SEQUENTIAL DIFFERENCE-OF-CONVEX PROGRAMMING

Welington de Oliveira www.oliveira.mat.br

MINES ParisTech, CMA - Centre de Mathématiques Appliquées

École des Ponts, November 18th, 2021

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ◆○◆

OUTLINE

A BRIEF TUTORIAL ON DC PROGRAMMING

◆□> ◆□> ◆三> ◆三> 三三 のへで

SEQUENTIAL DC PROGRAMMING

DC PROGRAMMING

We are now interested in a class of Difference-of-Convex (DC) programming:

$$\min_{x \in X} f(x), \quad \text{with} \quad f(x) = f_1(x) - f_2(x) \tag{P}$$

Assumptions

- $f_1, f_2 : \mathbb{R}^n \to \mathbb{R}$ are convex but possibly nonsmooth
- $X \subset \mathbb{R}^n$ is a closed convex set (e.g. $X = \mathbb{R}^n$)
- DC programming is a sub-field of nonlinear programming that finds many applications in engineering problems and data science
- ▶ DC programs are, in the general situation, NP-hard
- They cover a broad class of nonconvex optimization problems, but still allows the use of the convex analysis apparatus to establish optimality conditions and design algorithms

1/40

イロト イヨト イヨト イヨト

Lower- C^2 functions are globally DC. In particular,

- ▶ finite maxima of C^2 -functions are DC
- ▶ finite maxima of functions with gradient Lipschitz continuous are DC
- ▶ polynomials are DC

Every extended real-valued lsc function can be approximated by not only DoC, but actually piece-wise affine DC of the kind max-max

This result shows that the class of optimization problems fitting into formulation (P) is comprehensive, and hence covers almost all problems of practical interest

Note, however, that a DC decomposition of f is not always available

In many situations of practical interest, a DC decomposition can be easily obtained

Example: f(x) = ||x| - 1| is DC because $f(x) = 2 \max\{|x| - 1, 0\} - [|x| - 1]$

A DC function has infinitely many DC decompositions $f_1 - f_2$

Let $f_i = \psi_i - \phi_i$ be DC functions for all i = 1, ..., m. The following functions are DC

• $g_1(x) = \sum_{i=1}^m \alpha_i f_i(x), \ \alpha \in \mathbb{R}^m$, with DC decomposition

$${}_{\mathcal{I}1}(x) = \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0$$

Let $f_i = \psi_i - \phi_i$ be DC functions for all i = 1, ..., m. The following functions are DC

• $g_1(x) = \sum_{i=1}^m \alpha_i f_i(x), \ \alpha \in \mathbb{R}^m$, with DC decomposition

$$g_1(x) = \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j$$

• $g_2(x) = \max\{f_1(x), \ldots, f_m(x)\}$ with DC decomposition

$$g_2(x) = \max_i \left\{ \psi_i(x) + \sum_{j \neq i}^m \phi_i(x) \right\} - \sum_{j=1}^m \phi_j(x)$$

$$(1) + (2)$$

Let $f_i = \psi_i - \phi_i$ be DC functions for all $i = 1, \ldots, m$. The following functions are DC

• $g_1(x) = \sum_{i=1}^m \alpha_i f_i(x), \ \alpha \in \mathbb{R}^m$, with DC decomposition

$$g_1(x) = \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j$$

• $g_2(x) = \max\{f_1(x), \dots, f_m(x)\}$ with DC decomposition

$$g_2(x) = \max_i \left\{ \psi_i(x) + \sum_{j \neq i}^m \phi_i(x) \right\} - \sum_{j=1}^m \phi_j(x)$$

• $g_3(x) = \min\{f_1(x), \ldots, f_m(x)\}$ with DC decomposition

$$g_{3}(x) = \sum_{j=1}^{m} \psi_{j}(x) - \max_{i} \left\{ \phi_{i}(x) + \sum_{j \neq i}^{m} \psi_{j}(x) \right\}$$

Contractional Application イロト イラト イミト イミト ミーシ マへで 3/40

Let $f_i = \psi_i - \phi_i$ be DC functions for all $i = 1, \ldots, m$. The following functions are DC

• $g_1(x) = \sum_{i=1}^m \alpha_i f_i(x), \ \alpha \in \mathbb{R}^m$, with DC decomposition

$$g_1(x) = \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i > 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \phi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x) - \sum_{j \in \{i:\alpha_i < 0\}} \alpha_j \psi_j(x)\right) - \left(\sum_{j \in \{i:\alpha_i < 0\}} \alpha_j$$

• $g_2(x) = \max\{f_1(x), \ldots, f_m(x)\}$ with DC decomposition

$$g_2(x) = \max_i \left\{ \psi_i(x) + \sum_{j \neq i}^m \phi_i(x) \right\} - \sum_{j=1}^m \phi_j(x)$$

• $g_3(x) = \min\{f_1(x), \ldots, f_m(x)\}$ with DC decomposition

$$g_{3}(x) = \sum_{j=1}^{m} \psi_{j}(x) - \max_{i} \left\{ \phi_{i}(x) + \sum_{j \neq i}^{m} \psi_{j}(x) \right\}$$

