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DC PROGRAMMING

We are now interested in a class of Difference-of-Convex (DC) programming:

min f(z), with f(z) = fi(z) — fa(z) (P)

zeX

ASSUMPTIONS

> f1, fo : R™ — R are convex but possibly nonsmooth
> X C R™ is a closed convex set (e.g. X = R"™)

» DC programming is a sub-field of nonlinear programming that finds many
applications in engineering problems and data science

» DC programs are, in the general situation, NP-hard

» They cover a broad class of nonconvex optimization problems, but still allows

the use of the convex analysis apparatus to establish optimality conditions
and design algorithms




UNIVERSALITY OF DC FUNCTIONS

Lower-C? functions are globally DC. In particular,
» finite maxima of C2-functions are DC
> finite maxima of functions with gradient Lipschitz continuous are DC

» polynomials are DC

Every extended real-valued Isc function can be approximated by not only DoC,
but actually piece-wise affine DC of the kind max-max

This result shows that the class of optimization problems fitting into formulation
(P) is comprehensive, and hence covers almost all problems of practical interest

Note, however, that a DC decomposition of f is not always available

In many situations of practical interest, a DC decomposition can be easily
obtained

0

Example: f(z) = ||z| — 1| is DC because
f(@) = 2max{|z| - 1,0} — [lz| —1]

ZMA

A DC function has infinitely many DC decompositions f1 — fa (-
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UNIVERSALITY OF DC FUNCTIONS

Let f; = ¢; — ¢; be DC functions for all ¢ = 1, ..., m. The following functions are DC

> gi(xz) =327, aifi(x), « € R™, with DC decomposition

g1 (z) = ( > ajvj(z) — > aj(bj(:))—( > ajdj(z) — > D‘jwj(z))

je{iia; >0} je{iia; <0} je{iia; >0} je{iia; <0}

ZMA
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UNIVERSALITY OF DC FUNCTIONS

Let f; = ¢; — ¢; be DC functions for all ¢ = 1, ..., m. The following functions are DC

> gi(xz) =327, aifi(x), « € R™, with DC decomposition

g1 (x) = ( > ajipj(z) — > a; ‘i’j(z)) —( > ajb (@) — > D‘]'wj(z))

je{iia; >0} je{iia; <0} je{iia; >0} je{iia; <0}

> go(x) = max{fi(x),..., fm(z)} with DC decomposition
m

p2(@) = max {i(@) + > ¢i(@) } = D 6;(x)
1

i i=

ZMA
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UNIVERSALITY OF DC FUNCTIONS

Let f; = ¢; — ¢; be DC functions for all ¢ = 1, ..., m. The following functions are DC

> gi(xz) =327, aifi(x), « € R™, with DC decomposition

g1 (x) = ( > ajipj(z) — > a; ‘i’j(z)) —( > ajb (@) — > D‘]'wj(z))

jE{iia; >0} jE{ita; <0} jE{ita; >0} jE{ita; <0}

> go(x) = max{fi(x),..., fm(z)} with DC decomposition

m

p(@) = max {vi(2) + > ¢i(@) } — §j¢,
J#i

» g3(z) = min{f(z),..., fm(z)} with DC decomposition

(@) = Z%w max {00(2) + 3 5 (x) )

J#i

ZMA
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UNIVERSALITY OF DC FUNCTIONS

Let fi = ¢; — ¢; be DC functions for all ¢ = 1, ..., m. The followin

> gi(xz) =327, aifi(x), « € R™, with DC decomposition

5 (=) = ( > ajpg(z) — > O‘jd’j(z))_( >
je{iza; >0} je{iza; <0} je{ia; >0}
> go(x) = max{fi(x),..., fm(z)} with DC decomposition

m

p(@) = max {vi(2) + > ¢i(@) } — §j¢,
J#i

» g3(z) = min{fi (z),..., s fm (x)} with DC decomposition

g functions are DC

ajdj(z) — > D‘jwj(z))

je{iza; <0}

(@) = Z%w max {00(2) + 3 5 (x) )

J#i

g(z) = |f(x)| with DC decomposition
4(x) = 2max{y(z), ¢(x)} — (¥(2) + é(z))




