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Thierry Goudon Rapporteur
Lenya Ryzhik Rapporteur
Emanuele Caglioti Examinateur
Laurent Desvillettes Examinateur
Frédéric Lagoutière Examinateur
David Coulot Invité
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Illud in his quoque te rebus cognoscere auemus,
corpora cum deorsum rectum per inane feruntur
ponderibus propriis, incerto tempore ferme
incertisque locis spatio depellere paulum,
tantum quod momen mutatum dicere possis.

Lucrèce, De rerum natura, II, 216-220

INTRODUCTION

1. Cadre général : l’équation de Boltzmann linéaire avec
une distribution périodique de trous

1.1. L’équation de Boltzmann linéaire. Le travail présenté ici est
essentiellement consacré au problème de l’homogénéisation de l’équation
de Boltzmann linéaire dans un domaine perforé. On commence par
rappeler succinctement le modèle mathématique. L’équation de Boltz-
mann linéaire s’utilise dans divers contextes, par exemple le transport
des neutrons dans un matériau fissile, ou bien la diffusion d’un gaz léger
dans un gaz lourd — voir le paragraphe 11 dans [18]. Le gaz léger est
vu comme une population de particules — des masses ponctuelles —
décrite par sa fonction de distribution f ≡ f(t, x, v), densité des partic-
ules se trouvant à la position x ∈ Ω, à l’instant t ∈ R+, et se déplaçant
à la vitesse v ∈ V. On néglige les collisions entre les molécules du gaz
léger, le parcours du point matériel ne dépend donc que du milieu où
il se déplace. Le changement de vitesse de la masse ponctuelle est régi
par deux fonctions positives σ ≡ σ(x, v) et k ≡ k(v, w) avec

k(v, w) = k(w, v) et

∫
v∈V

k(v, w)dv = 1.

La quantité σ(x, v) représente la fréquence de collision à la position x
et à la vitesse v tandis que k est la probabilité pour une molécule de
gaz léger d’avoir la vitesse v après collision sachant que sa vitesse avant
collision est w.

L’équation de Boltzmann linéaire régissant l’évolution du gaz est
donc

(∂t + v · ∇x)f(t, x, v) + σ(x, v)f(t, x, v) = σ(x, v)Kf(t, x, v),

avec

Kf(t, x, v) :=

∫
k(v, w)f(t, x, w)dw.

L’ensemble V des vitesses admissibles peut être soitRN , soit une sphère
(par invariance galiléenne et après un choix convenable des unités, on
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4 INTRODUCTION

peut toujours se ramener au cas où V = SN−1) pour un gaz de particules
monocinétiques, soit une partie finie deRN (modèle cinétique à vitesses
discrètes).

1.2. Domaine spatial avec distribution périodique de trous.
Le milieu dans lequel les particules évoluent est l’espace RN perforé
périodiquement.

2r

1

Le terme de � trou � désigne une boule complètement absorbante,
au sens où toute particule la rencontrant disparâıt à jamais. Le milieu
Zd,r est alors décrit par :

Zd,r :=
{
x ∈ RN

∣∣dist
(
x, dZN

)
> r

}
,

où r est le rayon des trous et d la distance entre noeuds voisins du
réseau périodique formé par les centres des trous. Le fait que les trous
� absorbent � les particules est exprimé par la condition au bord pour
la fonction de distribution :

f(t, x, v) = 0, (t, x, v) ∈ R∗+ × ∂Zd,r × V, dès que nx · v > 0,

où nx est le vecteur normal entrant dans Zd,r en x ∈ ∂Zd,r.

x

v

n
x

Enfin on supposera qu’à l’instant t = 0, on connâıt la distribution
initiale de la population particulaire f in. Nous avons donc le problème
de Cauchy avec condition au bord suivant :
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∂tf + v · ∇xf + σ(f −Kf) = 0, (x, v) ∈ Zd,r × V, t > 0,

f(t, x, v) = 0, si v · nx > 0, (x, v) ∈ ∂Zd,r × V, t > 0,

f(0, x, v) = f in(x, v), (x, v) ∈ Zd,r × V.

1.3. Le problème. Le problème d’homogénéisation consiste à décrire
l’évolution de la population de particules de distribution f lorsque le
nombre de trous par unité de volume est grand (d � 1) et que la
taille des trous est en même temps petite (r � 1); et de trouver si
possible une équation � équivalente � posée sur l’espace euclidien RN

sans les trous régissant cette évolution.

Considérons d’abord le cas sans collision, σ = 0, déjà étudié par E.
Caglioti et F. Golse dans [8], c’est-à-dire le cas où les particules ne se
déplacent qu’en ligne droite. Posons dorénavant d = ε et rε = εγ le
rayon des trous. Alors le milieu extérieur est

Zε :=
{
x ∈ RN

∣∣dist
(
x, εZN

)
> εγ

}
,

et on considère le problème de Cauchy :

(Tε)


∂tfε + v · ∇xfε = 0, (x, v) ∈ Zε × SN−1, t > 0,

fε(t, x, v) = 0, si v · nx > 0, (x, v) ∈ ∂Zε × SN−1, t > 0,

fε(0, x, v) = f in(x, v), (x, v) ∈ Zε × SN−1.

Il existe un exposant critique γc = N
N−1

— voir [6, 12] — au sens où :
– Si γ < γc alors

fε → 0 dans Lploc
(
R+ ×RN × SN−1

)
pour tout p ∈ [1,+∞[.

– Si γ > γc alors

fε → f dans L∞
(
R+R

N × SN−1
)
∗ −faiblement

où f est solution de l’équation du transport libre

(Tε)

 ∂tf + v · ∇xf = 0, (x, v) ∈ RN × SN−1, t > 0,

f(0, x, v) = f in(x, v), (x, v) ∈ RN × SN−1.

