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Outline

A brief tutorial on DC programming

Sequential DC programming



DC programming

We are now interested in a class of Difference-of-Convex (DC) programming:

min
x∈X

f(x), with f(x) = f1(x)− f2(x) (P )

Assumptions

▶ f1, f2 : Rn → R are convex but possibly nonsmooth

▶ X ⊂ Rn is a closed convex set (e.g. X = Rn)

▶ DC programming is a sub-field of nonlinear programming that finds many
applications in engineering problems and data science

▶ DC programs are, in the general situation, NP-hard

▶ They cover a broad class of nonconvex optimization problems, but still allows
the use of the convex analysis apparatus to establish optimality conditions
and design algorithms
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Universality of DC functions

Lower-C2 functions are globally DC. In particular,

▶ finite maxima of C2-functions are DC

▶ finite maxima of functions with gradient Lipschitz continuous are DC

▶ polynomials are DC

Every extended real-valued lsc function can be approximated by not only DoC,
but actually piece-wise affine DC of the kind max-max

This result shows that the class of optimization problems fitting into formulation
(P) is comprehensive, and hence covers almost all problems of practical interest

Note, however, that a DC decomposition of f is not always available

In many situations of practical interest, a DC decomposition can be easily
obtained

Example: f(x) = ||x| − 1| is DC because
f(x) = 2max{|x| − 1, 0} − [|x| − 1]

A DC function has infinitely many DC decompositions f1 − f2
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Universality of DC functions

Let fi = ψi − ϕi be DC functions for all i = 1, . . . ,m. The following functions are DC

▶ g1(x) =
∑m
i=1 αifi(x), α ∈ Rm, with DC decomposition

g1(x) =

 ∑
j∈{i:αi>0}

αjψj(x) −
∑

j∈{i:αi<0}
αjϕj(x)

−

 ∑
j∈{i:αi>0}

αjϕj(x) −
∑

j∈{i:αi<0}
αjψj(x)



▶ g2(x) = max{f1(x), . . . , fm(x)} with DC decomposition

g2(x) = max
i

{
ψi(x) +

m∑
j ̸=i

ϕi(x)
}

−
m∑
j=1

ϕj(x)

▶ g3(x) = min{f1(x), . . . , fm(x)} with DC decomposition

g3(x) =

m∑
j=1

ψj(x) − max
i

{
ϕi(x) +

m∑
j ̸=i

ψj(x)
}

▶ g(x) = |f (x)| with DC decomposition

g(x) = 2max{ψ(x), ϕ(x)} − (ψ(x) + ϕ(x))
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Universality of DC functions

Lemma
Let f : Rn → R have Lipschitz continuous gradient with modulus L > 0. Then f

admits the DC decompositions f(x) = L
2
∥x∥2 −

[
L
2
∥x∥2 − f(x)

]
and

f(x) =
[
f(x) + L

2
∥x∥2

]
− L

2
∥x∥2

Example: f(x) = cos(x), that has
gradient Lipschitz with constant L = 1

Lemma
Let ψ : Rn → R+ be a convex function. If ϕ : R+ → R is a concave and
non-decreasing function such that ϕ′+(0) <∞, then

τ ψ(x)− ϕ(ψ(x)) is convex for all τ ≥ ϕ′+(0)

Such a property is useful for inducing sparsity in certain problems

ϕ(ψ(x)) = τψ(x)− [τψ(x)− ϕ(ψ(x))]
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Inducing sparsity

Figura: Euclidean norm Figura: ϕ(r) = log(1 + 2r)/2

ϕ(∥x∥) = ∥x∥ − [∥x∥ − ϕ(∥x∥)] is DC
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Examples of DC programs
Nonconvex image denoising

▶ Let b ∈ Rn be the vectorization of a corrupted grayscale image. In order to
preserve edges in the process of restoring b, the following nonconvex Total
Variation formulation is commonly employed1:

min
x∈Rn

µ

2
∥x− b∥2 + ϕ(TV (x)), with TV (x) =

n∑
i=1

∥(∇x)i∥

▶ ϕ : R+ → R is a penalizing function, µ > 0 is a fidelity parameter and
(∇x)i ∈ R2 denotes the discretization of the gradient of image x at pixel i

▶ If ϕ is concave and non-decreasing, its right derivative ϕ′+(r) is well defined
for all r ≥ 0. Then τ TV (x)− ϕ(TV (x)) is convex function for all τ ≥ ϕ′+(0)

