Séminaire de Mathématiques Appliquées du CERMICS

State-constrained Linear-Quadratic Optimal Control as a Kernel Regression with Hard Shape Constraints

Pierre-Cyril Aubin-Frankowski (MINES ParisTech)

13 octobre 2020

State-constrained Linear-Quadratic Optimal Control as a Kernel Regression with Hard Shape Constraints

Pierre-Cyril Aubin-Frankowski

PhD student (École des Ponts ParisTech), CAS - Centre Automatique et Systèmes, MINES ParisTech

https://pcaubin.github.io/

October 2020

École des Ponts ParisTech

What are shape/state constraints?

Side information

 → compensates small number of samples or excessive noise

Physical constraints

 $\stackrel{\hookrightarrow}{\rightarrow} \text{ provides feasible trajectories in} \\ \text{ path-planning}$

Ubiquitous and both handled as a constrained optimization problem

Table of Contents

- **1** Shape constraints in RKHSs over non-finite compact sets
- State-constrained Linear Quadratic Regulator as a kernel regression Based on
- Kernel Regression for Vehicle Trajectory Reconstruction under Speed and Inter-vehicular Distance Constraints, PCAF, Nicolas Petit and Zoltán Szabó, IFAC World Congress 2020
- Hard Shape-Constrained Kernel Machines, PCAF and Zoltán Szabó, NeurIPS 2020, https://arxiv.org/abs/2005.12636
- Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel methods, PCAF, June 2020, Accepted with minor revision in SIAM Journal on Control and Optimization

Problem statement

Given samples $(x_n, y_n)_{n \in [N]} \in (\mathfrak{X} \times \mathbb{R})^N$, a *loss* $L : (\mathfrak{X} \times \mathbb{R} \times \mathbb{R})^N \to \mathbb{R} \cup \{\infty\}$, a *regularizer* $\Omega : \mathbb{R}_+ \to \mathbb{R}$. For $x \in \mathfrak{X} \subset \mathbb{R}^d$, $f \in \mathcal{C}^s(\mathfrak{X}, \mathbb{R})$, consider

$$\begin{split} \bar{f} &\in \underset{f \in \mathcal{F}}{\arg\min} \ \mathcal{L}(f) = L\left((x_n, y_n, f(x_n))_{n \in [N]}\right) + \Omega\left(\|f\|_{\mathcal{F}}\right) \\ &\text{s.t.} \qquad b_i \leq D_i f(x), \quad \forall x \in \mathcal{K}_i, \, \forall i \in [\mathcal{I}] = \llbracket 1, \mathcal{I} \rrbracket. \end{split}$$

where \mathcal{F} is a Hilbert space of smooth functions from \mathcal{X} to \mathbb{R} , D_i is a differential operator $(D_i = \sum_j \gamma_j \partial^{r_j})$, $b_i \in \mathbb{R}$ is a lower bound, \mathcal{K}_i is compact.

For non-finite \mathcal{K}_i , we have an infinite number of constraints!

How can we make this optimization problem computationally tractable?

In practice: nonparametric estimation under constraints

Qualitative priors have a great effect on the shape of solutions!

5 / 33

Glimpse of content of the talk

From dealing with a real-valued problem $f : x \in \mathcal{X} \subset \mathbb{R}^d \to y \in \mathbb{R}$

$$\begin{split} \bar{f} &\in \underset{f \in \mathcal{F}}{\arg\min} \ \mathcal{L}(f) = L\left((x_n, y_n, f(x_n))_{n \in [N]}\right) + \Omega\left(\|f\|_{\mathcal{F}}\right) \\ &\text{s.t.} \qquad b_i \leq D_i f(x), \quad \forall x \in \mathcal{K}_i, \, \forall i \in [\mathcal{I}] = \llbracket 1, \mathcal{I} \rrbracket. \end{split}$$

ex: least-squares with monotonicity constraint

to a path-planning vector-valued problem $f : t \in [0, T] \rightarrow y \in \mathbb{R}^Q$

Take \mathcal{F} to be a Hilbert space of trajectories (e.g. Sobolev space)

$$\begin{split} \min_{\substack{f(\cdot) \in \mathcal{F} \\ \text{s.t.}}} & g(f(\mathcal{T})) + \|f\|_{\mathcal{F}}^2 \\ \text{s.t.} & f(0) = y_0, \\ & c_i(t)^\top f(t) \leq d_i(t), \quad \forall t \in [0, T], \, \forall i \in [\mathcal{I}]. \end{split}$$

ex: $g(f(T)) = ||y_T - f(T)||_{\mathbb{R}^Q}^2$

Dealing with an infinite number of constraints: an overview

 $\overline{f} \in \underset{f \in \mathcal{F}}{\operatorname{arg min}} \mathcal{L}(f) \text{ s.t. } "b_i \leq D_i f(x), \forall x \in \mathcal{K}_i, \forall i \in [\mathcal{I}]", \mathcal{K}_i \text{ non-finite}$

Relaxing

- Discretize constraint at "virtual" samples {x̃_{m,i}}_{m≤M} ⊂ 𝔅_i,
 → no guarantees out-of-samples [Agrell, 2019, Takeuchi et al., 2006]
- Add constraint-inducing penalty, $\Omega_{cons}(f) = -\lambda \int_{\mathcal{K}_i} \min(0, D_i f(x) b_i) dx$ \hookrightarrow no guarantees, changes the problem objective [Brault et al., 2019]

Tightening

- Replace \mathcal{F} by algebraic subclass of functions satisfying the constraints \hookrightarrow hard to stack constraints, $\Phi(x)^{\top}A\Phi(x)$, Sum-Of-Squares [Hall, 2018]
- Use only spaces \mathcal{F} s.t. constraints have a "simple" writing, e.g. splines \hookrightarrow highly restricted functions classes [Papp and Alizadeh, 2014]
- **Our solution:** discretize \mathcal{K}_i but replace b_i using RKHS geometry

Reproducing kernel Hilbert spaces (RKHS) at a glance (1)

A RKHS $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$ is a Hilbert space of real-valued¹ functions over a set \mathcal{X} if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