Autrement dit, dans le premier cas, la fonction de distribution tend
vers zéro : les particules sont absorbées instantanément, les trous étant
trop gros par rapport à leur espacement. Et dans le deuxième cas, la
fonction de distribution tend vers la solution de la même équation de
transport libre mais dans l’espace tout entier : les trous n’ont aucun
effet, leur taille étant trop petite par rapport à leur espacement.
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Enfin dans le cas critique γ = γc, la solution fε converge *-faiblement
dans L∞

(
R+ ×RN × SN−1

)
vers la solution f de l’équation non au-

tonome

∂tf + v · ∇xf =
ṗ(t)

p(t)
f,

où p est une fonction strictement décroissante se comportant comme
2/π2t pour t → +∞ — voir [8] pour la preuve du comportement
asymptotique. On a donc ici l’apparition d’un � terme étrange venu
d’ailleurs �.

L’expression que nous venons d’employer est le titre d’un article de
Cioranescu et de Murat [7] qui traite un problème similaire pour une
équation de la diffusion. Rappelons un des principaux résultats de [7].

Soit Ω un ouvert de RN perforé périodiquement :

Ωε :=
{
x ∈ Ω

∣∣dist(x, εZN) > rε
}
,

où rε est le rayon des trous. On considère alors uε solution dans H1
0 (Ωε)

du problème de Dirichlet

(Hε)

 −∆uε(x) = f(x), x ∈ Ωε,

uε|∂Ωε = 0.

Nous notons de même {uε} le prolongement de uε par zéro dans les
trous. Comme dans le cas du transport, il existe une taille critique rcε
avec

rcε :=

 e−
1
ε2 , si N = 2,

ε
N
N−2 , si N ≥ 3,

telle que
– Si rε > rcε alors {uε} ⇀ 0 dans H1

0 (Ω) faible. Autrement dit, les
trous sont trop gros et absorbent tout à la limite ;

– Si rε < rcε alors {uε} ⇀ u dans H1
0 (Ω) fort où u est solution du

problème de Dirichlet −∆u(x) = f(x), x ∈ Ω,

u|∂Ω = 0.

Autrement dit, les trous sont trop petits, et ont un effet négligeable
sur uε pour ε� 1.

Enfin, dans le cas critique, rε = rcε nous avons

{uε}⇀ u dans H1
0 (Ω)− faible,
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où u est solution du problème de Dirichlet −∆u(x) + µu(x) = f(x), x ∈ Ω,

u|∂Ω = 0,

avec

µ =


π

2
, si N = 2,∣∣SN−1

∣∣ (N − 2)

2N
, si N ≥ 3,

On obtient ainsi une équation avec un terme d’absorption supplémen-
taire. Le résultat est similaire pour d’autres équations de diffusion
comme l’équation de Stokes ou de Navier-Stokes — voir par exem-
ple [1, 2, 3]. Notons à ce propos que dans ce dernier cas, le terme
supplémentaire dans la limite d’homogénéisation s’interprète comme
un terme de friction de Brinkman – voir notamment [3].

Cela étant dit, il y a une différence significative entre le cas du
transport libre et le cas de la diffusion. Pour les équations de la dif-
fusion, l’effet des trous de taille critique se traduit par un coefficient
d’amortissement constant tandis que dans le cas du transport libre avec
distribution périodique de trous, le coefficient d’amortissment est une

fonction t 7→
∣∣∣ ṗp(t)

∣∣∣ qui n’est pas constante puisque p décrôıt comme

Const./t pour t→ +∞.
Si on remplace l’hypothèse de trous répartis périodiquement par des

trous de même taille mais dont les centres suivent une distribution de
Poisson, la fonction p est une fonction exponentielle, de sorte que le
coefficient ṗ

p
est constant.

Il y a donc une difficulté spécifique propre à la fois au cas périodique
et au transport libre, due au fait que des particules dont les directions
sont très proches de vecteurs à coordonnées rationnelles peuvent mettre
très longtemps à rencontrer un obstacle. Nous renvoyons à l’article [6]
pour une discussion approfondie de ce phénomène.

C’est la raison pour laquelle on étudie dans cette thèse le problème
de l’homogénéisation de l’équation de Boltzmann linéaire (avec σ > 0)
dans une distribution périodique de trous ayant la taille critique.

En effet, cette équation est en quelque sorte intermédiaire entre
l’équation de diffusion — considérée par Cioranescu-Murat — et l’équa-
tion de transport libre — étudiée par Caglioti-Golse.

Comme on va le voir, la taille critique des trous pour l’équation de
Boltzmann est la même que pour l’équation de transport libre ; mais



8 INTRODUCTION

contrairement au cas l’équation de transport libre, le nombre total de
particules décrôıt exponentiellement lorsque le temps t → +∞, car
les collisions avec le milieu ambiant détruisent les longues trajectoires
responsables de la décroissante lente.

Nous allons maintenant décrire plus en détail le contenu de cette
thèse.

2. Chapitre 1 : majoration de la masse, cas monocinétique

Dans le premier chapitre, nous considérons pour ε ∈ (0, 21−N) fixé,
la masse totale

Mσ,ε(t) :=

∫∫
Zε∩[0,1]N×SN−1

fε(t, x, v)dxdv,

où fε est solution du problème de Cauchy avec condition d’absorption
au bord

∂tfε + v · ∇xfε + σ (fε −Kfε) = 0, (x, v) ∈ Zε × SN−1, t > 0,

fε(t, x, v) = 0, si v · nx > 0, (x, v) ∈ ∂Zε × SN−1,

fε(0, x, v) = f in(x, v), (x, v) ∈ Zε × SN−1.