• g(x) = |f(x)| with DC decomposition

$$g(x) = 2 \max\{\psi(x), \phi(x)\} - (\psi(x) + \phi(x))$$

te Mathématiques Appliquées $\sqrt{2}$ Q ($\sqrt{2}$ 3/40

イロト イヨト イヨト イヨト

Lemma

Let $f : \mathbb{R}^n \to \mathbb{R}$ have Lipschitz continuous gradient with modulus L > 0. Then f admits the DC decompositions $f(x) = \frac{L}{2} ||x||^2 - \left[\frac{L}{2} ||x||^2 - f(x)\right]$ and $f(x) = \left[f(x) + \frac{L}{2} ||x||^2\right] - \frac{L}{2} ||x||^2$

Example: f(x) = cos(x), that has gradient Lipschitz with constant L = 1

Lemma

Let $\psi: \mathbb{R}^n \to \mathbb{R}_+$ be a convex function. If $\phi: \mathbb{R}_+ \to \mathbb{R}$ is a concave and non-decreasing function such that $\phi'_+(0) < \infty$, then

 $\tau \psi(x) - \phi(\psi(x))$ is convex for all $\tau \ge \phi'_+(0)$

Such a property is useful for inducing sparsity in certain problems

$$\phi(\psi(x)) = \tau \psi(x) - [\tau \psi(x) - \phi(\psi(x))]$$

INDUCING SPARSITY

FIGURA: $\phi(r) = \log(1 + 2r)/2$

$$\phi(||x||) = ||x|| - [||x|| - \phi(||x||)]$$
 is DC

(日) (四) (三) (三)

NONCONVEX IMAGE DENOISING

• Let $b \in \mathbb{R}^n$ be the vectorization of a corrupted grayscale image. In order to preserve edges in the process of restoring *b*, the following nonconvex *Total Variation* formulation is commonly employed¹:

$$\min_{x \in \mathbb{R}^n} \frac{\mu}{2} \|x - b\|^2 + \phi(TV(x)), \quad \text{with} \quad TV(x) = \sum_{i=1}^n \|(\nabla x)_i\|$$

• $\phi : \mathbb{R}_+ \to \mathbb{R}$ is a penalizing function, $\mu > 0$ is a fidelity parameter and $(\nabla x)_i \in \mathbb{R}^2$ denotes the discretization of the gradient of image x at pixel *i*

- If ϕ is concave and non-decreasing, its right derivative $\phi'_+(r)$ is well defined for all $r \ge 0$. Then $\tau TV(x) - \phi(TV(x))$ is convex function for all $\tau \ge \phi'_+(0)$
- ▶ The nonconvex image denoising problem fits into the DC formulation

$$\min_{x \in \mathbb{R}^n} f_1(x) - f_2(x)$$

 $f_1(x) = \frac{\mu}{2} \|x - b\|^2 + \tau TV(x)$ and $f_2(x) = \tau TV(x) - \phi(TV(x)),$

two convex functions

 $\begin{aligned} ^{1} \| (\nabla x)_{i} \| &= \sqrt{(X_{l+1,j} - X_{l,j})^{2} + (X_{l,j+1} - X_{l,j})^{2}} \text{ with } i^{th} \text{ the coordinate of } x \text{ where the maximum line of } x \text{ whe$

CORRUPTED IMAGE

Colore de Matthéosofiques Appliquées

 $7 \, / \, 40$

CONVEX MODEL: FISTA (BEST SETTING)

 $\min_{x \in \mathbb{R}^n} \frac{\mu}{2} \|x - b\|^2 + TV(x)$

NONCONVEX MODEL: DC PROGRAMMING

$$\min_{x \in \mathbb{R}^n} \frac{\mu}{2} \|x - b\|^2 + \phi(TV(x))$$

≡ <) Q (N 9 / 40

SUM OF CLIPPED CONVEX FUNCTIONS

Let $a_i \in \mathbb{R}$ and $\psi_i : \mathbb{R}^n \to \mathbb{R}$, $i = 1, \dots, m$, be convex functions. The (NP-hard) clipped optimization problem reads as

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m \min\{\psi_i(x), a_i\}$$

and finds applications in statistics, risk minimization, clipped control, and machine learning

▶ The sum of clipped convex functions is indeed a DC function:

$$f(x) = \sum_{i=1}^{m} \min\{\psi_i(x), a_i\} = f_1(x) - f_2(x)$$
$$f_1(x) = \sum_{i=1}^{m} \psi_i(x) + a_i \quad \text{and} \quad f_2(x) = \sum_{i=1}^{m} \max\{\psi_i(x), a_i\}$$

CLIPPED LINEAR REGRESSION

- Convex model: $\min_{x \in \mathbb{R}} 0.2 x^2 + \sum_{i=1}^m (xp_i q_i)^2$
- ▶ Nonconvex, nonsmooth model: $\min_{x \in \mathbb{R}} 0.2 x^2 + \sum_{i=1}^{m} \min\{(xp_i q_i)^2, 0.5\}$