 $\exists k : \mathfrak{X} \times \mathfrak{X} \to \mathbb{R} \text{ s.t. } k_x(\cdot) = k(x, \cdot) \in \mathfrak{F}_k \text{ and } f(x) = \langle f(\cdot), k_x(\cdot) \rangle_{\mathfrak{F}_k}$

the topology of $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$ is stronger than pointwise convergence i.e. $\delta_x : f \mapsto f(x)$ is continuous for all x for $f \in \mathcal{F}_k$.

$$|f(x) - f_n(x)| = |\langle f - f_n, k_x \rangle_k| \le ||f - f_n||_k ||k_x||_k = ||f - f_n||_k \sqrt{k(x, x)}$$

 $k \text{ is s.t. } \exists \Phi_k : \mathfrak{X} \to \mathfrak{F}_k \text{ s.t. } k(x,y) = \langle \Phi_k(x), \Phi_k(y) \rangle_{\mathfrak{F}_k}, \ \Phi_k(x) = k_x(\cdot)$

k is s.t. $\mathbf{G} = [k(x_i, x_j)]_{i,j=1}^n \succeq 0$ and $\mathcal{F}_k := \overline{\text{span}(\{k_x(\cdot)\}_{x \in \mathcal{X}})}$, i.e. the completion for the pre-scalar product $\langle k_x(\cdot), k_y(\cdot) \rangle_{k,0} = k(x, y)$

¹There is a natural extension to vector-valued RKHSs (more on this later).

Pierre-Cyril Aubin-Frankowski

LQR as a Kernel Regression with Hard Shape Constraints

Oct 2020 8 / 33

Reproducing kernel Hilbert spaces (RKHS) at a glance (2)

- There is a one-to-one correspondence between kernels k and RKHSs $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$. Changing \mathcal{X} or $\langle \cdot, \cdot \rangle_{\mathcal{F}_k}$ changes the kernel k.²
- for $\mathfrak{X} \subset \mathbb{R}^d$, Sobolev spaces $\mathcal{H}^s(\mathfrak{X})$ satisfying s > d/2 are RKHSs. For $\mathfrak{X} = \mathbb{R}^d$ their (Matérn) kernels are well known. Classical kernels include

$$k_{\mathsf{Gauss}}(x,y) = \exp\left(-\|x-y\|_{\mathbb{R}^d}^2/(2\sigma^2)
ight) \quad k_{\mathsf{lin}}(x,y) = \langle x,y
angle_{\mathbb{R}^d}$$

• if $\mathfrak{X} \subset \mathbb{R}^d$ is contained in the closure of its interior (e.g. $[0, +\infty[$, for d = 1), $k \in \mathcal{C}^{s,s}(\mathfrak{X} \times \mathfrak{X}, \mathbb{R})$, $D = \sum_j \gamma_j \partial^{\mathbf{r}_j}$ a differential operator of order at most s, then $\mathcal{F}_k \subset \mathcal{C}^s(\mathfrak{X}, \mathbb{R})$ and reproducing formula for derivatives:

$$D_x k(x, \cdot) \in \mathfrak{F}_k$$
; $Df(x) = \langle f(\cdot), D_x k(x, \cdot) \rangle_{\mathfrak{F}_k}$

²It is hard to identify \mathcal{F}_k given k, or k given \mathcal{F}_k (more on this later).

Two essential tools for computations

Representer Theorem (e.g. [Schölkopf et al., 2001])

Let $L: (\mathfrak{X} \times \mathbb{R} \times \mathbb{R})^N \to \mathbb{R} \cup \{\infty\}$, strictly increasing $\Omega: \mathbb{R}_+ \to \mathbb{R}$, and

$$\overline{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}_k} L\left((x_n, y_n, f(x_n))_{n \in [N]} \right) + \Omega\left(\|f\|_k \right)$$

Then $\exists (a_n)_{n \in [N]} \in \mathbb{R}^N$ s.t. $\overline{f}(\cdot) = \sum_{n \in [N]} a_n k(x_n, \cdot)$

 \hookrightarrow Optimal solutions lie in a finite dimensional subspace of \mathcal{F}_k .

Finite number of evaluations \implies finite number of coefficients

Kernel trick

$$\langle \sum_{n \in [N]} a_n k(x_n, \cdot), \sum_{m \in [M]} a'_m k(x'_m, \cdot) \rangle_k = \sum_{n \in [N]} \sum_{m \in [N']} a_n a'_m k(x_n, x'_m)$$

\hookrightarrow On this finite dimensional subspace, no need to know $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$.

Pierre-Cyril Aubin-Frankowski

LQR as a Kernel Regression with Hard Shape Constraints

$$\min_{f\in\mathcal{F}_k}\frac{1}{N}\sum_{n=1}^N|y_n-f(x_n)|^2+\lambda \|f\|_{\mathcal{F}_k}^2$$

Applying the representer theorem

Unconstrained KRR
$$\bar{f} = \sum_{n=1}^{N} \alpha_n k_{x_n}$$
,
 $\alpha = (\boldsymbol{G} + N\lambda \cdot \text{Id})^{-1} \boldsymbol{y}$

Infinite number of evaluations \Rightarrow no representer theorem! How to modify the problem to ensure constraint satisfaction?

Second-Order Cone constraints: $\{f \mid ||Af + b||_k \leq c^{\top}f + d\}$ SOC comes from adding a buffer, $\eta_m > 0$, to a discretization, $\{\tilde{x}_m\}_{m \in [M]}$

 $\mathsf{LP} \subset \mathsf{QP} \subset \mathsf{SOCP} \subset \mathsf{SDP}$

Second-Order Cone constraints: $\{f \mid ||Af + b||_k \leq c^{\top}f + d\}$ SOC comes from adding a buffer, $\eta_m > 0$, to a discretization, $\{\tilde{x}_m\}_{m \in [M]}$ " $b \leq Df(x), \forall x \in \mathcal{K}" \Leftarrow "b + \eta_m ||f(\cdot)|| \leq Df(\tilde{x}_m), \forall m \in [M]"$ This choice is related to continuity moduli.