Nous supposons pour simplifier que f in ∈ L∞
(
R
N × SN−1

)
et est 1-

périodique en sa variable spatiale. Nous obtenons alors une majoration
de la masse indépendante du rayon des trous et de la taille du réseau.

Théorème 2.1. Soit σ > 0 alors il existe Cσ > 0 et ησ ∈ (−σ, 0) tel
que pour tout ε > 0 et pour tout t ≥ 0

Mσ,ε(t) ≤ Cσe
ησt
∥∥f in∥∥

L∞(RN×SN−1)
.

De plus,

ησ ∼ −σ lorsque σ → 0+.

Ce résultat nous dit que, contrairement au cas du transport libre
où elle est à décroissance algébrique, la masse totale du système de
particules décrôıt à vitesse au moins exponentielle dès que σ > 0.

2.1. Esquisse de la démonstration. L’idée de la démonstration est
de s’appuyer sur l’interprétation probabiliste de l’équation de Boltz-
mann linéaire afin d’obtenir une formule explicite pour la solution en
fonction de σ, de k et du temps τε(x, v) de sortie du domaine Zε d’une
particule libre partant de x dans la direction v. On obtient ainsi une
majoration de la masse par une fonction indépendante de ε grâce à un
théorème d’estimation du temps de sortie dû à J. Bourgain, F. Golse
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et B. Wennberg [6]. Ensuite, on remarque que cette fonction majorante
vérifie une équation intégrale de type renouvellement sur R+ :

f(t) = g(t) +

∫ ∞
0

f(t− s)g(s)ds

où f est l’inconnue et g une fonction intégrable. Ce type d’équation a
été intensivement étudié en théorie des probabilités — voir par exem-
ple le chapitre correspondant dans [13]. On dispose en particulier de
théorèmes sur le comportement asymptotique de la solution qui nous
permettent de conclure.

3. Chapitre 2 : homogénéisation, cas monocinétique

3.1. Le problème. On étudie dans ce chapitre le problème de l’ho-
mogénéisation proprement dit pour l’équation de Boltzmann dans le
cas monocinétique et bidimensionnel. Les particules évoluent donc dans
l’espace R2 perforé périodiquement,

Zε :=
{
x ∈ R2

∣∣dist
(
x, εZ2

)
> ε2

}
,

et on suppose de plus que la fréquence de collision σ est une constante
strictement positive. Enfin, la condition initiale f in vérifie

f in ≥ 0 dans R2 × S1,

et

∫∫
R2×S1

f in(x, v)dxdv + sup
(x,v)∈R2×S1

f in(x, v) < +∞.

On considère donc le problème de Cauchy avec condition au bord :

(Ξε)


∂tfε + v · ∇xfε + σ (fε −Kfε) = 0, (x, v) ∈ Zε × S1, t > 0,

fε(t, x, v) = 0, si v · nx > 0, (x, v) ∈ ∂Zε × S1, t > 0,

fε(0, x, v) = f in(x, v), (x, v) ∈ Zε × S1.

3.2. Les résultats. On note F ≡ F (t, s, x, v) la solution du problème
de Cauchy

(Ξ)



(∂t + v · ∇x + ∂s)F + σF =
ṗ(t ∧ s)
p(t ∧ s)

F,

F (t, 0, x, v) = σ
∫∞

0
KF (t, τ, x, v)dτ,

F (0, s, x, v) = σe−σsf in(x, v),
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pour (t, s, x, v) ∈ R+×R+×R2×S1. Et pour chaque fonction φ ≡ φ(x)
définie presque partout dans Zε, on pose

{φ} (x) =

{
φ(x), si x ∈ Zε,
0, sinon.

Nous ne démontrons pas que fε ne converge pas vers une solution d’une
équation fermée, mais vers l’intégrale sur un temps � supplémentaire� de
la fonction F qui est solution d’un problème dans un espace des phases
plus grand.

Théorème 3.1. Soit (fε)ε>0 la famille de solutions de Ξε, alors

{fε}⇀
∫ ∞

0

Fds,

dans L∞ (R+ ×R2 × S1) *-faiblement lorsque ε → 0+, et où F est
l’unique solution de (Ξ).

Signalons immédiatement que le théorème est valide en toutes di-
mensions, la seule différence étant que nous ne disposons pas d’une
formule explicite pour p en dehors du cas bidimensionnel — voir [4]
pour une telle formule — même si son existence est connue grâce à
[19]. Nous étudions ensuite le comportement asymptotique en temps
long de la masse totale de la population particulaire dans la limite
homogénéisée. Le théorème suivant nous dit que c’est la masse totale
du système particulaire lorsque ε → 0+ et nous donne un équivalent
asymptotique en temps long.

Théorème 3.2. Avec les mêmes hypothèses et notations que pour le
théorème précédent,

(1) il existe une fonction M ∈ L1 (R+) telle que

1

2π

∫∫
Zε×S1

fε(t, x, v)dxdv →M(t),

dans L1
loc (R+) lorsque ε → 0+, et p.p. en t ≥ 0 à extraction

d’une sous-suite près ;

(2) la masse totale limite a une représentation explicite

M(t) =

(
1

2π

∫∫
R2×S1

f in(x, v)dxdv

)∑
n≥1

κ∗n(t), t > 0,

avec

κ(t) := σe−σtp(t)1t≥0, κ∗n := κ ∗ · · · ∗ κ︸ ︷︷ ︸
n facteurs

,

où ∗ désigne le produit de convolution usuel sur R;
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(3) pour tout σ > 0, il existe ξσ ∈ (−σ, 0) tel que

M(t) ∼ Cσe
ξσt lorsque t→ +∞;

(4) enfin

ξσ ∼ −σ lorsque σ → 0+, et ξσ → −2 lorsque σ → +∞.