UNIVERSALITY OF DC FUNCTIONS

LEMMA

Let f : R™ — R have Lipschitz continuous gradient with modulus L > 0. Then f
admits the DC' decompositions f(z) = %Hm”? — [%HxHQ — f(w)] and

f@) = [£@) + Ll2l?] - L)l

Example: f(x) = cos(z), that has
gradient Lipschitz with constant L =1

LEMMA
Let ¥ : R™ — R4 be a convez function. If ¢ : R4 — R is a concave and
non-decreasing function such that ¢/, (0) < oo, then

TY(z) — p(Y(x)) is convex for all T > ¢>'+(0)

Such a property is useful for inducing sparsity in certain problems

P(P(x)) = T(x) — [T (x) — ¢((2))]




INDUCING SPARSITY

10x) = lIxIl

FicurA: Euclidean norm

) = 1ixII- ¢(lIxI1)

1x) = (lIxID)

2 2

Fiaura: ¢(r) = log(1 + 2r)/2

o(ll=l) = llzll = [zl = o(ll=])] is DC

AZMA
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ExXAMPLES OF DC PROGRAMS

NONCONVEX IMAGE DENOISING

> Let b € R™ be the vectorization of a corrupted grayscale image. In order to
preserve edges in the process of restoring b, the following nonconvex Total
Variation formulation is commonly employed!:

min Zlle = b|? + 6(TV(x), with TV(2) = >_[|(Va)|
=1

> ¢ : Ry — R is a penalizing function, p > 0 is a fidelity parameter and
(Vz); € R? denotes the discretization of the gradient of image x at pixel 4

» If ¢ is concave and non-decreasing, its right derivative ¢>’+ (r) is well defined
for all » > 0. Then 7TV (z) — ¢(TV (z)) is convex function for all 7 > ¢/, (0)

» The nonconvex image denoising problem fits into the DC formulation

min f1(z) — f2(z)

TER™
A@) = Elle—b|2+7TV(2) and fo(z) = T TV () - G(TV (),

two convex functions

pixel X, ; is stored



CORRUPTED IMAGE




CONVEX MODEL: FISTA (BEST SETTING)

LK 2 ;
min — ||z — b||* + TV (x)
T ER™ 2




NONCONVEX MODEL: DC PROGRAMMING

min & |z — bH2 + ¢(TV (x))
ZERT 2
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ExXAMPLES OF DC PROGRAMS

SUM OF CLIPPED CONVEX FUNCTIONS

> Let a; € Rand 9; : R - R, i=1,...,m, be convex functions. The
(NP-hard) clipped optimization problem reads as

m
i, 3 min{wi(a), i)
p

and finds applications in statistics, risk minimization, clipped control, and
machine learning

» The sum of clipped convex functions is indeed a DC function:
m
=Y min{yi(z),a:} = fi(z) - fa(2)
i=1

fiz) =2 Yi(x) +a;  and  fo(x) = 307 max{tpi(x), a;}




CLIPPED LINEAR REGRESSION

> Convex model: mingeg 0.222 + X1 (zp; — ¢;)?
> Nonconvex, nonsmooth model: mingeg 0.222 + 37, min{(zp; — ¢;)2, 0.5}

Linear Regression

- - -Convex model (least square)
——Nonconvex model (clipped)
- ® |Inlier

= Outlier

ZMA

Conte e anématiues opiutes
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ExXAMPLES OF DC PROGRAMS

SPARSE OPTIMIZATION: CLIPPED MODEL

> Let ¢ : R™ — R be a convex function, X a convex set, and A > 0 a given
parameter

P> In sparse optimization we may wish to solve
min ¢(x) + Al|z
min o(z) + Alzllo
»> The (difficult) zero norm counts the number of nonzeros elements of vector x

> We may approximate ||z||o by a simpler function: given r > 0 small enough

n n n
il } (\l’i\ > {Iﬂﬁzl }
T ~ min , 1 = +1)— max , 1
lelo ~ 3 {& > (= > max 3

i=1 i=1

v

Note that lim,. | Zzlzllnin{‘if‘7 1} llz|lo

» Then

Q

al;Iéi)r}¢($)+)\H$”0 min fi(z) — fa(z)

fl(z)=¢(x)+Ai(@+1) and fg(:r):/\zn;max{l%‘,l} i
= i= S

[ ———
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ExXAMPLES OF DC PROGRAMS

SPARSE OPTIMIZATION: Z(J-CO\'SI'I{AII\HI) MODEL

» In sparse optimization we may wish to solve
min x
min  ¢()
st. lzllo <k

(k is a natural number)