Deriving SOC constraints through continuity moduli

Take $\delta \ge 0$ and x s.t. $||x - \tilde{x}_m|| \le \delta$ $|Df(x) - Df(\tilde{x}_m)| = |\langle f(\cdot), D_x k(x, \cdot) - D_x k(\tilde{x}_m, \cdot) \rangle_k|$ $\le ||f(\cdot)||_k \sup_{\substack{\{x \mid \|x - \tilde{x}_m\| \le \delta\}}} ||D_x k(x, \cdot) - D_x k(\tilde{x}_m, \cdot)||_k}{\eta_m(\delta)}$ $\omega_m(Df, \delta) := \sup_{\{x \mid \|x - \tilde{x}_m\| \le \delta\}} |Df(x) - Df(\tilde{x}_m)| \le \eta_m(\delta) ||f(\cdot)||_k}$

For a covering $\mathcal{K} = \bigcup_{m \in [M]} \mathbb{B}_{\mathcal{X}}(\tilde{x}_m, \delta_m)$

 $"b \leq Df(x), \forall x \in \mathfrak{K}" \Leftrightarrow "b + \omega_m(Df, \delta) \leq Df(\tilde{x}_m), \forall m \in [M]"$

Deriving SOC constraints through continuity moduli

Take $\delta \ge 0$ and x s.t. $||x - \tilde{x}_m|| \le \delta$ $|Df(x) - Df(\tilde{x}_m)| = |\langle f(\cdot), D_x k(x, \cdot) - D_x k(\tilde{x}_m, \cdot) \rangle_k|$ $\le ||f(\cdot)||_k \sup_{\substack{\{x \mid ||x - \tilde{x}_m|| \le \delta\}}} ||D_x k(x, \cdot) - D_x k(\tilde{x}_m, \cdot)||_k}{\eta_m(\delta)}$ $\omega_m(Df, \delta) := \sup_{\{x \mid ||x - \tilde{x}_m|| \le \delta\}} |Df(x) - Df(\tilde{x}_m)| \le \eta_m(\delta) ||f(\cdot)||_k}$

For a covering $\mathcal{K} \subset \bigcup_{m \in [M]} \mathbb{B}_{\mathfrak{X}}(\tilde{x}_m, \delta_m)$

 $"b \le Df(x), \forall x \in \mathcal{K}" \Leftarrow "b + \omega_m(Df, \delta) \le Df(\tilde{x}_m), \forall m \in [M]" \\ \Leftarrow "b + \eta_m \|f(\cdot)\| \le Df(\tilde{x}_m), \forall m \in [M]$

Since the kernel is smooth, $\delta \rightarrow 0$ gives $\eta_m(\delta) \rightarrow 0$.

There is also a geometrical interpretation for this choice of η_m .

Support Vector Machine (SVM) is about separating red and green points by blue hyperplane. Pierre-Cyril Aubin-Frankowski LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 13 / 33

Using the nonlinear embedding $\Phi_D : x \mapsto D_x k(x, \cdot)$, the idea is the same. Consider only the green points, it looks like one-class SVM. Pierre-Cyril Aubin-Frankowski LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 13 / 33

The green points are now samples of a compact set \mathcal{K} .

Pierre-Cyril Aubin-Frankowski

LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 13 / 33

The image $\Phi_D(\mathcal{K})$ looks ugly...

Pierre-Cyril Aubin-Frankowski

LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 13 / 33

The image $\Phi_D(\mathcal{K})$ looks ugly, can we cover it by balls? How to choose η ?

First cover $\mathcal{K} \subset \bigcup \{ \tilde{x}_m + \delta \mathbb{B} \}$, and then look at the images $\Phi_D(\{ \tilde{x}_m + \delta \mathbb{B} \})$

Pierre-Cyril Aubin-Frankowski

LQR as a Kernel Regression with Hard Shape Constraints Oct 2020

13 / 33

Cover the $\Phi_D({\tilde{x}_m + \delta \mathbb{B}})$ with tiny balls! This is how SOC was defined.

Main theorem

$$\begin{aligned} (f_{\eta}, b_{\eta}) &\in \underset{f \in \mathcal{F}_{k}, b \in \mathcal{B}}{\operatorname{arg min}} \mathcal{L}(f) = L\left(b, (x_{n}, y_{n}, f(x_{n}))_{n \in [N]}\right) + \Omega\left(\|f\|_{k}\right) \\ &\text{s.t.} \quad b_{i} + \eta_{i,m} \|f(\cdot)\|_{k} \leq D_{i}f(\tilde{x}_{m,i}), \quad \forall \ m \in [M_{i}], \forall i \in [\mathcal{I}] \end{aligned}$$

where \mathcal{B} is a closed convex constraint set over $(b_i)_{i \in [\mathcal{I}]}$. If $\Omega(\cdot)$ is strictly increasing, then

Theoretical guarantees [Aubin-Frankowski and Szabó, 2020]

- *i*) The finite number of SOC constraints is **tighter** than the infinite number of affine constraints.
- *ii*) **Representer theorem** (optimal solutions have a finite expression) $f_{\eta} = \sum_{i \in [\mathcal{I}], m \in [M_i]} \tilde{a}_{i,m} D_{i,x} k(\tilde{x}_{i,m}, \cdot) + \sum_{n \in [N]} a_n k(x_n, \cdot)$
- iii) If $\mathcal L$ is μ -strongly convex, we have **bounds**: computable/theoretical^a

$$\|f_{\eta} - \bar{f}\|_{k} \leq \min\left(\sqrt{\frac{2(\mathcal{L}(f_{\eta}) - \mathcal{L}(f_{\eta=0}))}{\mu}}, \sqrt{\frac{L_{\bar{f}}\|\boldsymbol{\eta}\|_{\infty}}{\mu}}\right)$$

^aAssuming $\mathcal{B} = \mathbb{R}^{\mathcal{I}}$ for the *a priori* bound to hold.

Pierre-Cyril Aubin-Frankowski

LQR as a Kernel Regression with Hard Shape Constraints

Oct 2020 14 / 33

•

Discussion

- (i) This theorem holds for given samples $(x_n, y_n)_{n \in [N]}$ (optimization rather than statistical properties - no asymptotics)
- The representer theorem provides an equivalent finite-dimensional (ii) problem of size N + M with SOC constraints $\sim \mathcal{O}((N + M)^3)$
- (iii) Better bound \equiv smaller $\eta \equiv$ smaller $\delta \equiv$ larger $M \equiv$ costly in time
- The virtual points can be chosen among the samples (*recycling*) (iv)

Pierre-Cyril Aubin-Frankowski

LQR as a Kernel Regression with Hard Shape Constraints Oct 2020

Joint quantile regression (JQR): airplane data

Airplane trajectories at takeoff have increasing altitude.