Contro de Mathématiques Appliquées

11/40

イロト イヨト イヨト イヨト

Sparse optimization: CLIPPED MODEL

- \blacktriangleright Let $\phi:\mathbb{R}^n\to\mathbb{R}$ be a convex function, X a convex set, and $\lambda>0$ a given parameter
- In sparse optimization we may wish to solve

$$\min_{x \in X} \phi(x) + \lambda \|x\|_0$$

 \blacktriangleright The (difficult) zero norm counts the number of nonzeros elements of vector x

• We may approximate $||x||_0$ by a simpler function: given r > 0 small enough

$$||x||_0 \approx \sum_{i=1}^n \min\left\{\frac{|x_i|}{r}, 1\right\} = \sum_{i=1}^n \left(\frac{|x_i|}{r} + 1\right) - \sum_{i=1}^n \max\left\{\frac{|x_i|}{r}, 1\right\}$$

• Note that $\lim_{r\downarrow 0}\sum_{i=1}^n \min\left\{\frac{|x_i|}{r}, 1\right\} = \|x\|_0$

Sparse optimization: ℓ_0 -constrained model

In sparse optimization we may wish to solve

$$\begin{cases} \min_{x \in X} & \phi(x) \\ \text{s.t.} & \|x\|_0 \le k \end{cases}$$

(k is a natural number)

• By using the norm $||x||_{(k)} = \sum_{i=1}^{k} |x_{\sigma(i)}|$, with $\sigma(i)$ the i^{th} largest value of $\{|x_1|, \ldots, |x_n|\}$, we have that

$$\begin{cases} \min_{x \in X} \phi(x) \\ \text{s.t.} \|x\|_0 \le k \end{cases} \equiv \begin{cases} \min_{x \in X} \phi(x) \\ \text{s.t.} \|x\|_{(k)} - \|x\|_{1} = 0 \end{cases} \approx \min_{x \in X} f_1(x) - f_2(x) \\ f_1(x) = \phi(x) + \lambda \|x\|_{(k)} \text{ and } f_2(x) = \lambda \|x\|_1 \end{cases}$$

 $(\lambda > 0$ is a given parameter)

(Constrained) Clustering

- Let $\{y^1, \ldots, y^m\}$, with $y^i \in \mathbb{R}^d$, $i = 1, \ldots, m$, be the data set to be grouped
- The goal is to partition the data set into k disjoint subsets, called clusters, such that a clustering criterion is optimized
- \blacktriangleright Each cluster must be in X
- ▶ Given a distance function d(x, y) (e.g. d(x, y) = ||x y||), one tries to minimize the sum of the distance of each data point to the center $x^i \in \mathbb{R}^d$ of its cluster:

$$\min_{x^1,...,x^k \in X} \sum_{i=1}^m \min_{j=1,...,k} d(x^j, y^i)$$

▶ The objective function can be decomposed as $f_1(x) - f_2(x)$, with $x = (x^1, \ldots, x^k) \in \mathbb{R}^n$ the vector composed of all k centers, n = kd,

$$f_1(x) = \sum_{i=1}^m \sum_{j=1}^k d(x^j, y^i)$$
 and $f_2(x) = \sum_{i=1}^m \max_{j=1,\dots,k} \sum_{s=1,s\neq j}^k d(x^s, y^i)$

▶ The clustering problem can thus be written as a DC program

$$\min_{x \in X} f_1(x) - f_2(x)$$

14/40

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

CONSTRAINED CLUSTERING

$$\min_{x^1, \dots, x^k \in X} \sum_{i=1}^m \min_{j=1,\dots,k} d(x^j, y^i), \quad m = 1000, \ k = 10, \ d(x, y) = \|x - y\|_1$$

PROBABILITY MAXIMIZATION PROBLEMS

- ▶ Let $(\Xi, \mathcal{F}, \mathbb{P})$ be a probability space and $g : \mathbb{R}^n \times \Xi \to \mathbb{R}$ be convex in the first argument: $g(\cdot, \xi)$ is convex for any given $\xi \in \Xi$
- The problem of finding a point in the convex and compact set $X \subset \mathbb{R}^n$ such that the system of inequalities $g(x,\xi) \leq 0$ holds with the highest possible probability can be formulated as

$$\begin{aligned} \max_{x \in X} \mathbb{P}[g(x,\xi) \leq 0] &\equiv \max_{x \in X} \left[1 - \mathbb{P}[g(x,\xi) > 0] \right] &\equiv 1 - \min_{x \in X} \mathbb{P}[g(x,\xi) > 0] \\ &\equiv 1 - \min_{x \in X} \mathbb{E}[\chi(\max\{g(x,\xi), 0\}], \end{aligned}$$

where $\chi:\mathbb{R}\to\{0,1\}$ be defined as $\chi(a)=0$ if a=0 and $\chi(a)=1$ otherwise