▶ The nonconvex image denoising problem fits into the DC formulation

min
x∈Rn

f1(x)− f2(x)

f1(x) =
µ
2
∥x− b∥2 + τTV (x) and f2(x) = τ TV (x)− ϕ(TV (x)),

two convex functions

1∥(∇x)i∥ =
√

(Xl+1,j − Xl,j)
2 + (Xl,j+1 − Xl,j)

2 with ith the coordinate of x where the

pixel Xl,j is stored
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Corrupted image

min
x∈Rn

µ

2
∥x − b∥2 + TV (x)
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Convex model: FISTA (best setting)

min
x∈Rn

µ

2
∥x − b∥2 + TV (x)

8 / 40



Nonconvex model: DC programming

min
x∈Rn

µ

2
∥x − b∥2 + ϕ(TV (x))
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Examples of DC programs
Sum of clipped convex functions

▶ Let ai ∈ R and ψi : Rn → R, i = 1, . . . ,m, be convex functions. The
(NP-hard) clipped optimization problem reads as

min
x∈Rn

m∑
i=1

min{ψi(x), ai}

and finds applications in statistics, risk minimization, clipped control, and
machine learning

▶ The sum of clipped convex functions is indeed a DC function:

f(x) =
m∑
i=1

min{ψi(x), ai} = f1(x)− f2(x)

f1(x) =
∑m

i=1 ψi(x) + ai and f2(x) =
∑m

i=1 max{ψi(x), ai}
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Clipped linear regression

▶ Convex model: minx∈R 0.2x2 +
∑m

i=1(xpi − qi)
2

▶ Nonconvex, nonsmooth model: minx∈R 0.2x2 +
∑m

i=1 min{(xpi − qi)
2, 0.5}
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Examples of DC programs
Sparse optimization: clipped model

▶ Let ϕ : Rn → R be a convex function, X a convex set, and λ > 0 a given
parameter

▶ In sparse optimization we may wish to solve

min
x∈X

ϕ(x) + λ∥x∥0

▶ The (difficult) zero norm counts the number of nonzeros elements of vector x

▶ We may approximate ∥x∥0 by a simpler function: given r > 0 small enough

∥x∥0 ≈
n∑

i=1

min

{
|xi|
r
, 1

}
=

n∑
i=1

(
|xi|
r

+ 1

)
−

n∑
i=1

max

{
|xi|
r
, 1

}

▶ Note that limr↓0
∑n

i=1 min
{

|xi|
r
, 1

}
= ∥x∥0

▶ Then
min
x∈X

ϕ(x) + λ∥x∥0 ≈ min
x∈X

f1(x)− f2(x)

f1(x) = ϕ(x) + λ
n∑

i=1

(
|xi|
r

+ 1

)
and f2(x) = λ

n∑
i=1

max

{
|xi|
r
, 1

}
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Examples of DC programs
Sparse optimization: ℓ0-constrained model

▶ In sparse optimization we may wish to solve{
min
x∈X

ϕ(x)

s.t. ∥x∥0 ≤ k

(k is a natural number)

▶ By using the norm ∥x∥(k) =
∑k

i=1 |xσ(i)|, with σ(i) the ith largest value of
{|x1|, . . . , |xn|}, we have that{

min
x∈X

ϕ(x)

s.t. ∥x∥0 ≤ k
≡

{
min
x∈X

ϕ(x)

s.t. ∥x∥(k) − ∥x∥1 = 0
≈ min

x∈X
f1(x)−f2(x)

f1(x) = ϕ(x) + λ∥x∥(k) and f2(x) = λ∥x∥1
(λ > 0 is a given parameter)
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Examples of DC programs
(Constrained) Clustering

▶ Let {y1, . . . , ym}, with yi ∈ Rd, i = 1, . . . ,m, be the data set to be grouped

▶ The goal is to partition the data set into k disjoint subsets, called clusters,
such that a clustering criterion is optimized

▶ Each cluster must be in X

▶ Given a distance function d(x, y) (e.g. d(x, y) = ∥x− y∥), one tries to
minimize the sum of the distance of each data point to the center xi ∈ Rd of
its cluster:

min
x1,...,xk∈X

m∑
i=1

min
j=1,...,k

d(xj , yi)

▶ The objective function can be decomposed as f1(x)− f2(x), with
x = (x1, . . . , xk) ∈ Rn the vector composed of all k centers, n = kd,

f1(x) =
m∑
i=1

k∑
j=1

d(xj , yi) and f2(x) =
m∑
i=1

max
j=1,...,k

k∑
s=1,s̸=j

d(xs, yi)