Works with higher dimensions too!

Kernel ridge regression (KRR): trajectory reconstruction

Very noisy GPS data: six non-overtaking cars in a traffic jam

(In Kernel Regression for Vehicle Trajectory Reconstruction under Speed and Inter-vehicular Distance Constraints, PCAF and Nicolas Petit and Zoltán Szabó IFAC World Congress 2020)

Pierre-Cyril Aubin-Frankowski

LQR as a Kernel Regression with Hard Shape Constraints

Oct 2020 17 / 33

Teaser slide

This approach works as well for

- Other compact coverings than balls, iterative covering
- SDP constraints (e.g. convexity for $d \ge 2$): $0 \preccurlyeq \text{Hess}(f)(x)$
- <u>Vector-valued functions</u> $f : \mathcal{X} \to \mathbb{R}^Q$
- Other applications: finance, control theory,...

Control: Take \mathfrak{F}_k to be a Hilbert space of trajectories $[0, T] \to \mathbb{R}^Q$

$$\begin{split} \min_{\substack{x(\cdot) \in \mathcal{F}_k \\ \text{s.t.} \\ c_i(t)^\top x(t) \leq d_i(t), \quad \forall t \in [0, T], \, \forall i \in [\mathcal{I}]. \end{split} } & \\ \end{split}$$

We have seen how to tighten an infinite number of affine constraints over a compact set into finitely many SOC constraints in RKHSs \hookrightarrow we have a representer theorem!

• tightening intractable constraints is the only way to have guarantees

• but tightening is "harder" to perform (here computationally)

Covering schemes suffer from the curse of dimensionality! $\mathfrak{X} \subset \mathbb{R}^d, \; d \gg 1$

But the control problem is only defined over $\mathcal{X} = [0, T]$ (d = 1)!

Problem of time-varying linear quadratic optimal control with finite horizon and affine inequality state constraints

$$\min_{x(\cdot),u(\cdot)} \quad g(x(T)) + \int_0^T [x(t)^\top Q(t)x(t) + u(t)^\top R(t)u(t)] dt \text{s.t.} \quad x(0) = x_0, \quad x'(t) = A(t)x(t) + B(t)u(t), \text{ a.e. in } [0, T], \quad c_i(t)^\top x(t) \le d_i(t), \forall t \in [0, T], \forall i \in [\![1, P]\!],$$

with state $x(t) \in \mathbb{R}^N$, control $u(t) \in \mathbb{R}^M$, $A(\cdot) \in L^1(0, T)$, $B(\cdot) \in L^2(0, T)$, $Q(t) \geq 0$ and $R(t) \geq r \operatorname{Id}_M$

Problem of time-varying linear quadratic optimal control with finite horizon and affine inequality state constraints with $Q \equiv 0$ and $R \equiv Id_M$

$$\min_{x(\cdot),u(\cdot)} g(x(T)) + \int_0^T \|u(t)\|_{\mathbb{R}^M}^2 dt \text{s.t.} \quad x(0) = x_0, x'(t) = A(t)x(t) + B(t)u(t), \text{ a.e. in } [0, T], c_i(t)^\top x(t) \le d_i(t), \forall t \in [0, T], \forall i \in \{1, \dots, P\},$$

with state $x(t) \in \mathbb{R}^N$, control $u(t) \in \mathbb{R}^M$, $A(\cdot) \in L^1(0, T)$, $B(\cdot) \in L^2(0, T)$, $x(\cdot) : [0, T] \to \mathbb{R}^N$ absolutely continuous and $u(\cdot) \in L^2(0, T)$.

Why are state constraints difficult to study?

- **Theoretical obstacle**: Pontryagine's Maximum Principle involves not only an adjoint vector p(t) but also measures/BV functions $\psi(t)$ supported at times where the constraints are saturated. You cannot just backpropagate the Hamiltonian system from the transversality condition.
- Numerical obstacle: Time discretization of constraints may fail e.g.

Speed cameras in traffic control

In between two cameras, drivers always break the speed limit.

Objective: Turn the state-constrained LQR into "KRR"

We have a vector space S of trajectories $x(\cdot) : [0, T] \to \mathbb{R}^N$

$$\mathcal{S} := \{x(\cdot) \,|\, \exists \, u(\cdot) \in L^2(0,T) \text{ s.t. } x'(t) = A(t)x(t) + B(t)u(t) \text{ a.e. } \}$$

The space of trajectories S depends on T, $A(\cdot)$, $B(\cdot)$.

LQR (Linear Quadratic Regulator)	"KRR" (Kernel Ridge Regression)		
$\min_{\substack{x(\cdot)\in\mathcal{S}\\u(\cdot)\in L^2(0,T)}}g(x(T)) + \ u(\cdot)\ ^2_{L^2(0,T)}$	$\min_{x(\cdot)\in\mathcal{S}} g(x(T)) + \lambda \ x(\cdot)\ _{\mathcal{S}}^{2}$		
$egin{aligned} x(0) &= x_0 \ c_i(t)^ op x(t) &\leq d_i(t), t \in [0,T], i \leq P \end{aligned}$	$egin{aligned} x(0) &= x_0 \ c_i(t)^ op x(t) &\leq d_i(t), t \in [0,T], i \leq P \end{aligned}$		

Is S a RKHS? For which inner product?

Pierre-Cyril Aubin-Frankowski

LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 22 / 33

Definition (vRKHS)

Let \mathcal{T} be a non-empty set. A Hilbert space $(\mathcal{F}_{\mathcal{K}}, \langle \cdot, \cdot \rangle_{\mathcal{K}})$ of \mathbb{R}^{N} -vectorvalued functions defined on \mathcal{T} is a vRKHS if there exists a matrix-valued kernel $\mathcal{K}: \mathcal{T} \times \mathcal{T} \to \mathbb{R}^{N \times N}$ such that the reproducing property holds:

$$\mathcal{K}(\cdot,t) p \in \mathfrak{F}_{\mathcal{K}}, \quad p^{ op} f(t) = \langle f, \mathcal{K}(\cdot,t) p
angle_{\mathcal{K}}, \quad ext{ for } t \in \mathfrak{T}, \ p \in \mathbb{R}^{N}, f \in \mathfrak{F}_{\mathcal{K}}$$

Necessarily, K has a Hermitian symmetry: $K(s, t) = K(t, s)^{\top}$

There is also a one-to-one correspondence between K and $(\mathcal{F}_K, \langle \cdot, \cdot \rangle_K)$ [Micheli and Glaunès, 2014], so changing \mathcal{T} or $\langle \cdot, \cdot \rangle_K$ changes K.