> By using the norm ||z|| () = Zle [T (5|, with o(i) the i*" largest value of

{|z1],--.,|zn|}, we have that
min T min T
z€X o) = zEX 7o) ~ min fi(z)—f2(x)
st lzllo <k st ol — lzlli =0 zeX

Ai@) = 6@) + Azl and  fo() = Aalls

(A > 0 is a given parameter)




ExXAMPLES OF DC PROGRAMS

(CONSTRAINED) CLUSTERING

>

| 2

Let {y',...,y™}, with y* € R%, i =1,...,m, be the data set to be grouped

The goal is to partition the data set into k disjoint subsets, called clusters,
such that a clustering criterion is optimized

Each cluster must be in X

Given a distance function d(z,y) (e.g. d(z,y) = ||z — yl|), one tries to
minimize the sum of the distance of each data point to the center z* € R% of
its cluster:
i J
) mln ZJ min d(a‘ )

x .A.H.’L . =Ly
SO i=1

The objective function can be decomposed as fi1(x) — fa(z), with

x=(x'..., mk) € R™ the vector composed of all k£ centers, n = kd,
m k m k )
film) =323 d@',y) and  fale) =) max > d(zy’)
i=1j=1 =177 s=1,s#7]

The clustering problem can thus be written as a DC program

Inin Ji(z) = f2(=)




CONSTRAINED CLUSTERING

m

min 3" min d(ad,y), m=

zl, . akex [3I=1-

1000, k =10, d(z,y) = ||z — y|1

250 —————— :

150

100

100 -
-150

-200

2 o L

50
=250 -200 -150 -100

ZMA
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ExXAMPLES OF DC PROGRAMS

PROBABILITY MAXIMIZATION PROBLEMS

> Let (2, F,P) be a probability space and g : R™ X E — R be convex in the first
argument: g(-, &) is convex for any given £ € E

» The problem of finding a point in the convex and compact set X C R™ such
that the system of inequalities g(z,£) < 0 holds with the highest possible
probability can be formulated as

max Plg(z,6) <0] = max[1-Plg(z,¢)>0] = 1-min Plg(z,€) > 0]
= 1-min Efx(max{g(z,£),0}],

where x : R — {0, 1} be defined as x(a) =0 if a = 0 and x(a) = 1 otherwise

»> By approximating x(:) with min {%, 1}, and using finitely many scenarios

{€t, .., ¢} with associated probability ps > 0, we get the following
approximation

reEX

s s
iy 3 pomin { PIEE00) )
s=1 r

» As we have already seen, this is a DC problem with available DC
decompositions




WHAT DOES IT MEAN TO SOLVE A DC PROGRAM?

min f(z), with f(z) = fi(z) - f2(z)  (P)

reEX

Being a nonsmooth and nonconvex optimization problem, many definitions of
stationarity exist for DC programs

A point z € X is a
> global solution to problem (P) iff

O f2(Z) C Oe[f1(Z) +ix(Z)] Ve>0
> d(irectional)-stationary point to problem (P) if
0f2(z) C 9[f1(z) +ix (2)]
» critical point to problem (P) if

df2(z) N O[f1(Z) +ix ()] # 0

Local algorithms for nonsmooth DC problems are only ensured to provide critical
points (except when a special structure is assumed)
ZMA

Cone ol
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CRITICALITY FROM THE DUAL POINT OF VIEW

Join fi1(z) = fa(x) (P)

THEOREM (TOLAND DUALITY)

Let fi(z) = fi(x) +ix(x) and f = f1 — f2. Then
F*(g) = sup fi(g+s)—f3(s)
seR™
> Note that f*(0) is a DC problem itself: f*(0) = SUpP,cgn f{‘ (s) — f5(s)

> With a little abuse of notation, we denote by dual problem the following one,
with converse signal:

inf f3(s) = fi(s) (D)

- seR™

[@) = f2(2) = f5(s) = fT(s)  for all s € 0f2(Z) N Ofi(

—F7(0)

I
=




PRIMAL-DUAL RELATION IN DC PROGRAMMING

1
1@ = 5 loll® = izl

2 .

The dual curves were obtained by plotting f5(V f1(x)) — f{(V fi(z)) with
z € [—1,1] x [-1,1]. Critical points are the ones where f and f* coincide



PRIMAL-DUAL RELATION IN DC PROGRAMMING

2
f@) = (=l + D @) — ||zl

i=1

The dual curves were obtained by plotting f3(V f1(x)) — ff(V fi(z)) with
z € [—1,1] x [—1,1]. Critical points are the ones where f-and f* coincide



WHAT DOES IT MEAN TO SOLVE A DC PROGRAM?