▶ The clustering problem can thus be written as a DC program

min
x∈X

f1(x)− f2(x)
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Constrained Clustering

min
x1,...,xk∈X

m∑
i=1

min
j=1,...,k

d(x
j
, y
i
), m = 1000, k = 10, d(x, y) = ∥x − y∥1
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Examples of DC programs
Probability maximization problems

▶ Let (Ξ,F ,P) be a probability space and g : Rn × Ξ → R be convex in the first
argument: g(·, ξ) is convex for any given ξ ∈ Ξ

▶ The problem of finding a point in the convex and compact set X ⊂ Rn such
that the system of inequalities g(x, ξ) ≤ 0 holds with the highest possible
probability can be formulated as

max
x∈X

P[g(x, ξ) ≤ 0] ≡ max
x∈X

[1− P[g(x, ξ) > 0]] ≡ 1− min
x∈X

P[g(x, ξ) > 0]

≡ 1− min
x∈X

E[χ(max{g(x, ξ), 0}],

where χ : R → {0, 1} be defined as χ(a) = 0 if a = 0 and χ(a) = 1 otherwise

▶ By approximating χ(·) with min
{

|·|
r
, 1

}
, and using finitely many scenarios

{ξ1, · · · , ξS} with associated probability ps > 0, we get the following
approximation

min
x∈X

S∑
s=1

ps min

{
max{g(x, ξs), 0}

r
, 1

}
▶ As we have already seen, this is a DC problem with available DC

decompositions
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What does it mean to solve a DC program?

min
x∈X

f(x), with f(x) = f1(x)− f2(x) (P )

Being a nonsmooth and nonconvex optimization problem, many definitions of
stationarity exist for DC programs

A point x̄ ∈ X is a

▶ global solution to problem (P) iff

∂ϵf2(x̄) ⊂ ∂ϵ[f1(x̄) + iX(x̄)] ∀ ϵ ≥ 0

▶ d(irectional)-stationary point to problem (P) if

∂f2(x̄) ⊂ ∂[f1(x̄) + iX(x̄)]

▶ critical point to problem (P) if

∂f2(x̄) ∩ ∂[f1(x̄) + iX(x̄)] ̸= ∅

Local algorithms for nonsmooth DC problems are only ensured to provide critical
points (except when a special structure is assumed)
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Criticality from the dual point of view

min
x∈X

f1(x) − f2(x) (P )

Theorem (Toland duality)

Let f̄1(x) = f1(x) + iX(x) and f̄ = f̄1 − f2. Then

f̄∗(g) = sup
s∈Rn

f̄∗1 (g + s)− f∗2 (s)

▶ Note that f∗(0) is a DC problem itself: f̄∗(0) = sups∈Rn f̄
∗
1 (s)− f∗2 (s)

▶ With a little abuse of notation, we denote by dual problem the following one,
with converse signal:

−f̄∗(0) = inf
s∈Rn

f∗2 (s)− f̄∗1 (s) (D)

Theorem

f̄1(x̄)− f2(x̄) = f∗2 (s)− f̄∗1 (s) for all s ∈ ∂f2(x̄) ∩ ∂f̄1(x̄)
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Primal-dual relation in DC programming

f(x) =
1

2
∥x∥2 − ∥x∥1

The dual curves were obtained by plotting f∗2 (∇f1(x))− f∗1 (∇f1(x)) with
x ∈ [−1, 1]× [−1, 1]. Critical points are the ones where f and f∗ coincide
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Primal-dual relation in DC programming

f(x) = (∥x∥2 +
2∑

i=1

xi)− ∥x∥1

The dual curves were obtained by plotting f∗2 (∇f1(x))− f∗1 (∇f1(x)) with
x ∈ [−1, 1]× [−1, 1]. Critical points are the ones where f and f∗ coincide
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What does it mean to solve a DC program?

min
x∈X

f(x), with f(x) = f1(x) − f2(x) (P )

A point x̄ ∈ X is a

▶ d(irectional)-stationary point to problem (P) if

∂f2(x̄) ⊂ ∂[f1(x̄) + iX(x̄)]

which is equivalent to say that x̄ solves

min
x∈X

f1(x)− [f2(x̄) + ⟨g2, x− x̄⟩] for all g2 ∈ ∂f2(x̄)