Theorem (Representer theorem with SOC constraints)

Let $(\mathcal{F}_{\mathcal{K}}, \langle \cdot, \cdot \rangle_{\mathcal{K}})$ be a vRKHS defined on a set \mathfrak{T} . For a "loss" $L : \mathbb{R}^{N_0} \to \mathbb{R} \cup \{+\infty\}$, strictly increasing "regularizer" $\Omega : \mathbb{R}_+ \to \mathbb{R}$, and constraints $d_i : \mathbb{R}^{N_i} \to \mathbb{R}$, consider the optimization problem

$$\begin{split} \bar{f} &\in \mathop{\mathrm{arg\ min}}_{f\in\mathcal{F}_{K}} \quad L\left(c_{0,1}^{\top}f(t_{0,1}),\ldots,c_{0,N_{0}}^{\top}f(t_{0,N_{0}})\right) + \Omega\left(\|f\|_{K}\right) \\ &\text{s.t.} \qquad \lambda_{i}\|f\|_{K} \leq d_{i}(c_{i,1}^{\top}f(t_{i,1}),\ldots,c_{i,N_{i}}^{\top}f(t_{i,N_{i}})), \,\forall \, i\in\llbracket 1,P\rrbracket. \end{split}$$

Then there exists $\{p_{i,m}\}_{m \in [\![1,N_i]\!]} \subset \mathbb{R}^N$ and $\alpha_{i,m} \in \mathbb{R}$ such that

 $\overline{f} = \sum_{i=0}^{P} \sum_{m=1}^{N_i} K(\cdot, t_{i,m}) p_{i,m}$ with $p_{i,m} = \alpha_{i,m} c_{i,m}$.

Application to linear control systems with quadratic cost

$$\begin{split} \mathcal{S} &:= \{x(\cdot) \in W^{1,1} \mid \exists \ u(\cdot) \in L^2(0, T) \text{ s.t. } x'(t) = A(t)x(t) + B(t)u(t) \text{ a.e. } \} \\ \text{Given } x(\cdot) \in \mathcal{S}, \text{ for the pseudoinverse } B(t)^{\ominus} \text{ of } B(t), \text{ set} \\ u(t) &:= B(t)^{\ominus}[x'(t) - A(t)x(t)] \text{ a.e. in } [0, T]. \\ \langle x_1(\cdot), x_2(\cdot) \rangle_{\mathcal{K}} &:= x_1(0)^\top x_2(0) + \int_0^T u_1(t)^\top u_2(t) \mathrm{d}t \end{split}$$

Lemma

 $(S, \langle \cdot, \cdot \rangle_{\kappa})$ is a vRKHS with uniformly continuous $K(\cdot, \cdot)$.

 $\|\cdot\|_{\mathcal{K}}$ is a Sobolev-like norm split into two semi-norms

$$\|x(\cdot)\|_{K}^{2} = \underbrace{\|x(0)\|^{2}}_{\|x(\cdot)\|_{K_{0}}^{2}} + \underbrace{\int_{0}^{T} \|B(t)^{\ominus}(x'(t) - A(t)x(t))\|^{2} \mathrm{d}t}_{\|x(\cdot)\|_{K_{1}}^{2}}.$$

Splitting ${\mathcal S}$ into subspaces and identifying their kernels

$$\begin{aligned} \mathcal{S}_0 &:= \{ x(\cdot) \, | \, x'(t) = A(t)x(t), \text{ a.e. in } [0, T] \} & \| x(\cdot) \|_{K_0}^2 = \| x(0) \|^2 \\ \mathcal{S}_u &:= \{ x(\cdot) \, | \, x(\cdot) \in \mathcal{S} \text{ and } x(0) = 0 \} & \| x(\cdot) \|_{K_1}^2 = \| u(\cdot) \|_{L^2(0,T)}^2. \end{aligned}$$

As $S = S_0 \oplus S_u$, $K = K_0 + K_1$.

Splitting ${\mathcal S}$ into subspaces and identifying their kernels

$$\begin{aligned} \mathcal{S}_0 &:= \{ x(\cdot) \,|\, x'(t) = A(t)x(t), \text{ a.e. in } [0, T] \} & \| x(\cdot) \|_{\mathcal{K}_0}^2 = \| x(0) \|^2 \\ \mathcal{S}_u &:= \{ x(\cdot) \,|\, x(\cdot) \in \mathcal{S} \text{ and } x(0) = 0 \} & \| x(\cdot) \|_{\mathcal{K}_1}^2 = \| u(\cdot) \|_{L^2(0,T)}^2. \end{aligned}$$

As $S = S_0 \oplus S_u$, $K = K_0 + K_1$. Since dim $(S_0) = N$, for $\Phi_A(t, s) \in \mathbb{R}^{N,N}$ the state-transition matrix $s \to t$ of $x'(\tau) = A(\tau)x(\tau)$

 $K_0(s,t) = \Phi_A(s,0) \Phi_A(t,0)^ op$

Only using the reproducing property and that for $x(\cdot)\in\mathcal{S}$,

$$x(t) = \Phi_A(t,0)x(0) + \int_0^t \Phi_A(t,\tau)B(\tau)u(\tau)\mathrm{d}\tau.$$
(1)

For fixed *t*, define control matrix $U_t(s) := \begin{cases} B(s)^\top \Phi_A(t,s)^\top & \forall s \leq t, \\ 0 & \forall s > t. \end{cases}$

$$\partial_1 K_1(s,t) = A(s)K_1(s,t) + B(s)U_t(s) \text{ a.e. in } [0,T] \text{ with } K_1(0,t) = 0.$$
$$K_1(s,t) = \int_0^{\min(s,t)} \Phi_A(s,\tau)B(\tau)B(\tau)^{\top} \Phi_A(t,\tau)^{\top} \mathrm{d}\tau.$$