3.3. Idée des démonstrations.

3.3.1. L’homogénéisation. Tout d’abord, on note Fε ≡ Fε(t, s, x, v) la
solution pour tout ε > 0 de

(∂t + v · ∇x + ∂s)Fε + σFε = 0, (x, v) ∈ Zε × S1, t, s > 0,

Fε(t, s, x, v) = 0, si v · nx > 0, (x, v) ∈ ∂Zε × S1, t, s > 0,

Fε(t, 0, x, v) = σ
∫∞

0
KF (t, τ, x, v)dτ, (x, v) ∈ Zε × S1, t > 0,

Fε(0, s, x, v) = σe−σsf in(x, v), (x, v) ∈ Zε × S1, s > 0,

et on montre que la solution fε de l’équation de Boltzmann linéaire
vérifie

fε(t, x, v) =

∫ ∞
0

Fε(t, s, x, v)ds.

Il faut noter ici que la variable supplémentaire s ∈ R+ peut être in-
terprétée de la façon suivante. À toute particule, on associe sa vitesse
v. Lorsqu’elle change de vitesse, on peut dire qu’elle disparâıt pour
donner naissance à une nouvelle particule de vitesse w. De ce point de
vue, la variable s est le temps de vie de la particule de vitesse v. En
ce sens, l’équation étendue est une description plus microscopique de
l’évolution du système décrit par l’équation de Boltzmann linéaire. Par
la méthode des caractéristiques, on écrit une formulation explicite de
Fε et grâce à un lemme de moyenne, on montre que par passage à la
limite fort-faible

Fε ⇀ F dans L∞ − faible *.

Enfin, on montre que fε converge elle-même vers
∫∞

0
Fds lorsque ε tend

vers zéro. On peut résumer cet argument par le diagramme

Fε −→ F
↑ ↓
fε 99K

∫∞
0
Fds

où la flèche horizontale supérieure est l’homogénéisation dans l’espace
des phases étendu. L’idée d’utiliser la variable supplémentaire s pour
décrire la limite des fε lorsque ε → 0 provient de l’étude de la limite
de Boltzmann-Grad pour le gaz de Lorentz périodique : voir [9, 20].
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3.3.2. Le comportement asymptotique de la masse totale. L’étude du
comportement asymptotique de la masse totale 1

2π

∫∫
R2×S1 fεdxdv passe

donc par l’étude de

m(t, s) :=
1

2π

∫∫
R2×S1

F (t, s, x, v)dxdv,

dont le comportement est déterminé par la

Proposition 3.3. Soit

B(t, s) = σ − ṗ

p
(t ∧ s),

alors l’EDP de renouvellement
∂tµ(t, s) + ∂sµ(t, s) +B(t, s)µ = 0, t, s > 0,

µ(t, 0) = σ
∫∞

0
µ(t, s)ds, t > 0,

µ(0, s) = σe−σs,

a une unique solution µ ∈ L∞ ([0, T ];L1 (R+)) pour tout T > 0.
Et de plus

m(t, s) =
µ(t, s)

2π

∫∫
R2×S1

f in(x, v)dxdv p.p. dans R+ ×R+.

On considère alors

M(t) :=

∫ ∞
0

m(t, s)ds,

et on montre que

1

2π

∫∫
R2×S1

fεdxdv →M(t),

dans L1
loc (R+) . Ensuite, grâce à la méthode des caractéristiques, on a

une formulation explicite de µ de laquelle on déduit par intégration en
s ∈ R+, une équation intégrale satisfaite par

1
1

2π

∫∫
R2×S1 f

in(x, v)dxdv
M,

à savoir l’équation intégrale du renouvellement

m(t) = κ(t) +

∫ t

0

κ(t− s)m(s)ds.

C’est une équation bien connue en théorie des probabilités — voir
[13] — et pour laquelle on dispose de théorèmes sur le comportement
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asymptotique de la solution m en temps long, fournissant notamment
l’équivalent (3) du théorème 3.2.

4. Chapitre 3 : Approximation par la diffusion de
l’équation homogénéisée

Nous étudions ici l’approximation par la diffusion de l’équation ho-
mogénéisée (Ξ) obtenue dans le chapitre précédent. C’est-à-dire qu’on
s’intéresse à une situation fortement collisionnelle σ → σ

η2
avec η � 1,

et sur une échelle de temps longue, ce qui équivaut à supposer que la
vitesse des particules est très grande avec la même échelle de temps.
Le scaling de la diffusion correspond au cas où la vitesse des particules
est d’ordre 1

η
. Autrement dit, on considère Fη ≡ Fη(t, s, x, v) solution

du problème de Cauchy

(Pη)



∂tFη + v
η
· ∇xFη + ∂sFη + σ

η2
F =

ṗ

p
(t ∧ s)Fη,

Fη(t, 0, x, v) =
σ

η2

∫ ∞
0

∫
S1
Fη(t, τ, x, w)dwdτ,

Fη(0, s, x, v) = σ
η2
e
− σ
η2
s
ρin(x),

pour (t, s, x, v) ∈ R+×R+×R2× S1, avec p ∈ C1 (R+;R+) et stricte-
ment décroissante. On suppose de plus que

ρin ∈ L1
(
R

2
)
∩ L2

(
R

2
)
,

et qu’il existe C > 0 tel que

sup
x∈R2

∣∣ρin∣∣ ≤ C.

Nous avons alors le théorème suivant d’approximation par la diffusion :

Théorème 4.1. Soit Fη solution de (Pη) alors∫ ∞
0

Fηds→ ρ dans L2
loc

(
R+;L2

(
R

2 × S1
))
− faible lorsque η → 0+,

où ρ est la solution du problème de Cauchy ∂tρ− 1
2σ

∆ρ = ṗ(0)ρ, t > 0, x ∈ R2,

ρ(0, x) = ρin(x). x ∈ R2.