▶ critical point to problem (P) if

∂f2(x̄) ∩ ∂[f1(x̄) + iX(x̄)] ̸= ∅

which is equivalent to say that x̄ solves

min
x∈X

f1(x)− [f2(x̄) + ⟨g2, x− x̄⟩] for at least one g2 ∈ ∂f2(x̄)

Note that the concepts of criticality and d-stationarity coincide if f2 is
differentiable at x̄
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DC algorithm - DCA

for all k = 1, 2, . . ., compute gk2 ∈ ∂f2(x
k) and xk+1 ∈ arg min

x∈Rn
f1(x) − ⟨gk2 , x⟩

Consider the unidimensional problem

min
x

x2 − (max{−x, 0}+ 0.5x2)

If we start the iterative process with x0 > 0, then the DCA2 defines xk+1 = xk/2

Hence, xk → 0 and x̄ = 0 is critical but not a d-stationary point: ∂f2(0) = [−1, 0]
and ∇f1(0) = 0

2Tao, P.D., Le Thi, H.A.: Convex analysis approach to DC programming: theory,
algorithms and applications. Acta Mathematica Vietnamica, 1997
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Inertial DCA
xk+1 ∈ arg min

x∈Rn
f1(x) − ⟨gk2+β(x

k − x
k−1

), x⟩, β = 0.49

One manner to get points of better quality is to insert some inertial3 to DCA

min
x

x2 − (max{−x, 0}+ 0.5x2)

3W. de Oliveira and M. Tcheou. An inertial algorithm for DC programming. SVAA, 2019
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A bi-dimensional example
f (x) = f1(x) − f2(x)

f1(x) = ∥x∥2 and f2(x) = max(−x1, 0) + max(−x2, 0) + 0.5∥x∥2

2-2
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-2 -20
x

2

0
x
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IDCA with β = 0 (DCA)
xk+1 ∈ arg min

x∈Rn
f1(x) − ⟨gk2 , x⟩

f1(x) = ∥x∥2 and f2(x) = max(−x1, 0) + max(−x2, 0) + 0.5∥x∥2

-3 -2 -1 0 1 2
x

1

-3

-2

-1

0

1

2

3

x 2
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IDCA with β = 0.49
xk+1 ∈ arg min

x∈Rn
f1(x) − ⟨gk2+β(x

k − x
k−1

), x⟩

f1(x) = ∥x∥2 and f2(x) = max(−x1, 0) + max(−x2, 0) + 0.5∥x∥2

-3 -2 -1 0 1 2
x

1

-3

-2

-1

0

1

2

3

x 2
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Sequential DC programming



Motivation

▶ DCA has a successful history of more than 30 years: if one thinks of DC
programming, one thinks of DCA

▶ The algorithm shows it full strength when the convex subproblem is simple

xk+1 ∈ arg min
x∈X

f1(x)− [f(xk) + ⟨gk, x− xk⟩] (Sbpm)

▶ By “simple subproblem”we mean that a solution xk+1 can be computed in
algebraic or computationally cheap ways

▶ If (Sbpm) is difficult (e.g. f1 is only via an oracle/black box), then DCA can
be too time consuming depending on the application

▶ Furthermore, DCA does not treat f1 and f2 equally: f2 is approximated by a
single linearization, whereas f1 is treated as is
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Sequential DC programming - SDCP

min
x∈X

f(x), with f(x) = f1(x) − f2(x) (P )

▶ DCA approximates (P ) iteratively with (possibly difficult) convex
subproblems

DCA

for all k = 0, 1, 2, . . ., compute gk2 ∈ ∂f2(xk) and let

xk+1 be a solution of min
x∈X

f1(x)− [f2(x
k) + ⟨gk2 , x− xk⟩]

▶ SDCP approximates (P ) iteratively with easy DC subproblems

SDCP

for all k = 0, 1, 2, . . ., update a convex model fkM and let

xk+1 be an approximate critical point of min
x∈X

fkM (x)− f2(x)

The idea is to choose fkM s.t. minx∈X fkM (x)− f2(x) is simple
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Sequential DC programming - SDCP

min
x∈X

f(x), with f(x) = f1(x) − f2(x) (P )

How to choose a convex model fkM for f1 such that computing a critical point of

minx∈X fkM (x)− f2(x) is simple?