▶ By approximating $\chi(\cdot)$ with min $\left\{\frac{|\cdot|}{r}, 1\right\}$, and using finitely many scenarios $\{\xi^1, \cdots, \xi^S\}$ with associated probability $p_s > 0$, we get the following approximation

$$\min_{x \in X} \sum_{s=1}^{S} p_s \min\left\{\frac{\max\{g(x,\xi^s), 0\}}{r}, 1\right\}$$

As we have already seen, this is a DC problem with available DC decompositions

16/40

・ロト ・四ト ・ヨト ・ヨト

What does it mean to solve a DC program?

$$\min_{x \in X} f(x), \quad \text{with} \quad f(x) = f_1(x) - f_2(x) \qquad (P)$$

Being a nonsmooth and nonconvex optimization problem, many definitions of stationarity exist for DC programs

A point $\bar{x} \in X$ is a

▶ global solution to problem (P) iff

 $\partial_{\epsilon} f_2(\bar{x}) \subset \partial_{\epsilon} [f_1(\bar{x}) + \mathbf{i}_X(\bar{x})] \quad \forall \epsilon \ge 0$

• d(irectional)-stationary point to problem (P) if

$$\partial f_2(\bar{x}) \subset \partial [f_1(\bar{x}) + \mathbf{i}_X(\bar{x})]$$

critical point to problem (P) if

$$\partial f_2(\bar{x}) \cap \partial [f_1(\bar{x}) + \mathbf{i}_X(\bar{x})] \neq \emptyset$$

Local algorithms for nonsmooth DC problems are only ensured to provide critical points (except when a special structure is assumed)

17/40

イロト イヨト イヨト イヨト

CRITICALITY FROM THE DUAL POINT OF VIEW

 $\min_{x \in X} f_1(x) - f_2(x) \qquad (P)$

THEOREM (TOLAND DUALITY)

Let $\bar{f}_1(x) = f_1(x) + \mathbf{i}_X(x)$ and $\bar{f} = \bar{f}_1 - f_2$. Then

$$\bar{f}^*(g) = \sup_{s \in \mathbb{R}^n} \bar{f}^*_1(g+s) - f^*_2(s)$$

▶ Note that $f^*(0)$ is a DC problem itself: $\bar{f}^*(0) = \sup_{s \in \mathbb{R}^n} \bar{f}^*_1(s) - f^*_2(s)$

▶ With a little abuse of notation, we denote by *dual problem* the following one, with converse signal:

$$-\bar{f}^*(0) = \inf_{s \in \mathbb{R}^n} f_2^*(s) - \bar{f}_1^*(s) \tag{D}$$

イロト イヨト イヨト イヨト

Theorem

$$\bar{f}_1(\bar{x}) - f_2(\bar{x}) = f_2^*(s) - \bar{f}_1^*(s) \quad \text{for all } s \in \partial f_2(\bar{x}) \cap \partial \bar{f}_1(\bar{x})$$

PRIMAL-DUAL RELATION IN DC PROGRAMMING

$$f(x) = \frac{1}{2} \|x\|^2 - \|x\|_1$$

The dual curves were obtained by plotting $f_2^*(\nabla f_1(x)) - f_1^*(\nabla f_1(x))$ with $x \in [-1,1] \times [-1,1]$. Critical points are the ones where f_{\square} and f_{\square}^* coincide

PRIMAL-DUAL RELATION IN DC PROGRAMMING

$$f(x) = (\|x\|^2 + \sum_{i=1}^{2} x_i) - \|x\|_1$$

The dual curves were obtained by plotting $f_2^*(\nabla f_1(x)) - f_1^*(\nabla f_1(x))$ with $x \in [-1, 1] \times [-1, 1]$. Critical points are the ones where f_{\square} and f_{\square}^* , coincide \mathbb{R} .

What does it mean to solve a DC program?

$$\min_{x \in X} f(x), \quad \text{WITH} \quad f(x) = f_1(x) - f_2(x) \qquad (P)$$

A point $\bar{x} \in X$ is a

• d(irectional)-stationary point to problem (P) if

$$\partial f_2(\bar{x}) \subset \partial [f_1(\bar{x}) + \mathbf{i}_X(\bar{x})]$$

which is equivalent to say that \bar{x} solves

 $\min_{x \in X} f_1(x) - [f_2(\bar{x}) + \langle g_2, x - \bar{x} \rangle] \quad \text{for all} \quad g_2 \in \partial f_2(\bar{x})$

critical point to problem (P) if

$$\partial f_2(\bar{x}) \cap \partial [f_1(\bar{x}) + \mathbf{i}_X(\bar{x})] \neq \emptyset$$

which is equivalent to say that \bar{x} solves

 $\min_{x\in X} |f_1(x)-[f_2(ar x)+\langle g_2,x-ar x
angle] ext{ for at least one } g_2\in \partial f_2(ar x)$

Note that the concepts of criticality and d-stationarity coincide if f_2 is differentiable at \bar{x}

21/40

DC ALGORITHM - DCA

For all
$$k=1,2,\ldots$$
, compute $g_2^k\in\partial f_2(x^k)$ and $x^{k+1}\in\arg\min_{x\in\mathbb{R}^n}f_1(x)-\langle g_2^k,x\rangle$