;Iéi?( f(x), wirth  f(z) = f1(z) — fa(x) (P)

A point z € X is a
> d(irectional)-stationary point to problem (P) if

0fa(z) C 0[f1(Z) +ix (2)]
which is equivalent to say that z solves

frél;} f1(x) = [f2(Z) + (g2, 2z — T)] for all g2 € Ifa2(T)

» critical point to problem (P) if
Of2(z) NO[f1(Z) +ix(Z)] #0
which is equivalent to say that z solves

glc%i)r% fi(x) = [f2(Z) + (g2,2 — T)] for at least one g2 € Jf2(T)

Note that the concepts of criticality and d-stationarity coincide if f2 is

differentiable at & ;/MA

Cone ol
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DC ALGORITHM - DCA

FOR ALL k = 1,2, ..., COMPUTE glg S afg(zk) anD zF 1 € arg m%_{r% fi1(z) — (g];, x)
x€R™

Consider the unidimensional problem

min z2 — (max{—=z, 0} + 0.5x2)
x

£(x) = x2 -max(x,0)-0.5 x?
T T

08 -

07 I I L L I L
2 15 -1 0.5 0 05 1 15 2

X

If we start the iterative process with 20 > 0, then the DCA? defines zF+! = zF /2

Hence, ¥ — 0 and # = 0 is critical but not a d-stationary point: 9f2(0) = [—1, 0]
and Vf1(0) =0 KMA

Conte e anématiues opiutes

2Tao7 P.D., Le Thi, H.A.: Convex analysis approach to DC programming: theory,
algorithms and applications. Acta Mathematica Vietnamica, 1997
22 /40



INERTIAL DCA

zF*1 € arg min f1(z) — (g;#»[ﬁ(zk — zkil),z% B =0.49
zER™

One manner to get points of better quality is to insert some inertial® to DCA

min z2 — (max{—z, 0} + 0.5x2)
x

£(x) = x2 -max(-x,0)-0.5 x?
T T T T

08 =

02{ B

07 I L L I

Cone et

3W. de Oliveira and M. Tcheou. An inertial algorithm for DC iprogramming. SVAA;, 2019




A BI-DIMENSIONAL EXAMPLE
flx) = f1(z) — fa(=)

fi(x) =||z||> and f2(z) = max(—=z1,0) + max(—x2,0) + 0.5|z||?

AKX
LXK
AXXXR)
EXXXXR
QXXX
SR

0
SRR
SEXXRLD

ZMA

[ ———
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IDCA witH =0 (DCA)

k+1 . k
x ar min x 2, T
€ arg ) Rnh( ) — (93, @)

fi(@) =||=z|> and fo(x) = max(—2z1,0) + max(—x2,0) + 0.5z

[ —



IDCA wiTH = 0.49

: . TR k—
«F 1 € arg min f1(x) — (g5 +8(" — 1), 2)
TERM

fi(x) = ||=z|> and fo(x) = max(—=z1,0) + max(—=x2,0) + 0.5z

[ —



Sequential DC programming '



MOTIVATION

» DCA has a successful history of more than 30 years: if one thinks of DC
programming, one thinks of DCA

» The algorithm shows it full strength when the convex subproblem is simple
ot €argmin fi(2) - [f(") +(g" z —2")]  (Sbpm)
x

> By “simple subproblem”we mean that a solution z*+1

algebraic or computationally cheap ways

can be computed in
» If (Sbpm) is difficult (e.g. f1 is only via an oracle/black box), then DCA can
be too time consuming depending on the application

» Furthermore, DCA does not treat fi1 and fs equally: fo is approximated by a
single linearization, whereas fi is treated as is

ZMA

Conte e anématiues opiutes

27 /40



SEQUENTIAL DC PROGRAMMING - SDCP

min f(2), wimn f(2) = f1(2) = fa(@)  (P)

> DCA approximates (P) iteratively with (possibly difficult) convex
subproblems

DCA

for all k = 0,1,2,..., compute g§ € df2(z*) and let

2**+1 be a solution of mi?( f1(z) — [f2(z®) + (g5, — zF))
EIS

»> SDCP approximates (P) iteratively with easy DC subproblems

SDCP

for all k =0,1,2,..., update a convex model fﬁ{ and let

2**+1 be an approximate critical point of rni;l( ik (2) — fa(z)
zE

The idea is to choose %, s.t. mingex f¥ () — fo(w) is simple



SEQUENTIAL DC PROGRAMMING - SDCP

;Iéi?( f(x), wirth  f(z) = f1(z) — fa(x) (P)

How to choose a convex model f?v[ for f1 such that computing a critical point of
ming e x f’;[(x) — fa(x) is simple?