Examples: controllability Gramian/transversality condition

Steer a point from (0,0) to (T, x_T) , with e.g. $g(x(T)) = ||x_T - x(T)||_N^2$

Exact planning $(x(T) = x_T)$	Relaxed planning $(g\in \mathcal{C}^1 ext{ convex})$
$\min_{\substack{x(\cdot)\in\mathcal{S}\\x(0)=0}} \chi_{x_{T}}(x(T)) + \frac{1}{2} \ u(\cdot)\ _{L^{2}(0,T)}^{2}$	$\min_{\substack{x(\cdot)\in S\\x(0)=0}} g(x(T)) + \frac{1}{2} \ u(\cdot)\ _{L^2(0,T)}^2$

As, x(0) = 0, applying the representer theorem: $\exists p_T, \bar{x}(\cdot) = K_1(\cdot, T)p_T$

Controllability Gramian	Transversality Condition		
$\mathcal{K}_1(T,T) = \int_0^T \Phi_A(T,\tau) \mathcal{B}(\tau) \mathcal{B}(\tau)^\top \Phi_A(T,\tau)^\top \mathrm{d}\tau$	$0 = \nabla \left(\rho \mapsto g(K_1(T, T)\rho) + \frac{1}{2} \rho^\top K_1(T, T)\rho \right) (\rho_T)$ $= K_1(T, T) (\nabla g(K_1(T, T)\rho_T) + \rho_T).$		
$\bar{x}(T) = x_T \Leftrightarrow x_T \in Im(K_1(T,T))$	Take $p_T = - abla g(ar{x}(T))$		

From affine state constraints to SOC constraints

Take
$$(t_m, \delta_m)$$
 such that $[0, T] \subset \cup_{m \in \llbracket 1, N_P \rrbracket} [t_m - \delta_m, t_m + \delta_m]$, take
 $\eta_i(\delta_m, t_m) := \sup_{\substack{t \in [t_m - \delta_m, t_m + \delta_m] \cap [0, T]}} \|K(\cdot, t_m)c_i(t_m) - K(\cdot, t)c_i(t)\|_K,$
 $d_i(\delta_m, t_m) := \inf_{\substack{t \in [t_m - \delta_m, t_m + \delta_m] \cap [0, T]}} d_i(t).$

We have strengthened SOC constraints that enable a representer theorem

 $egin{aligned} &\eta_i(\delta_m,t_m)\| imes(\cdot)\|_{\mathcal{K}}+c_i(t_m)^ op x(t_m)&\leq d_i(\delta_m,t_m),\,orall\,m\in \llbracket 1,N_P
rbracket,\,orall\,i\in \llbracket 1,P
rbracket\ &arphi\ &arphi\$

Lemma (Uniform continuity of tightened constraints)

As $K(\cdot, \cdot)$ is UC, if $c_i(\cdot)$ and $d_i(\cdot)$ are C^0 -continuous, when $\delta \to 0^+$, $\eta_i(\cdot, t)$ converges to 0 and $d_i(\cdot, t)$ converges to $d_i(t)$, uniformly w.r.t. t.

Main theorem

(H-gen) A(·) ∈ L¹(0, T) and B(·) ∈ L²(0, T), c_i(·) and d_i(·) are C⁰.
(H-sol) c_i(0)x₀ < d_i(0) and there exists a trajectory x^ϵ(·) ∈ S satisfying strictly the affine constraints, as well as the initial condition.³
(H-obj) g(·) is convex and continuous.

Theorem (Existence and Approximation by SOC constraints)

Both the original problem and its strengthening have unique optimal solutions. For any $\rho > 0$, there exists $\overline{\delta} > 0$ such that for all $(\delta_m)_{m \in \llbracket 1, N_0 \rrbracket}$, with $[0, T] \subset \bigcup_{m \in \llbracket 1, N_0 \rrbracket} [t_m - \delta_m, t_m + \delta_m]$ satisfying $\overline{\delta} \ge \max_{m \in \llbracket 1, N_0 \rrbracket} \delta_m$,

$$rac{1}{\gamma_{\mathcal{K}}} \cdot \sup_{t\in[0,T]} \|ar{x}_\eta(t) - ar{x}(t)\| \leq \|ar{x}_\eta(\cdot) - ar{x}(\cdot)\|_{\mathcal{K}} \leq
ho$$

with $\gamma_{\mathcal{K}} := \sup_{t \in [0,T], p \in \mathbb{B}_N} \sqrt{p^{\top} \mathcal{K}(t,t) p}$.

³(H-sol) is implied for instance by an inward-pointing condition at the boundary. Pierre-Cyril Aubin-Frankowski LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 29 / 33

Numerical example: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

Numerical example: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

$$\begin{aligned} \min_{x(\cdot),w(\cdot),u(\cdot)} & -\dot{x}(T) + \lambda \| u(\cdot) \|_{L^2(0,T)}^2 & \lambda \ll 1 \\ x(0) &= 0.5, \quad \dot{x}(0) = 0, \quad w(0) = 0, \quad x(T/3) = 0.5, \quad x(T) = 0 \\ \hline \ddot{x}(t) &= -10 \, x(t) + w(t), \quad \dot{w}(t) = u(t), \text{ a.e. in } [0,T] \\ \hline \dot{x}(t) &\in [-3, +\infty[, \quad w(t) \in [-10, 10], \forall t \in [0,T]] \end{aligned}$$

Converting affine state constraints to SOC constraints, applying rep. thm

Most of computational cost is related to the "controllability Gramians" $K_1(s,t) = \int_0^{\min(s,t)} e^{(s-\tau)A} B B^\top e^{(t-\tau)A^\top} d\tau$ which we have to approximate.

30 / 33

Optimal solutions of the constrained pendulum "path-planning" problem. Red circles: equality constraints. Grayed areas: constraints over [0, T].

Angle $x(\cdot)$

Velocity $\dot{x}(\cdot)$

Figure: Comparison of SOC constraints (guaranteed η_w) vs discretized constraints ($\eta_w = 0$) for $N_P = 200$.

Pierre-Cyril Aubin-Frankowski

LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 31 / 33

Couple $w(\cdot)$

Optimal solutions of the constrained pendulum "path-planning" problem. Red circles: equality constraints. Grayed areas: constraints over [0, T].

Angle $x(\cdot)$

Velocity $\dot{x}(\cdot)$

Couple $w(\cdot)$

Figure: Comparison of SOC constraints (guaranteed η_w) vs discretized constraints ($\eta_w = 0$) for $N_P = 200$ - Chattering phenomenon!.