Consider the unidimensional problem

 $\min_{x} x^2 - (\max\{-x,0\} + 0.5x^2)$

If we start the iterative process with $x^0 > 0$, then the DCA² defines $x^{k+1} = x^k/2$

Hence, $x^k \to 0$ and $\bar{x} = 0$ is critical but not a *d*-stationary point: $\partial f_2(0) = [-1, 0]$ and $\nabla f_1(0) = 0$

 2 Tao, P.D., Le Thi, H.A.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Mathematica Vietnamica, 1997 + $\langle \overrightarrow{\sigma} \rangle + \langle \overrightarrow{z} \rangle + \langle \overrightarrow{z} \rangle$

INERTIAL DCA
$$x^{k+1} \in \arg\min_{x \in \mathbb{R}^n} f_1(x) - \langle g_2^k + \beta(x^k - x^{k-1}), x \rangle, \qquad \beta = 0.49$$

One manner to get points of better quality is to insert some $inertial^3$ to DCA

³W. de Oliveira and M. Tcheou. An inertial algorithm for DC programming SVAA, 2019

A BI-DIMENSIONAL EXAMPLE $f(x) = f_1(x) - f_2(x)$

 $f_1(x) = ||x||^2$ and $f_2(x) = \max(-x_1, 0) + \max(-x_2, 0) + 0.5 ||x||^2$

 $f_1(x) = ||x||^2$ and $f_2(x) = \max(-x_1, 0) + \max(-x_2, 0) + 0.5||x||^2$

 $\underset{x^{k+1} \in \arg\min_{x \in \mathbb{R}^n} f_1(x) - \langle g_2^k + \beta(x^k - x^{k-1}), x \rangle }{ \text{IDCA WITH } \beta = 0.49$

 $f_1(x) = ||x||^2$ and $f_2(x) = \max(-x_1, 0) + \max(-x_2, 0) + 0.5||x||^2$

Sequential DC programming

◆□> ◆□> ◆三> ◆三> 三三 のへで

MOTIVATION

- DCA has a successful history of more than 30 years: if one thinks of DC programming, one thinks of DCA
- ▶ The algorithm shows it full strength when the convex subproblem is simple

$$x^{k+1} \in \arg\min_{x \in X} f_1(x) - [f(x^k) + \langle g^k, x - x^k \rangle]$$
 (Sbpm)

- By "simple subproblem" we mean that a solution x^{k+1} can be computed in algebraic or computationally cheap ways
- If (Sbpm) is difficult (e.g. f_1 is only via an oracle/black box), then DCA can be too time consuming depending on the application
- Furthermore, DCA does not treat f_1 and f_2 equally: f_2 is approximated by a single linearization, whereas f_1 is treated as is

SEQUENTIAL DC PROGRAMMING - SDCP

$$\min_{x \in X} f(x), \quad \text{WITH} \quad f(x) = f_1(x) - f_2(x) \qquad (P)$$

 DCA approximates (P) iteratively with (possibly difficult) convex subproblems

DCA

for all
$$k = 0, 1, 2, \dots$$
, compute $g_2^k \in \partial f_2(x^k)$ and let x^{k+1} be a solution of $\min_{x \in X} f_1(x) - [f_2(x^k) + \langle g_2^k, x - x^k \rangle]$

▶ SDCP approximates (P) iteratively with easy DC subproblems

SDCP

for all $k = 0, 1, 2, \ldots$, update a convex model $\int_{\mathcal{M}}^{k}$ and let x^{k+1} be an approximate critical point of $\min_{x \in X} \int_{\mathcal{M}}^{k} (x) - f_2(x)$

SEQUENTIAL DC PROGRAMMING - SDCP

$$\min_{x \in X} f(x), \quad \text{WITH} \quad f(x) = f_1(x) - f_2(x) \qquad (P)$$

How to choose a convex model $\mathfrak{f}_{\mathcal{M}}^k$ for f_1 such that computing a critical point of $\min_{x \in \mathcal{X}} \, \mathfrak{f}_{\mathcal{M}}^k(x) - f_2(x)$ is simple?

We define a class of models satisfying

$$\mathfrak{f}^k_{\mathcal{M}}(x) := \mathfrak{f}^k_{\texttt{low}}(x) + \frac{1}{2} \langle M^k(x - x^k), (x - x^k) \rangle \quad \text{for all } x \in \mathbb{R}^n \text{ and } k = 0, 1, 2, \dots$$

with $f_{low}^k(x)$ a lower model for f_1 :

 $\mathfrak{f}_{\mathsf{low}}^k(x) \le f_1(x) \qquad \text{for all } x \in \mathbb{R}^n$

and $M^k \in \mathbb{R}^{n \times n}$ is a symmetric PSD matrix (e.g. $M^k = 0$)

• Depending on M^k , we can have lower models, upper models, and even second-order Taylor models