P> We define a class of models satisfying
f’;{(x) = f}fow(x) + %(]\Ik(x — mk), (z— mk)> for all x € R™ and £k =0,1,2,...
with £, (z) a lower model for fq:
(@) < fi(x) for all x € R™
and M* € R"*" is a symmetric PSD matrix (e.g. M* = 0)

» Depending on M¥, we can have lower models, upper models, and even
second-order Taylor models

ZMA

[ ———
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SEQUENTIAL DC PROGRAMMING WITH LOWER MODELS

THE CUTTING-PLANE SETTING

1 (2) = (@) + 5 (MH (@ = 2%), 2 = b))

A lower model can be defined by setting
> & (x) = fF(z) for all k, with

ff(m) ::jzénlax k{fl(:rj)Jr(g{,xij)} < fi(z) forall z € R™

> Mk =0eR"" for all k

In this case, the SDCP reads as*
|

for all k= 0,1,2,... let

xF*1 be an approximate critical point of mi}r% fF (@) — fo(z)
xrE

4If X is polyhedral, then the DCA applied to this subpoblem requires solving a LP per
(inner) iteration



fi(z) = 221 /1 + 22 + (Az, z) (the matrix A is given by A1 = Agy = 0.1, A1 = 0.3 and
Ay =0.2), fo(x) = 5X7_; max{—z;,0}, and X = {—5 < x; <5, i=1,2}

Preliminary numerical experiments have
shown that this SDCP variant
P> almost always computes a global

solution

» but is unstable and very slow... =
AZMA
5 A~
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SEQUENTIAL DC PROGRAMMING WITH UPPER MODELS

ff,[(ar) = fﬁw(w) + %(Affk(w - Illk), (x — :I:k))

» Suppose that
fil@) = (@) + _max i(a)

1,...

with ¢ : R™ — R a simple convex function (piecewise linear or quadratic), and
¢i : R™ — R continuously differentiable convex functions having gradient V¢;
Lipschitz continuous with modulus Lg, > 0,i=1,...,m

» If a constant L > Ly, i =1,...,m, is known we may take

> MF = (L+~)I € R"™™ for all k (for a v > 0)

fi(z) < f];w(:c) for all




SEQUENTIAL DC PROGRAMMING WITH UPPER MODELS

(@) = 5 (@) + %(M’“(x — k), (@ — )

» Suppose that fi(z) =320 Yi(xs) + ¢(x)
with ¢; : R" — R simple convex functions, and ¢ : R™ — R having gradient
V¢ Lipschitz continuous with modulus Lg > 0

> The feasible set is decomposable: X = II7" X;, with X; C R™
» If a constant L > Ly, i =1,...,m, is known we may take
>R () = T i) + d(aF) + (Vo(ah), z — 2F) for all k

> M* = (L +~)I € R"*" for all k (for some ~ > 0)

5Parallel computing can be employed to speed up calculations in SDCP (although f; is n&t®
decomposable)



SEQUENTIAL DC PROGRAMMING WITH UPPER MODELS

(@) = fly (@) + 5 (M (@ = 25, (2 — )

» Suppose that fi(z) =320 Yi(xs) + ¢(x)
with ¢; : R" — R simple convex functions, and ¢ : R™ — R having gradient
V¢ Lipschitz continuous with modulus Lg > 0

> The feasible set is decomposable: X = II7" X;, with X; C R™
» If a constant L > Ly, i =1,...,m, is known we may take
> (@) = 7Ly $il@i) + $(2") + (V(a"), z — 2*) for all k

> M* = (L +~)I € R"*" for all k (for some ~ > 0)

If minge x f¥ (2) — f2(x) is handled by DCA, then its convex subproblem
mingex f’;/[(y) — <g€7 y) can be decomposed®

) L+~ .
v "t € arg min ily) + 5 v = 2Nl 4 (Ve 0@0) —ghw), i=1m

ZMA

ot s

5Parallel computing can be employed to speed up calculations in SDCP (although f; is n&

decomposable)
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fi(z) = 221 /1 + 22 + (Az, z) (the matrix A is given by A1 = Agy = 0.1, A1 = 0.3 and
Ay =0.2), fo(x) = 5X7_; max{—z;,0}, and X = {—5 < x; <5, i=1,2}

f(x)