Pierre-Cyril Aubin-Frankowski

LQR as a Kernel Regression with Hard Shape Constraints Oct 2020 31 / 33

Optimal solutions of the constrained pendulum "path-planning" problem. Red circles: equality constraints. Grayed areas: constraints over [0, T].

Angle $x(\cdot)$

Velocity $\dot{x}(\cdot)$

Couple $w(\cdot)$

Figure: Comparison of SOC constraints for varying N_P and guaranteed η_w .

Optimal solutions of the constrained pendulum "path-planning" problem. Red circles: equality constraints. Grayed areas: constraints over [0, T].

Angle $x(\cdot)$

Velocity $\dot{x}(\cdot)$

Couple $w(\cdot)$

Figure: Comparison of SOC constraints for varying η_w and $N_P = 200$.

Pushing RKHSs beyond/Revisiting classical LQR

For RKHSs

- Control constraints do not correspond to continuous evaluations
 → limits of RKHS pointwise theory (e.g. x' = u ∈ L²([0, T], [-1, 1]) a.e.)
- Successive linearizations of nonlinear system lead to changing kernels \hookrightarrow a single kernel may not be sufficient (e.g. $x' = f_{[x_n(\cdot)]}x + f_{[u_n(\cdot)]}u$ a.e.)
- Non-quadratic costs for linear systems do not lead to Hilbert spaces \hookrightarrow you may need Banach kernels (e.g. $||u(\cdot)||^2_{L^2(0,T)} \to ||u(\cdot)||_{L^1(0,T)}$)

For control theory

To each evaluation at time t corresponds a covector pt ∈ ℝ^N
 → Representer theorem well adapted for state constraints, but unsuitable for control constraints. Reverts the difficulty w.r.t. PMP approach.

• The Gramian of controllability generates trajectories

 \hookrightarrow This allows for close-form solutions in continuous-time

Shape constraints in RKHSs

We have seen how to tighten in RKHSs an infinite number of pointwise affine constraints over a compact set into finitely many SOC constraints.

- tightening intractable constraints is the only way to have guarantees
- compact coverings in infinite dimensional spaces provide a solution

Linear Quadratic Regulator as a kernel regression

We have seen that state-constrained LQR is a non-trivial 1D example of shape constraints that

- allows to revisit classical notions from the kernel viewpoint
- allows to deal with the difficult problem of state constraints

Appendix: Joint Quantile Regression (JQR)

 $f_{\tau}(x)$ conditional quantile over (X, Y): $P(Y \leq f_{\tau}(x)|X = x) = \tau \in]0,1[.$

Estimation through convex optimization over "pinball loss" $l_{\tau}(\cdot)$ (i.e. tilted absolute value [Koenker, 2005]).

Known fact: quantile functions can cross when estimated independently.

33 / 33

Joint quantile regression with non-crossing constraints, over $(f_q)_{q \in [Q]}$:

$$\mathcal{L}\left(f_1,\ldots,f_Q\right) = \frac{1}{N}\sum_{q\in[Q]}\sum_{n\in[N]} I_{\tau_q}\left(y_n - f_q(x_n)\right) + \lambda_f\sum_{q\in[Q]} \|f_q\|_k^2$$

s.t.
$$f_{q+1}(x) \ge f_q(x), \forall q \in [Q-1], \forall x \in [\min x_n, \max x_n]^d$$
.

Appendix: JQR performance over UCI datasets

- PDCD = Primal-Dual Coordinate Descent [Sangnier et al., 2016], JQR with parallel/heteroscedatic quantile penalization (see also ITL [Brault et al., 2019] for noncrossing inducer)
- mean \pm std of 100×value of the pinball loss (smaller is better)

Dataset	d	Ν	PDCD	SOC
engel	1	235	$48\pm~8$	$53\pm~9$
GAGurine	1	314	$61\pm~7$	$65\pm~6$
geyser	1	299	$105\pm~7$	108 ± 3
mcycle	1	133	$66\pm~9$	62 ± 5
ftcollinssnow	1	93	154 ± 16	148 ± 13
CobarOre	2	38	159 ± 24	151 ± 17
topo	2	52	69 ± 18	62 ± 14
caution	2	100	88 ± 17	98 ± 22
ufc	3	372	$81\pm~4$	$87\pm~6$

Annex: Green kernels and RKHSs

Let *D* be a differential operator, D^* its formal adjoint. Define the Green function $G_{D^*D,x}(y) : \Omega \to \mathbb{R}$ s.t. $D^*D G_{D^*D,x}(y) = \delta_x(y)$ then, if the integrals over the boundaries in Green's formula are null, for any $f \in \mathcal{F}_k$

$$f(x) = \int_{\Omega} f(y) D^* DG_{D^*D,x}(y) dy = \int_{\Omega} Df(y) DG_{D^*D,x}(y) =: \langle f, G_{D^*D,x} \rangle_{\mathcal{F}_k},$$

so $k(x, y) = G_{D^*D,x}(y)$ [Saitoh and Sawano, 2016, p61]. For vector-valued contexts, e.g. $\mathcal{F}_{K} = W^{s,2}(\mathbb{R}^d, \mathbb{R}^d)$ and $D^*D = (1 - \sigma^2 \Delta)^s$ component-wise, see [Micheli and Glaunès, 2014, p9].

Alternatively, in 1D, $D G_{D,x}(y) = \delta_x(y)$, the kernel associated to the inner product $\int_{\Omega} Df(y) Dg(y) dy$ for the space of f "null at the border" writes as

$$k(x,y) = \int_{\Omega} G_{D,x}(z) G_{D,y}(z) dz$$

see [Berlinet and Thomas-Agnan, 2004, p286] and [Heckman, 2012].

Annex: IPC gives strictly feasible trajectories

(H-sol) $C(0)x_0 < d(0)$ and there exists a trajectory $x^{\epsilon}(\cdot) \in S$ satisfying strictly the affine constraints, as well as the initial condition. (H1) $A(\cdot)$ and $B(\cdot)$ are C^0 . $C(\cdot)$ and $d(\cdot)$ are C^1 and $C(0)x_0 < d(0)$. (H2) There exists $M_u > 0$ s.t., for all $t \in [0, T]$ and $x \in \mathbb{R}^N$ satisfying $C(t)x \le d(t)$, and $||x|| \le (1 + ||x_0||)e^{T||A(\cdot)||_{L^{\infty}(0,T)} + TM_u||B(\cdot)||_{L^{\infty}(0,T)}}$, there exists $u_{t,x} \in M_u \mathbb{B}_M$ such that

$$\forall i \in \{j \mid c_j(t)^\top x = d_j(t)\}, \ c_i'(t)^\top x - d_i'(t) + c_i(t)^\top (A(t)x + B(t)u_{t,x}) < 0.$$

This is an inward-pointing condition (IPC) at the boundary.