SEQUENTIAL DC PROGRAMMING WITH LOWER MODELS THE CUTTING-PLANE SETTING

$$\mathfrak{f}^k_{\mathcal{M}}(x) = \mathfrak{f}^k_{\texttt{low}}(x) + \frac{1}{2} \langle M^k(x - x^k), (x - x^k) \rangle$$

A lower model can be defined by setting

f^k_{1ov}(x) = f^k₁(x) for all k, with
 f^k₁(x) := max_{j=0,1,...,k} {f₁(x^j) + ⟨g^j₁, x - x^j⟩} ≤ f₁(x) for all x ∈ ℝⁿ
 M^k = 0 ∈ ℝ^{n×n} for all k

In this case, the SDCP reads as⁴

for all k = 0, 1, 2, ... let x^{k+1} be an approximate critical point of $\min_{x \in X} \check{f}_1^k(x) - f_2(x)$

 $\begin{array}{l} f_1(x) = \sum_{i=1}^2 \sqrt{1+x_i^2} + \langle Ax, x \rangle \mbox{ (the matrix A is given by $A_{11} = A_{22} = 0.1$, $A_{12} = 0.3$ and $A_{21} = 0.2$), $f_2(x) = 5 \sum_{i=1}^2 \max\{-x_i, 0\}$, and $X = \{-5 \le x_i \le 5$, $i = 1, 2\}$ \end{array}$

Preliminary numerical experiments have shown that this SDCP variant

almost always computes a global solution

イロト イヨト イヨト イヨト

but is unstable and very slow...

SEQUENTIAL DC PROGRAMMING WITH UPPER MODELS

$${}^{k}_{\mathcal{M}}(x) = \mathfrak{f}^{k}_{\mathsf{low}}(x) + \frac{1}{2} \langle M^{k}(x - x^{k}), (x - x^{k}) \rangle$$

Suppose that

$$f_1(x) = \psi(x) + \max_{i=1,...,m} \phi_i(x)$$

with $\psi : \mathbb{R}^n \to \mathbb{R}$ a simple convex function (piecewise linear or quadratic), and $\phi_i : \mathbb{R}^n \to \mathbb{R}$ continuously differentiable convex functions having gradient $\nabla \phi_i$ Lipschitz continuous with modulus $L_{\phi_i} > 0$, $i = 1, \ldots, m$

▶ If a constant $L \ge L_{\phi_i}$, i = 1, ..., m, is known we may take

- $\blacktriangleright \ \mathfrak{f}_{\mathtt{low}}^k(x) = \psi(x) + \max_{i=1,\ldots,m} \{\phi_i(x^k) + \langle \nabla \phi_i(x^k), x x^k \rangle \} \text{ for all } k$
- $M^k = (L + \gamma)I \in \mathbb{R}^{n \times n}$ for all k (for a $\gamma > 0$)

$$f_1(x) \le \mathfrak{f}^k_{\mathcal{M}}(x)$$
 for all x

ce Mathématiques Appliquées
♦ २ २ २
32 / 40

SEQUENTIAL DC PROGRAMMING WITH UPPER MODELS

$$\mathfrak{f}^{k}_{\mathcal{M}}(x) = \mathfrak{f}^{k}_{\mathsf{low}}(x) + \frac{1}{2} \langle M^{k}(x - x^{k}), (x - x^{k}) \rangle$$

- Suppose that $f_1(x) = \sum_{i=1}^m \psi_i(x_i) + \phi(x)$ with $\psi_i : \mathbb{R}^{n_i} \to \mathbb{R}$ simple convex functions, and $\phi : \mathbb{R}^n \to \mathbb{R}$ having gradient $\nabla \phi$ Lipschitz continuous with modulus $L_{\phi} > 0$
- ▶ The feasible set is decomposable: $X = \prod_{i=1}^{m} X_i$, with $X_i \subset \mathbb{R}^{n_i}$
- ▶ If a constant $L \ge L_{\phi}$, i = 1, ..., m, is known we may take
 - $\blacktriangleright \ \mathfrak{f}^k_{\texttt{low}}(x) = \sum_{i=1}^m \psi_i(x_i) + \phi(x^k) + \langle \nabla \phi(x^k), x x^k \rangle \text{ for all } k$

•
$$M^k = (L + \gamma)I \in \mathbb{R}^{n \times n}$$
 for all k (for some $\gamma > 0$)

 Sequential DC programming with upper models

$$\mathfrak{f}^{k}_{\mathcal{M}}(x) = \mathfrak{f}^{k}_{\mathsf{low}}(x) + \frac{1}{2} \langle M^{k}(x - x^{k}), (x - x^{k}) \rangle$$

- ▶ Suppose that $f_1(x) = \sum_{i=1}^m \psi_i(x_i) + \phi(x)$ with $\psi_i : \mathbb{R}^{n_i} \to \mathbb{R}$ simple convex functions, and $\phi : \mathbb{R}^n \to \mathbb{R}$ having gradient $\nabla \phi$ Lipschitz continuous with modulus $L_{\phi} > 0$
- The feasible set is decomposable: $X = \prod_{i=1}^{m} X_i$, with $X_i \subset \mathbb{R}^{n_i}$
- ▶ If a constant $L \ge L_{\phi}$, i = 1, ..., m, is known we may take
 - $\mathfrak{f}_{1_{\mathsf{OW}}}^k(x) = \sum_{i=1}^m \psi_i(x_i) + \phi(x^k) + \langle \nabla \phi(x^k), x x^k \rangle$ for all k