Preliminary numerical experiments have
shown that this SDCP variant

» is stable and reasonably fast

» solution quality depends strongly on

initialization




SEQUENTIAL DC PROGRAMMING WITH 2ND-ORDER TAYLOR MODELS

féi?( f(x), wirth  f(z) = f1(z) — fa(x) (P)

Suppose that (P) satisfies the following assumptions

X =R, fi(2) = $(z) + $(z) with
¥ : R™ - RU {oo} a simple convex function (not necessarily smooth) and

¢ : R™ — R convex and twice-continuously differentiable
» 1) can be the indicator function of a closed convex set C C R™: ¢ (z) = ic(z)
» The model f’;{ is the sum of ¢ with the 2nd-order Taylor’s expansion of ¢

F(e) = 9(@) + 9(a*) + (Vo(h), 2 = b) + 2 (V30(h) (= ), (2 — b))

§5 (@)

ZMA

Cen s opics
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SEQUENTIAL DC PROGRAMMING WITH 2ND-ORDER TAYLOR MODELS

;Iéi?( f(x), wirth  f(z) = f1(z) — fa(x) (P)

With the model
(o) i= 0(@) + 9(a*) + (Vo(h), 2 — *) + 2 (Vo(k) (o — o), (o — b)),
if £5+1 is a critical point for the DC subproblem
min fy(z) - f2()

then
0 # ok ("t Nafa (a1 = 0€ ok (") — afa(a T,

i.e., zF*T1 solves the generalized equation (GE)

0e ng(xk) + V2¢(Ik)(x — :ck) + oY(x) — Ofa(x)

[This is a Newton-type iteration!}




THE JOSEPHY-NEWTON METHOD

min f(2), wimn f(2) = f1(2) = fa(@)  (P)

» If 7 is a critical point of (P), then 0 € V() + 9y (z) — 0f2(T)
» In this case, computing a critical point of (P) is equivalent to

D(x) := Vo(x)

find € R™ such that 0 € ®(z)+N(z), where { N(z) = 00(a) — O fa(x)

» The Josephy-Newton method applied to the above GE works as follows: given

z¥, the next iterate 2¥t! is computed as a solution of the partially linearized
GE

0€ ®(") + Vo(F)(z — z*) + N(2)
ie.,

0 € Vo(a*) + V2¢(a*) (x — 2*) + 9y (z) — 9f2(w)




SEQUENTIAL DC PROGRAMMING WITH 2ND-ORDER TAYLOR MODELS

min f(2), wimn f(2) = f1(2) = fa(@)  (P)

The SDCP algorithm
|

for all k =0,1,2,... let k1 be a critical point of

min $(z) + 6(*) + (Vo(ah), o — 28) + 2 (V2p(ah) (@ — 2, (0 — 7)) - fale)

is an implementation of the Josephy-Newton method applied to the GE

(z) = Vo(z)
N(z) = oy(z) — dfa(z)

SDCP converges quadratically under certain conditions '

find z € R™ such that 0 € ®(z) + N (z), where {




fi(z) = 221 /1 + 22 + (Az, z) (the matrix A is given by A1 = Agy = 0.1, A1 = 0.3 and
Ay =0.2), fo(x) = 5X7_; max{—z;,0}, and X = {—5 < x; <5, i=1,2}

Preliminary numerical experiments have
shown that this SDCP variant

> is very fast
» converges if initialized near to a

critical point
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CONCLUDING REMARKS

>

The universality of DC functions implies that almost all real-life optimization
problems can be recast into the DC programming framework

However, a DC decomposition of the underlying function is not always
available

When a DC decomposition is accessible, it permits employing the convex
analysis apparatus

The availability of a DC decomposition does not imply by itself that DC tools
should be employed in place of standard algorithms

The use of DC algorithms should be supported by one of the following
reasons: the absence of a nonconvex black-box for f but the availability of
convex black-boxes for f1 and f2; nonsmoothess; the existence of analytic
formulas or computationally cheap procedures for defining iterates;
decomposability; modeling advantages; or others

Without special structure, algorithms for DC programming can only compute
critical points

Critical points can be of poor quality. Ex: Z = 0 is critical for ming>_10 f(2), 5
with f(z) = % — max{—z,0} ;

Con "
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Thank you!
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