▶ We define a class of models satisfying

fkM (x) := fklow(x) +
1

2
⟨Mk(x− xk), (x− xk)⟩ for all x ∈ Rn and k = 0, 1, 2, . . .

with fklow(x) a lower model for f1:

fklow(x) ≤ f1(x) for all x ∈ Rn

and Mk ∈ Rn×n is a symmetric PSD matrix (e.g. Mk = 0)

▶ Depending on Mk, we can have lower models, upper models, and even
second-order Taylor models
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Sequential DC programming with lower models
The cutting-plane setting

fkM (x) = fklow(x) +
1

2
⟨Mk(x− xk), (x− xk)⟩

A lower model can be defined by setting

▶ fklow(x) = f̌k1 (x) for all k, with

f̌k1 (x) := max
j=0,1,...,k

{f1(xj) + ⟨gj1, x− xj⟩} ≤ f1(x) for all x ∈ Rn

▶ Mk = 0 ∈ Rn×n for all k

In this case, the SDCP reads as4

for all k = 0, 1, 2, . . . let

xk+1 be an approximate critical point of min
x∈X

f̌k1 (x)− f2(x)

4If X is polyhedral, then the DCA applied to this subpoblem requires solving a LP per
(inner) iteration
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f1(x) =
∑2
i=1

√
1 + x2

i
+ ⟨Ax, x⟩ (the matrix A is given by A11 = A22 = 0.1, A12 = 0.3 and

A21 = 0.2), f2(x) = 5
∑2
i=1 max{−xi, 0}, and X = {−5 ≤ xi ≤ 5, i = 1, 2}

Preliminary numerical experiments have
shown that this SDCP variant

▶ almost always computes a global
solution

▶ but is unstable and very slow...
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Sequential DC programming with upper models

f
k
M (x) = f

k
low(x) +

1

2
⟨Mk

(x − x
k
), (x − x

k
)⟩

▶ Suppose that
f1(x) = ψ(x) + max

i=1,...,m
ϕi(x)

with ψ : Rn → R a simple convex function (piecewise linear or quadratic), and
ϕi : Rn → R continuously differentiable convex functions having gradient ∇ϕi
Lipschitz continuous with modulus Lϕi > 0, i = 1, . . . ,m

▶ If a constant L ≥ Lϕi , i = 1, . . . ,m, is known we may take

▶ fklow(x) = ψ(x) + max
i=1,...,m

{ϕi(xk) + ⟨∇ϕi(xk), x− x
k⟩} for all k

▶ Mk = (L+ γ)I ∈ Rn×n for all k (for a γ > 0)

f1(x) ≤ fkM (x) for all x
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Sequential DC programming with upper models

f
k
M (x) = f

k
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)⟩

▶ Suppose that f1(x) =
∑m

i=1 ψi(xi) + ϕ(x)
with ψi : Rni → R simple convex functions, and ϕ : Rn → R having gradient
∇ϕ Lipschitz continuous with modulus Lϕ > 0

▶ The feasible set is decomposable: X = Πm
i Xi, with Xi ⊂ Rni

▶ If a constant L ≥ Lϕ, i = 1, . . . ,m, is known we may take

▶ fklow(x) =
∑m
i=1 ψi(xi) + ϕ(xk) + ⟨∇ϕ(xk), x− xk⟩ for all k

▶ Mk = (L+ γ)I ∈ Rn×n for all k (for some γ > 0)

If minx∈X fkM (x)− f2(x) is handled by DCA, then its convex subproblem

minx∈X fkM (y)− ⟨gℓ2, y⟩ can be decomposed5

yℓ+1
i ∈ arg min

yi∈Xi
ψi(yi) +

L+ γ

2
∥yi − xki∥2 + ⟨∇xiϕ(x

k)− gℓ2,i, yi⟩, i = 1, . . . ,m

5Parallel computing can be employed to speed up calculations in SDCP (although f1 is not
decomposable)
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f1(x) =
∑2
i=1

√
1 + x2

i
+ ⟨Ax, x⟩ (the matrix A is given by A11 = A22 = 0.1, A12 = 0.3 and

A21 = 0.2), f2(x) = 5
∑2
i=1 max{−xi, 0}, and X = {−5 ≤ xi ≤ 5, i = 1, 2}

Preliminary numerical experiments have
shown that this SDCP variant

▶ is stable and reasonably fast

▶ solution quality depends strongly on
initialization
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Sequential DC programming with 2nd-order Taylor models

min
x∈X

f(x), with f(x) = f1(x) − f2(x) (P )

Suppose that (P ) satisfies the following assumptions

X = Rn, f1(x) = ϕ(x) + ψ(x) with

ψ : Rn → R ∪ {∞} a simple convex function (not necessarily smooth) and

ϕ : Rn → R convex and twice-continuously differentiable

▶ ψ can be the indicator function of a closed convex set C ⊂ Rn: ψ(x) = iC(x)