• $M^k = (L + \gamma)I \in \mathbb{R}^{n \times n}$ for all k (for some $\gamma > 0$)

If $\min_{x \in X} f_{\mathcal{M}}^k(x) - f_2(x)$ is handled by DCA, then its convex subproblem $\min_{x \in X} f_{\mathcal{M}}^k(y) - \langle g_2^\ell, y \rangle$ can be decomposed⁵

$$y_i^{\ell+1} \in \arg\min_{y_i \in X_i} \psi_i(y_i) + \frac{L+\gamma}{2} \|y_i - x_i^k\|^2 + \langle \nabla_{x_i} \phi(x^k) - g_{2,i}^\ell, y_i \rangle, \quad i = 1, \dots, m$$

 $\begin{array}{l} f_1(x) = \sum_{i=1}^2 \sqrt{1+x_i^2} + \langle Ax, x \rangle \mbox{ (the matrix A is given by $A_{11} = A_{22} = 0.1$, $A_{12} = 0.3$ and $A_{21} = 0.2$), $f_2(x) = 5 \sum_{i=1}^2 \max\{-x_i, 0\}$, and $X = \{-5 \le x_i \le 5$, $i = 1, 2\}$ \end{array}$

Preliminary numerical experiments have shown that this SDCP variant

- ▶ is stable and reasonably fast
- solution quality depends strongly on initialization

イロト イヨト イヨト イヨト

SEQUENTIAL DC PROGRAMMING WITH 2ND-ORDER TAYLOR MODELS $\min_{x \in X} f(x), \quad \text{with} \quad f(x) = f_1(x) - f_2(x) \qquad (P)$

Suppose that (P) satisfies the following assumptions

 $X = \mathbb{R}^n, f_1(x) = \phi(x) + \psi(x)$ with $\psi : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ a simple convex function (not necessarily smooth) and $\phi : \mathbb{R}^n \to \mathbb{R}$ convex and twice-continuously differentiable

• ψ can be the indicator function of a closed convex set $C \subset \mathbb{R}^n$: $\psi(x) = \mathbf{i}_C(x)$

▶ The model $f_{\mathcal{M}}^k$ is the sum of ψ with the 2nd-order Taylor's expansion of ϕ

$$\mathfrak{f}^k_{\mathcal{M}}(x) := \underbrace{\psi(x) + \phi(x^k) + \langle \nabla \phi(x^k), x - x^k \rangle}_{\mathfrak{f}^k_{low}(x)} + \frac{1}{2} \langle \nabla^2 \phi(x^k)(x - x^k), (x - x^k) \rangle$$

・ロト ・回 ト ・ヨ ト ・ ヨ ト

SEQUENTIAL DC PROGRAMMING WITH 2ND-ORDER TAYLOR MODELS $\min_{x \in X} f(x), \quad \text{with} \quad f(x) = f_1(x) - f_2(x) \qquad (P)$

With the model

$$\mathfrak{f}^k_{\mathcal{M}}(x) := \psi(x) + \phi(x^k) + \langle \nabla \phi(x^k), x - x^k \rangle + \frac{1}{2} \langle \nabla^2 \phi(x^k)(x - x^k), (x - x^k) \rangle,$$

if x^{k+1} is a critical point for the DC subproblem

$$\min_{x \in X} \,\,\mathfrak{f}^k_{\mathcal{M}}(x) - f_2(x)$$

then

$$\emptyset \neq \partial \mathfrak{f}^k_{\mathcal{M}}(x^{k+1}) \cap \partial f_2(x^{k+1}) \quad \Rightarrow \quad 0 \in \partial \mathfrak{f}^k_{\mathcal{M}}(x^{k+1}) - \partial f_2(x^{k+1}),$$

i.e., x^{k+1} solves the generalized equation (GE)

$$0 \in \nabla \phi(x^k) + \nabla^2 \phi(x^k)(x - x^k) + \partial \psi(x) - \partial f_2(x)$$

This is a Newton-type iteration!