De plus, pour tout T > 0 et pour tout compact K de R2∫ ∞
0

∫
S1
Fηds→ ρ dans L

3
2

(
[0, T ];L

2
3 (K)

)
− fort lorsque η → 0+.
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4.1. Esquisse de la démonstration. Il convient de relever que

Fη|t=0 → ρinδs=0 dans M
(
R+ ×R+ ×R2 × S1

)
− faible

lorsque η → 0+. On doit donc s’attendre à une convergence du type

Fη → fδs=0 dans M
(
R+ ×R+ ×R2 × S1

)
− faible

lorsque η → 0+. Nous sommes ainsi obligés d’écarter les méthodes clas-
siques utilisées en théorie de l’approximation par la diffusion comme le
développement de Hilbert (qui utilise la régularité de la solution limite)
ou la compacité dans L2 de la famille Fη. L’idée est d’écrire d’abord
la formulation duale du problème, puis d’appliquer la transformée de
Fourier. On obtient alors la formulation duale de l’équation désirée en
passant à la limite.

Pour la convergence forte, on utilise un lemme de moyenne qui garan-
tit la régularité uniforme de la moyenne en vitesse de (fε)ε>0 dans l’es-
pace Lp ([0, T ];Wloc(x)−r,p) puis on montre ensuite l’appartenance à un
� bon � espace du type Lp ([0, T ];Wloc(x)s,p) de la famille

(
∂t
∫
S1 fε

)
ε>0

.
On conclut enfin avec le lemme d’Aubin.

5. Chapitre 4 : étude du cas non monocinétique

5.1. Le modèle. Nous reprenons le problème traité dans le deuxième
chapitre dans le cas non monocinétique ; i.e. l’espace des vitesses est
la boule unité B2 au lieu de S1. Plus précisément, on considère fε ≡
fε(t, x, v) solution du problème de Cauchy

(Ξε)


∂tfε + v · ∇xfε + σ (fε −Kfε) = 0, (x, v) ∈ Zε ×B2, t > 0,

fε(t, x, v) = 0, si v · nx > 0, (x, v) ∈ ∂Zε ×B2,

fε(0, x, v) = f in(x, v), (x, v) ∈ Zε ×B2,

avec

Kf(t, x, v) =

∫
k(v, w)f(t, x, w)dw , k(v, w) = k(w, v) ≥ 0 , K1 = 1,

et

f in ≥ 0 dans R2 ×B2,

et

∫∫
R2×B2

f in(x, v)dxdv + sup
(x,v)∈R2×B2

f in(x, v) < +∞.
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5.2. Les résultats. On note F ≡ F (t, s, x, v) solution du problème de
Cauchy suivant

(Ξ)


(∂t + v · ∇x + ∂s)F + σF = |v| ṗ(|v|(t∧s))

p(|v|(t∧s))F,

F (t, 0, x, v) = σ
∫∞

0
KF (t, τ, x, v)dτ,

F (0, s, x, v) = σe−σsf in(x, v),

pour (t, s, x, v) ∈ R+ × R+ × R2 × B2. Et on rappelle la notation
employée ci-dessus :

{φ} (x) =

{
φ(x), si x ∈ Zε,
0, sinon.

Théorème 5.1. Soit (fε)ε>0 la famille de solutions de (Ξε), alors à
extraction près,

{fε}⇀
∫ ∞

0

Fds,

dans L∞ (R+ ×R2 ×B2) *-faiblement lorsque ε → 0+, où F est l’u-
nique solution de (Ξ).

Nous étudions ensuite le comportement asymptotique en temps long
de la masse totale de la population particulaire dans la limite ho-
mogénéisée.

Théorème 5.2. Avec les même hypothèses et notations que pour le
théorème précédent

(1) Il existe une fonction M ∈ L1 (R+) telle que

1

π

∫∫
Zε×B2

fε(t, x, v)dxdv →M(t)

dans L1
loc (R+) lorsque ε → 0+, et de plus p.p. en t ≥ 0 à

extraction près ;

(2) Si K est de plus de rang fini, pour tout σ > 0, il existe un réel
ξσ ∈ (−σ, 0), un entier n ∈ N indépendant de σ, et Cσ une
constante strictement positive tels que

M(t) ∼ Cσt
neξσt lorsque t→ +∞.

5.3. Esquisse de démonstration. La démonstration du premier é-
noncé est essentiellement identique à celle pour le cas monocinétique.
Pour le comportement asymptotique de la masse en temps long, l’idée
est d’abord de montrer qu’il est déterminé par celui d’une famille
de fonction (µi)1≤i≤n . Ensuite, on montre que cette famille vérifie
un système d’équations intégrales de type renouvellement pour lequel



16 INTRODUCTION

nous disposons de théorèmes portant sur le comportement asympto-
tique. Enfin, nous nous appuyons sur ces théorèmes et sur la struc-
ture algébrique du système d’équations pour calculer le comportement
asymptotique de (µi)1≤i≤n , et de là, en déduire celui de M.

6. Chapitre 5 : homogénéisation et semi-groupes

6.1. Le problème. Ce chapitre traite en particulier de � l’homogénéi-
sation des opacités en transfert radiatif � pour reprendre le titre d’un
papier de R. Sentis [21], et de l’utilisation de l’idée employée dans le
chapitre 2 d’un espace des phases étendu pour étudier ce problème.
En effet, la solution d’une équation de transport linéaire dans un mi-
lieu dont le coefficient d’absoption a de fortes oscillations converge,
lorsque la fréquence d’oscillations tend vers l’infini, vers la solution
d’une équation de type intégro-différentiel — voir par exemple [23, 24,
17, 21] — qui traduit un effet de mémoire. Autrement dit la propriété
de semi-groupe, qui traduit la markovianité, ou l’absence de mémoire,
de la solution de l’équation de départ disparâıt à la limite.