▶ The model fkM is the sum of ψ with the 2nd-order Taylor’s expansion of ϕ

fkM (x) := ψ(x) + ϕ(xk) + ⟨∇ϕ(xk), x− xk⟩︸ ︷︷ ︸
fklow(x)

+
1

2
⟨∇2ϕ(xk)(x− xk), (x− xk)⟩
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Sequential DC programming with 2nd-order Taylor models

min
x∈X

f(x), with f(x) = f1(x) − f2(x) (P )

With the model

fkM (x) := ψ(x) + ϕ(xk) + ⟨∇ϕ(xk), x− xk⟩+
1

2
⟨∇2ϕ(xk)(x− xk), (x− xk)⟩,

if xk+1 is a critical point for the DC subproblem

min
x∈X

fkM (x)− f2(x)

then
∅ ̸= ∂fkM (xk+1) ∩ ∂f2(xk+1) ⇒ 0 ∈ ∂fkM (xk+1)− ∂f2(x

k+1),

i.e., xk+1 solves the generalized equation (GE)

0 ∈ ∇ϕ(xk) +∇2ϕ(xk)(x− xk) + ∂ψ(x)− ∂f2(x)�� ��This is a Newton-type iteration!
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The Josephy-Newton method

min
x∈X

f(x), with f(x) = f1(x) − f2(x) (P )

▶ If x̄ is a critical point of (P ), then 0 ∈ ∇ϕ(x̄) + ∂ψ(x̄)− ∂f2(x̄)

▶ In this case, computing a critical point of (P ) is equivalent to

find x̄ ∈ Rn such that 0 ∈ Φ(x̄)+N (x̄), where

{
Φ(x) := ∇ϕ(x)
N (x) := ∂ψ(x)− ∂f2(x)

▶ The Josephy-Newton method applied to the above GE works as follows: given
xk, the next iterate xk+1 is computed as a solution of the partially linearized
GE

0 ∈ Φ(xk) +∇Φ(xk)(x− xk) +N (x)

i.e.,
0 ∈ ∇ϕ(xk) +∇2ϕ(xk)(x− xk) + ∂ψ(x)− ∂f2(x)
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Sequential DC programming with 2nd-order Taylor models

min
x∈X

f(x), with f(x) = f1(x) − f2(x) (P )

The SDCP algorithm

for all k = 0, 1, 2, . . . let xk+1 be a critical point of

min
x∈X

ψ(x) + ϕ(xk) + ⟨∇ϕ(xk), x− xk⟩+
1

2
⟨∇2ϕ(xk)(x− xk), (x− xk)⟩ − f2(x)

is an implementation of the Josephy-Newton method applied to the GE

find x̄ ∈ Rn such that 0 ∈ Φ(x̄) +N (x̄), where

{
Φ(x) = ∇ϕ(x)
N (x) = ∂ψ(x)− ∂f2(x)

SDCP converges quadratically under certain conditions
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f1(x) =
∑2
i=1

√
1 + x2

i
+ ⟨Ax, x⟩ (the matrix A is given by A11 = A22 = 0.1, A12 = 0.3 and

A21 = 0.2), f2(x) = 5
∑2
i=1 max{−xi, 0}, and X = {−5 ≤ xi ≤ 5, i = 1, 2}

Preliminary numerical experiments have
shown that this SDCP variant

▶ is very fast

▶ converges if initialized near to a
critical point
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Concluding remarks

▶ The universality of DC functions implies that almost all real-life optimization
problems can be recast into the DC programming framework

▶ However, a DC decomposition of the underlying function is not always
available

▶ When a DC decomposition is accessible, it permits employing the convex
analysis apparatus

▶ The availability of a DC decomposition does not imply by itself that DC tools
should be employed in place of standard algorithms

▶ The use of DC algorithms should be supported by one of the following
reasons: the absence of a nonconvex black-box for f but the availability of
convex black-boxes for f1 and f2; nonsmoothess; the existence of analytic
formulas or computationally cheap procedures for defining iterates;
decomposability; modeling advantages; or others

▶ Without special structure, algorithms for DC programming can only compute
critical points

▶ Critical points can be of poor quality. Ex: x̄ = 0 is critical for minx≥−10 f(x),

with f(x) =
|x|
2

−max{−x, 0}

= x/2!
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�� ��Thank you!
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