as a kernel regression
We have seen that state-constrained LQR is a non-trivial 1D example of
shape constraints that

allows to revisit classical notions from the kernel viewpoint

allows to deal with the difficult problem of state constraints
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Thank you for your attention!
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Appendix: Joint Quantile Regression (JQR)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

q=0.1
q=0.5
q=0.9

fτ (x) conditional quantile over (X ,Y ):
P(Y ≤ fτ (x)|X = x) = τ ∈]0, 1[.

Estimation through convex optimization
over “pinball loss“ lτ (·) (i.e. tilted
absolute value [Koenker, 2005]).

Known fact: quantile functions can
cross when estimated independently.

Joint quantile regression with non-crossing constraints, over (fq)q∈[Q]:

L (f1, . . . , fQ) = 1
N
∑
q∈[Q]

∑
n∈[N]

lτq (yn − fq(xn)) + λf
∑
q∈[Q]

‖fq‖2k

s.t. fq+1(x) ≥ fq(x), ∀q ∈ [Q − 1], ∀ x ∈ [min xn,max xn]d .
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Appendix: JQR performance over UCI datasets

PDCD = Primal-Dual Coordinate Descent [Sangnier et al., 2016],
JQR with parallel/heteroscedatic quantile penalization (see also ITL
[Brault et al., 2019] for noncrossing inducer)
mean ± std of 100×value of the pinball loss (smaller is better)

Dataset d N PDCD SOC

engel 1 235 48 ± 8 53 ± 9
GAGurine 1 314 61 ± 7 65 ± 6
geyser 1 299 105 ± 7 108 ± 3
mcycle 1 133 66 ± 9 62 ± 5
ftcollinssnow 1 93 154 ± 16 148 ± 13
CobarOre 2 38 159 ± 24 151 ± 17
topo 2 52 69 ± 18 62 ± 14
caution 2 100 88 ± 17 98 ± 22
ufc 3 372 81 ± 4 87 ± 6
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Annex: Green kernels and RKHSs

Let D be a differential operator, D∗ its formal adjoint. Define the Green
function GD∗D,x (y) : Ω→ R s.t. D∗D GD∗D,x (y) = δx (y) then, if the
integrals over the boundaries in Green’s formula are null, for any f ∈ Fk

f (x) =
∫

Ω
f (y)D∗DGD∗D,x (y)dy =

∫
Ω
Df (y)DGD∗D,x (y) =: 〈f ,GD∗D,x 〉Fk ,

so k(x , y) = GD∗D,x (y) [Saitoh and Sawano, 2016, p61]. For vector-valued
contexts, e.g. FK = W s,2(Rd ,Rd) and D∗D = (1− σ2∆)s
component-wise, see [Micheli and Glaunès, 2014, p9].

Alternatively, in 1D, D GD,x (y) = δx (y), the kernel associated to the inner
product

∫
Ω Df (y)Dg(y)dy for the space of f “null at the border“ writes as

k(x , y) =
∫

Ω
GD,x (z)GD,y (z)dz

see [Berlinet and Thomas-Agnan, 2004, p286] and [Heckman, 2012].
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Annex: IPC gives strictly feasible trajectories

(H-sol) C(0)x0 < d(0) and there exists a trajectory x ε(·) ∈ S satisfying
strictly the affine constraints, as well as the initial condition.
(H1) A(·) and B(·) are C0. C(·) and d(·) are C1 and C(0)x0 < d(0).
(H2) There exists Mu > 0 s.t. , for all t ∈ [0,T ] and x ∈ RN satisfying

C(t)x ≤ d(t), and ‖x‖ ≤ (1 + ‖x0‖)eT‖A(·)‖L∞(0,T )+TMu‖B(·)‖L∞(0,T ) ,
there exists ut,x ∈ MuBM such that

∀ i ∈ {j | cj(t)>x = dj(t)}, c ′i (t)>x−d ′i (t)+ci(t)>(A(t)x+B(t)ut,x ) < 0.

This is an inward-pointing condition (IPC) at the boundary.

Lemma (Existence of interior trajectories)

If (H1) and (H2) hold, then (H-sol) holds.
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Annex: control proof main idea, nested property

ηi(δ, t) := sup ‖K (·, t)ci(t)− K (·, s)ci(s)‖K , ωi(δ, t) := sup |di(t)− di(s)|,
di(δm, tm) := inf di(s), over s ∈ [tm − δm, tm + δm] ∩ [0,T ]

For −→ε ∈ RP
+, the constraints we shall consider are defined as follows

V0 := {x(·) ∈ S |C(t)x(t) ≤ d(t), ∀ t ∈ [0,T ]},
Vδ,fin := {x(·) ∈ S |−→η (δm, tm)‖x(·)‖K + C(tm)x(tm) ≤ d(δm, tm), ∀m ∈ [[1,N0]]},
Vδ,inf := {x(·) ∈ S |−→η (δ, t)‖x(·)‖K +−→ω (δ, t) + C(t)x(t) ≤ d(t), ∀ t ∈ [0,T ]},
V−→ε := {x(·) ∈ S |−→ε + C(t)x(t) ≤ d(t), ∀ t ∈ [0,T ]}.

Proposition (Nested sequence)

Let δmax := maxm∈[[1,N0]] δm. For any δ ≥ δmax, if, for a given y0 ≥ 0,
εi ≥ supt∈[0,T ][ηi(δ, t)y0 + ωi(δ, t)], then we have a nested sequence

(V−→ε ∩ y0BK ) ⊂ Vδ,inf ⊂ Vδ,fin ⊂ V0.

Only the simpler V−→ε constraints matter!
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Annex: List of shape constraints

Monotonicity w.r.t. partial ordering:

∂e1f (x) ≥ . . . ≥ ∂ed f (x) ≥ 0 (∀x).

∂ej f (x) ≥ 0, (∀j ∈ [d ], ∀x).

Supermodularity: f (u ∨ v) + f (u ∧ v) ≥ f (u) + f (v), u, v ∈ Rd , where
u ∨ v := (max(uj , vj))j∈[d] and u ∧ v := (min(uj , vj))j∈[d]. For f ∈ C2

∂2f (x)
∂xi∂xj

≥ 0 (∀i 6= j ∈ [d ],∀x).
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