On retrouve ce phéomène d’effet de mémoire dans le problème traité
dans le second chapitre. Mais pour passer à la limite dans ce cas, nous
avions étendu l’espace des phases par l’ajout d’une variable temporelle
supplémentaire. Ceci suggère donc de revisiter l’homogénéisation des
opacités en transfert radiatif en utilisant cette nouvelle technique afin
d’obtenir une équation équivalente dans un espace des phases étendu.

6.2. Les principaux résultats. Le premier théorème revisite une re-
marque importante de L. Tartar [22] qui est le cas canonique de la perte
de la propriété de semi-groupe en partant d’une équation différentielle
simple. Soit aε ≡ aε(z) une famille bornée de L∞

(
R
N
)

avec aε ≥ α > 0

p.p. sur RN . On suppose que lorsque ε→ 0+, aε converge au sens des
mesures de Young vers (µz)z∈RN famille de mesures de probabilité sur
R. On note uε ≡ uε(t, z) la solution pour tout ε > 0 de l’équation
différentielle 

d

dt
uε + aε(z)uε = 0, t > 0, z ∈ RN ,

uε(0, z) = uin(z), z ∈ RN ,

avec uin ∈ L1
(
R
N
)
∩ L∞

(
R
N
)
. On a alors

Théorème 6.1. Lorsque ε→ 0+

uε →
∫ ∞

0

Uds dans L∞
(
R+ ×RN

)
*-faiblement,
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où U ≡ U(t, s, z) est la solution de
∂tU − ∂sU = 0, t, s > 0, z ∈ RN ,

U(0, s, z) = −uin(z)
d

ds

(∫ ∞
0

e−sλdµz(λ)

)
, z ∈ RN .

Le deuxième résultat applique la technique développée plus haut à
une équation du transfert radiatif qui modélise le comportement d’une
population de photons dans un milieu gazeux dont l’opacité oscille
très fortement. On suppose que la température donnée T ≡ T (t, x) du
milieu est bornée, i.e. T ∈ [θ,Θ] avec 0 < θ ≤ Θ < +∞. On rappelle les
notations physiques : h la constante de Planck, c la célérité de la lumière
dans le vide et k la constante de Boltzmann. On définit Bν ≡ Bν(T )
comme étant l’intensité radiative émise à la fréquence ν par un corps
noir à la température T :

Bν(T ) =
2hν3

c2

1

e
hν
kT − 1

.

On pose σ ≡ σ(ν, T ) la section efficace d’absorption du milieu extérieur
à la température T pour un rayonnement incident de fréquence ν et on
suppose que

0 < m ≤ σε(ν, T ) ≤M, pour tout ν > 0 et T ∈ [θ,Θ].

Enfin la fonction I ≡ I(t, x, ω, ν) désigne chν fois la densité des photons
de fréquence ν à la position x dans la direction ω et au temps t. Elle
vérifie l’équation du transfert radiatif :

1
c
∂tI + ω· ∇xI = σ(ν, T )Bν(T )− σ(ν, T )I,

I(0, x, ω, ν) = I in (x, ω, ν) ,

pour (t, x, ω, ν) ∈ R∗+×R3×S2×R∗+ — rappelons que T ≡ T (t, x) est
une fonction donnée.
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L’une des difficultés pour l’étude de cette équation est que la sec-
tion efficace d’absorption admet de fortes oscillations comme le montre
l’exemple du graphique ci-dessous :

L’idée est de modéliser les oscillations par une suite σε vérifiant

(1) σε (· , T )→
(
µTν
)
ν>0

au sens des mesures de Young, où
(
µTν
)
ν>0

est une famille de prob-
abilités ; et de trouver une équation équivalente décrivant l’intensité
radiative à la limite. Autrement dit, on considère l’intensité radiative
Iε ≡ Iε(t, x, ω, ν) vérifiant l’équation

1
c
∂tIε + ω· ∇xIε = σε(ν, T )Bν(T )− σε(ν, T )Iε,

Iε(0, x, ω, ν) = I in (x, ω, ν) .

pour (t, x, ω, ν) ∈ R∗+ ×R3 × S2 ×R∗+, et où σε vérifie (1). Lorsque µ
est une mesure, on note µ̃ sa transformée de Laplace. Ceci posé, nous
avons alors

Théorème 6.2. Sous les hypothèses et avec les notations ci-dessus

Iε →
∫ ∞

0

Jds dans L∞
(
R
∗
+ ×R3 × S2 ×R∗+

)
*-faiblement,

lorsque ε→ 0+, où J ≡ J(t, s, x, ω, ν) est solution de
1
c
∂tJ + ω· ∇xJ − ∂sJ =

d2µ̃Tν
ds2

Bν(T ),

J(0, s, x, ω, ν) = −I in (x, ω, ν)
dµ̃Tν
ds

,
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pour (t, s, x, ω, ν) ∈ R∗+ ×R∗+ ×R3 × S2 ×R∗+.

6.3. Idée des démonstrations. Les démonstrations sont essentielle-
ment identiques à celle du deuxième chapitre. C’est-à-dire que l’on
définit une équation avec une variable supplémentaire dont la solution
peut-être écrite explicitement, et on passe à la limite.
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et al. eds., pp.7-20, Cépaduès Editions, Toulouse (1991).

[4] Boca, F., Zaharescu, A., The Distribution of the Free Path Lengths in the
Periodic Two-Dimensional Lorentz Gas in the Small-Scatter Limit. Commun.
Math. Phys. 269 (2007), 425–471.

[5] Bouchut F., Golse F., Pulvirenti M., “Kinetic Equations and Asymptotic The-
ory”, L. Desvillettes and B. Perthame eds. Series in Applied Mathematics no.
4. Gauthier-Villars, Editions Scientifiques et Médicales Elsevier, Paris 2000.