Lemma (Existence of interior trajectories)

If (H1) and (H2) hold, then (H-sol) holds.

Annex: control proof main idea, nested property

$$\begin{split} \eta_i(\delta,t) &:= \sup \| K(\cdot,t)c_i(t) - K(\cdot,s)c_i(s) \|_{\mathcal{K}}, \quad \omega_i(\delta,t) := \sup |d_i(t) - d_i(s)|, \\ d_i(\delta_m,t_m) &:= \inf d_i(s), \quad \text{over } s \in [t_m - \delta_m,t_m + \delta_m] \cap [0,T] \\ \text{For } \overrightarrow{\epsilon} \in \mathbb{R}_+^P, \text{ the constraints we shall consider are defined as follows} \\ \mathcal{V}_0 &:= \{x(\cdot) \in \mathcal{S} \mid \mathcal{C}(t)x(t) \leq d(t), \forall t \in [0,T] \}, \\ \mathcal{V}_{\delta,\text{fin}} &:= \{x(\cdot) \in \mathcal{S} \mid \overrightarrow{\eta}(\delta_m,t_m) \| x(\cdot) \|_{\mathcal{K}} + \mathcal{C}(t_m)x(t_m) \leq d(\delta_m,t_m), \forall m \in \llbracket 1,N_0 \rrbracket \}, \\ \mathcal{V}_{\delta,\text{inf}} &:= \{x(\cdot) \in \mathcal{S} \mid \overrightarrow{\eta}(\delta,t) \| x(\cdot) \|_{\mathcal{K}} + \overrightarrow{\omega}(\delta,t) + \mathcal{C}(t)x(t) \leq d(t), \forall t \in [0,T] \}, \\ \mathcal{V}_{\overrightarrow{\epsilon}} &:= \{x(\cdot) \in \mathcal{S} \mid \overrightarrow{\epsilon} + \mathcal{C}(t)x(t) \leq d(t), \forall t \in [0,T] \}. \end{split}$$

Proposition (Nested sequence)

Let $\delta_{\max} := \max_{m \in \llbracket 1, N_0 \rrbracket} \delta_m$. For any $\delta \ge \delta_{\max}$, if, for a given $y_0 \ge 0$, $\epsilon_i \ge \sup_{t \in [0, T]} [\eta_i(\delta, t) y_0 + \omega_i(\delta, t)]$, then we have a nested sequence

 $(\mathcal{V}_{\overrightarrow{\epsilon}} \cap y_0 \mathbb{B}_K) \subset \mathcal{V}_{\delta,inf} \subset \mathcal{V}_{\delta,fin} \subset \mathcal{V}_0.$

Only the simpler $\mathcal{V}_{\overrightarrow{\epsilon}}$ constraints matter!

Pierre-Cyril Aubin-Frankowski

LQR as a Kernel Regression with Hard Shape Constraints Oct 2020

Annex: List of shape constraints

Monotonicity w.r.t. partial ordering:

$$\partial^{e_1} f(x) \ge \ldots \ge \partial^{e_d} f(x) \ge 0 \quad (\forall x).$$

 $\partial^{e_j} f(x) \geq 0, \quad (\forall j \in [d], \quad \forall x).$

• Supermodularity: $f(u \lor v) + f(u \land v) \ge f(u) + f(v)$, $u, v \in \mathbb{R}^d$, where $u \lor v := (\max(u_j, v_j))_{j \in [d]}$ and $u \land v := (\min(u_j, v_j))_{j \in [d]}$. For $f \in C^2$

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} \geq 0 \quad (\forall i \neq j \in [d], \forall x).$$

References I

Agrell, C. (2019).

Gaussian processes with linear operator inequality constraints.

Journal of Machine Learning Research, 20:1–36.

Aronszajn, N. (1950).

Theory of reproducing kernels.

Transactions of the American Mathematical Society, 68:337–404.

Aubin-Frankowski, P.-C. and Szabó, Z. (2020).

Hard shape-constrained kernel machines.

https://arxiv.org/abs/2005.12636.

Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics.

Kluwer.

volume 89 of Proceedings of Machine Learning Research, pages 1294–1302. PMLR.

References II

Buisson, C., Villegas, D., and Rivoirard, L. (2016).

Using polar coordinates to filter trajectories data without adding extra physical constraints.

Hall, G. (2018).

Optimization over nonnegative and convex polynomials with and without semidefinite programming.

PhD Thesis, Princeton University.

Heckman, N. (2012).

The theory and application of penalized methods or Reproducing Kernel Hilbert Spaces made easy.

Statistics Surveys, 6(0):113-141.

Koenker, R. (2005).

Quantile Regression.

Econometric Society Monographs. Cambridge University Press.

References III

Micheli, M. and Glaunès, J. A. (2014).

Matrix-valued kernels for shape deformation analysis.

Geometry, Imaging and Computing, 1(1):57–139.

Nicol, F. (2013).

Functional principal component analysis of aircraft trajectories.

In International Conference on Interdisciplinary Science for Innovative Air Traffic Management (ISIATM).

Papp, D. and Alizadeh, F. (2014).

Shape-constrained estimation using nonnegative splines.

Journal of Computational and Graphical Statistics, 23(1):211–231.

Saitoh, S. and Sawano, Y. (2016).

Theory of Reproducing Kernels and Applications.

Springer Singapore.

Sangnier, M., Fercoq, O., and d'Alché Buc, F. (2016).

Joint quantile regression in vector-valued RKHSs.

Advances in Neural Information Processing Systems (NIPS), pages 3693-3701.

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001).

A generalized representer theorem.

In *Computational Learning Theory (CoLT)*, pages 416–426. Springer Berlin Heidelberg.

Takeuchi, I., Le, Q., Sears, T., and Smola, A. (2006).

Nonparametric quantile estimation.

Journal of Machine Learning Research, 7:1231–1264.