イロト イヨト イヨト イヨト

The Josephy-Newton method

$$\min_{x \in X} f(x), \quad \text{WITH} \quad f(x) = f_1(x) - f_2(x) \qquad (P)$$

- ▶ If \bar{x} is a critical point of (P), then $0 \in \nabla \phi(\bar{x}) + \partial \psi(\bar{x}) \partial f_2(\bar{x})$
- ▶ In this case, computing a critical point of (P) is equivalent to

find
$$\bar{x} \in \mathbb{R}^n$$
 such that $0 \in \Phi(\bar{x}) + \mathcal{N}(\bar{x})$, where
$$\begin{cases} \Phi(x) := \nabla \phi(x) \\ \mathcal{N}(x) := \partial \psi(x) - \partial f_2(x) \end{cases}$$

▶ The Josephy-Newton method applied to the above GE works as follows: given x^k , the next iterate x^{k+1} is computed as a solution of the partially linearized GE

$$0 \in \Phi(x^k) + \nabla \Phi(x^k)(x - x^k) + \mathcal{N}(x)$$

i.e.,

$$0 \in \nabla \phi(x^k) + \nabla^2 \phi(x^k)(x - x^k) + \partial \psi(x) - \partial f_2(x)$$

・ロト ・御 ト ・ ヨ ト ・ ヨ ト

SEQUENTIAL DC PROGRAMMING WITH 2ND-ORDER TAYLOR MODELS $\min_{x\in X} f(x), \quad \text{with} \quad f(x) = f_1(x) - f_2(x) \qquad (P)$

The SDCP algorithm

for all
$$k = 0, 1, 2, \dots$$
 let x^{k+1} be a critical point of

$$\min_{x \in X} \psi(x) + \phi(x^k) + \langle \nabla \phi(x^k), x - x^k \rangle + \frac{1}{2} \langle \nabla^2 \phi(x^k)(x - x^k), (x - x^k) \rangle - f_2(x)$$

is an implementation of the Josephy-Newton method applied to the GE

find $\bar{x} \in \mathbb{R}^n$ such that $0 \in \Phi(\bar{x}) + \mathcal{N}(\bar{x})$, where $\begin{cases} \Phi(x) = \nabla \phi(x) \\ \mathcal{N}(x) = \partial \psi(x) - \partial f_2(x) \end{cases}$

SDCP converges quadratically under certain conditions

38/40

・ロト ・日 ト ・ヨ ト ・ ヨ ト

 $\begin{array}{l} f_1(x) = \sum_{i=1}^2 \sqrt{1+x_i^2} + \langle Ax, x \rangle \mbox{ (the matrix A is given by $A_{11} = A_{22} = 0.1$, $A_{12} = 0.3$ and $A_{21} = 0.2$), $f_2(x) = 5 \sum_{i=1}^2 \max\{-x_i, 0\}$, and $X = \{-5 \le x_i \le 5$, $i = 1, 2\}$ \end{array}$

Preliminary numerical experiments have shown that this SDCP variant

- ▶ is very fast
- converges if initialized near to a critical point

イロト イヨト イヨト イヨト

CONCLUDING REMARKS

- ▶ The universality of DC functions implies that almost all real-life optimization problems can be recast into the DC programming framework
- However, a DC decomposition of the underlying function is not always available
- ▶ When a DC decomposition is accessible, it permits employing the convex analysis apparatus
- ▶ The availability of a DC decomposition does not imply by itself that DC tools should be employed in place of standard algorithms
- The use of DC algorithms should be supported by one of the following reasons: the absence of a nonconvex black-box for f but the availability of convex black-boxes for f₁ and f₂; nonsmoothess; the existence of analytic formulas or computationally cheap procedures for defining iterates; decomposability; modeling advantages; or others
- ▶ Without special structure, algorithms for DC programming can only compute critical points
- Critical points can be of poor quality. Ex: $\bar{x} = 0$ is critical for $\min_{x \ge -10} f(x)$, with $f(x) = \frac{|x|}{2} - \max\{-x, 0\}$

CONCLUDING REMARKS

- ▶ The universality of DC functions implies that almost all real-life optimization problems can be recast into the DC programming framework
- However, a DC decomposition of the underlying function is not always available
- ▶ When a DC decomposition is accessible, it permits employing the convex analysis apparatus
- ▶ The availability of a DC decomposition does not imply by itself that DC tools should be employed in place of standard algorithms
- The use of DC algorithms should be supported by one of the following reasons: the absence of a nonconvex black-box for f but the availability of convex black-boxes for f₁ and f₂; nonsmoothess; the existence of analytic formulas or computationally cheap procedures for defining iterates; decomposability; modeling advantages; or others
- ▶ Without special structure, algorithms for DC programming can only compute critical points
- Critical points can be of poor quality. Ex: $\bar{x} = 0$ is critical for $\min_{x \ge -10} f(x)$ with $f(x) = \frac{|x|}{2} \max\{-x, 0\} = x/2!$

Thank you!

References

- Le Thi, H.A., Tao, P.D. DC programming and DCA thirty years of developments. Math. Program. 169(1), 5-68 (2018)
- ▶ W. de Oliveira. Sequential Difference-of-Convex Programming. Journal of Optimization Theory and Applications, v.186 (3), pp. 936-959, 2020
- ▶ W. de Oliveira. The ABC of DC Programming. Set-Valued and Variational Analysis, v. 28, pp. 679-706, 2020

CONTACT:

- \bowtie welington.oliveira@mines-paristech.fr
- 🖮 www.oliveira.mat.br

We would like to acknowledge the financial support of PGMO through the project Advanced nonsmooth optimization methods for stochastic programming