[6] Bourgain, J., Golse, F., Wennberg, B., On the distribution of free path lengths
for the periodic Lorentz gas. Commun. Math. Phys. 190 (1998), 491–508.
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CHAPTER I

THE LINEAR BOLTZMANN EQUATION IN A PERIODIC

DISTRIBUTION OF HOLES:

DECAY OF THE MASS

Introduction

Recent results on the Lorentz gas suggest that the asymptotic behavior of trans-
port equations in the homogenization limit is of a completely different nature ac-
cording to whether the underlying distribution of obstacles — scatterers or holes
— is random or periodic: see [9, 3, 12, 10, 5, 14].

More specifically, for each ε ∈ (0, 21−d), define

Zε = {x ∈ Rd |dist(x, εZd) > ε
d
d−1 } = R

d \
⋃
k∈Zd

B(εk, ε
d
d−1 ) .

For each f in ≡ f in(x, v) ≥ 0 satisfying (for instance) f in ∈ C(Rd×Sd−1) and being
Z
d−periodic, define fε to be the solution of the initial boundary value problem for

the free transport equation:

(0.1)


∂tfε + v · ∇xfε = 0 , x ∈ Zε , |v| = 1 , t > 0 ,

fε

(
t, εk + ε

d
d−1ω, v

)
= 0 , k ∈ Zd , |ω| = |v| = 1 , ω · v > 0 ,

fε
∣∣
t=0

= f in(x, v) , x ∈ Zε , |v| = 1 .

In this problem, fε can be thought of as the number density of an ideal gas of point
particles that do not see each other. The boundary condition (second equality in
the system above) means that no particle can leave the surface of any one of the

balls B(εk, ε
d
d−1 ). In other words, the particles with distribution function fε travel

freely at unit speed in the domain Zε until they fall into the holes B(εk, ε
d
d−1 ), in

which case they disappear forever.
A natural question is therefore to estimate the total mass — or equivalently,

particle number — of the amount of gas remaining in Zε at each time t > 0.
Integrating the transport equation above along characteristics, we see that the
solution fε is given for each t > 0 by the formula

(0.2) fε (t, x, v) = f in(x− tv, v)1t<τε(x,v) , x ∈ Zε , |v| = 1 ,

where τε(x, v) is the free path length for a particle leaving position x ∈ Zε in the
direction v ∈ Sd−1:

τε(x, v) = inf{t > 0 |x+ tv ∈ Zε} .
Obviously, for each (x, v) ∈ Rd × Sd−1

τε(x, v) = τε (x+ εk, v) for each k ∈ Zd,

in other words, τε(· , v) is εZd−periodic for each v ∈ Sd−1. Therefore, τε can be
viewed equivalently as a function on Zε × Sd−1, where Zε is the quotient space

Zε := Zε�εZd.

For each r > 0, we introduce the following punctured torus

Yr :=
(
R
d�Zd

)
\B (0, r)

23
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and the associated free path length for a particle leaving position x ∈ Yr in the
direction v ∈ Sd−1:

Tr(y, v) := inf {t > 0|y − tv ∈ ∂Yr} .

Define µr to be the uniform probability measure on Yr ×Sd−1, and pr the distribu-
tion of Tr under µr,i.e.

(0.3) pr(t) := µr
({

(x, v) ∈ Yr × Sd−1|Tr(x, v) > t
})
.

As mentioned above, the distribution of free path length has been studied in [3, 5,
12, 1]. In particular, we have the following estimate (see [3, 12]).

Proposition 0.1. (Bourgain-Golse-Wennberg) For d ≥ 2 there exist C[d], C ′[d] > 0
such that for each r > 0,

C[d]

rd−1t
≤ pr(t) ≤

C ′[d]

rd−1t
whenever t ≥ 1

rd−1
.

The lower bound in the case d = 2 and the upper bound for all d ≥ 2 were
proved in [3]; the lower bound was later extended to the case of any d ≥ 2 by Golse
and Wennberg see [12]. Notice that

Zε = εY
ε

1
d−1

, for each ε > 0,

which implies that for each ε > 0 and for each (x, v) ∈ Zε × Sd−1

τε(x, v) = εT
ε

1
d−1

(x
ε
, v
)
.

Consequently, the distribution of τε for (x, v) uniformly distributed in Zε× Sd−1 is

Punif (τε > t) =
1

|Zε||Sd−1|

∫∫
Zε×Sd−1

1t<τε(x,v)dxdv

=
1

|εY
ε

1
d−1
||Sd−1|

∫∫
εY
ε

1
d−1
×Sd−1

1t<εT
ε

1
d−1

( xε ,v)
dxdv

=
εd

|εY
ε

1
d−1
||Sd−1|

∫∫
Y
ε

1
d−1
×Sd−1

1t<εT
ε

1
d−1

(y,v)dydv

=
1

|Y
ε

1
d−1
||Sd−1|

∫∫
Y
ε

1
d−1
×Sd−1

1t<εT
ε

1
d−1

(y,v)dydv

= p
ε

1
d−1

(
t

ε

)
.

By Proposition 0.1, for each ε > 0 we have

C[d](
ε

1
d−1

)d−1
t
ε

≤ p
ε

1
d−1

(
t

ε

)
≤ C ′[d](

ε
1
d−1

)d−1
t

whenever
t

ε
≥ 1(

ε
1
d−1

)d−1 ,
or equivalently

(0.4)
C[d]

t
≤ Punif (τε(x, v) > t) ≤ C ′[d]

t
whenever t ≥ 1.

Notice that we have just obtained for Punif (τε > t) two bounds (0.4) which are

independent of ε. That being done, as f in is Zd−periodic we define the total mass
of the particle system at time t by

Mε(t) :=

∫∫
Zε∩[0,1]d×Sd−1

fε (t, x, v) dxdv, for each t ≥ 0.
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In view of equality (0.2)

Mε(t) =

∫∫
Zε∩[0,1]d×Sd−1

f in(x− tv, v)1t<τε(x,v)dxdv.

Since f in ∈ L∞
(
R
d × Sd−1

)
, and we assume without loss of generality that ε is of

the form ε = 1/n with n ∈ N∗. Then

Mε(t) ≤ ‖f in‖L∞(Rd×Sd−1)

(
1

ε

)d ∫∫
Zε×Sd−1

1t<τε(x,v)dxdv

≤ ‖f in‖L∞(Rd×Sd−1)

|Zε|
εd
|Sd−1|Punif (τε > t) .

In the same way, if there exists c > 0 such that for each (x, v) ∈ R
d × Sd−1,

f in(x, v) ≥ c, we have

Mε(t) ≥ c
|Zε|
εd
|Sd−1|Punif (τε > t) .

Since |Zε| = εd
(

1− ε
d
d−1 |B(0, 1)|

)
∼ εd as ε → 0+, that means that by the esti-

mates on the distribution of τr due to Bourgain-Golse-Wennberg [3, 12] as computed
above, the two bounds of the total mass Mε have a algebraic decay rate that is in-
dependent of ε.

Now, suppose that, instead of being periodically distributed, the holes are ran-
domly distributed. Specifically, replace Zε with

Yε[{c}] = {x ∈ Rd |dist(x, {c}) > ε} = R
d \

⋃
c∈{c}

B(c, ε)

where {c} is a countable subset of Rd, distributed under Poisson’s law with param-

eter βε := β
2ε with β > 0. This means that, for each measurable A ⊂ Rd with finite

measure |A| and each n ≥ 0 one has

Prob(#(A ∩ {c}) = n) =
βnε |A|n

n!
e−βε|A| .

Solving the same Cauchy problem for the free transport equation as above, but
with Zε replaced with Yε[{c}] leads to a particle number density that depends on
the countable set {c} of hole centers, denoted by fε ≡ fε(t, x, v, {c}). Defining the
total particle number Mε ≡ Mε(t, {c}) as above, a straightforward computation
(see for instance section 2 of the survey [11]) leads to the estimate

EMε(t) ≤ Ce−βt

where E designates the mathematical expectation, i.e. averaging over the hole con-
figuration {c}.

We thus note a considerable difference in the decay rate for the total particle
number according to whether the distribution of holes is periodic or random. The
reason for the slower decay in the periodic case is the presence of sufficiently many
“channels” (infinite open strips included in Zε): see [3, 12, 11].

However, if the free transport equation above is replaced with a linear Boltzmann
equation for monokinetic particles, the influence of channels is destroyed by the
collisions of the particles with the background medium — more precisely, by the
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scattering part of these collisions. Specifically, consider the initial boundary value
problem

∂tfε + v · ∇xfε + σ(fε −Kfε) = 0 , x ∈ Zε , |v| = 1 , t > 0 ,

fε

(
t, εk + ε

d
d−1ω, v

)
= 0 , k ∈ Zd , |ω| = |v| = 1 , ω · v > 0 ,

fε
∣∣
t=0

= f in(x, v) , x ∈ Zε , |v| = 1 ,

where σ > 0 and K is an integral operator acting on the only variable v in fε, of
the form

Kfε(t, x, v) =

∫
Sd−1

k(v, w)fε(t, x, w)dw .

The integral kernel k ≡ k(v, w) is the scattering kernel (i.e. the probability of
a transition in particle velocity from direction w to direction v): see below the
properties satisfied by k.

Because of the term σKfε in the linear Boltzmann equation above, the direction
of a typical particle path is piecewise constant. This suggests that, whenever σ > 0,
the total number of particles that remain in Zε at time t should decay faster than
O(1/t), i.e. as in the case where σ = 0. Whether this faster decay rate is exponential
in spite of the periodic distribution of holes is the subject of the present paper.

1. The model

Let d ≥ 2 and consider the monokinetic linear Boltzmann equation which is a
classical model for instance in the context of Radiative Transfer:

(1.1) ∂tfε + v.∇xfε + σ(fε −Kfε) = 0.

The unknown function f(t, x, v) is the density at time t ∈ R+ of particles with
velocity v ∈ Sd−1, located at x ∈ Rd. It has the following probabilistic interpre-
tation: the probability that the particle be located in an infinitesimal volume dx
around the location x with direction in an infinitesimal element of solide angle dv
around the direction v at time t ≥ 0 is f(t, x, v)dxdv. For each φ ∈ L1(Rd × Sd−1v ),
we denote:

Kφ(v) :=
1

|Sd−1|

∫
Sd−1

k(v, w)φ(w)dw,

where dw is the uniform measure on the unit sphere Sd−1. We henceforth assume
that

(1.2)

k ∈ L∞(Sd−1 × Sd−1) and k(v, w) = k(w, v) ≥ 0 a.e. in v, w ∈ Sd−1,

with 1
|Sd−1|

∫
Sd−1

k(v, w)dw = 1 a.e. in v ∈ Sd−1.

The constant σ > 0 is the collision frequency, or in other words the average time
between two successive collisions in the medium. The linear Boltzmann equation
is set on the domain Zε × Sd−1.

We assume an absorption boundary condition on ∂Zε

fε = 0 for each (t, x, v) ∈ R∗+ × ∂Zε × Sd−1, whenever v · nx > 0,

where nx denotes the inward unit normal vector to ∂Zε at x ∈ ∂Zε. As in the
case of problem (0.1), this condition means that particles falling into a hole remain
there forever.

To sum-up, for each ε ∈ (0, 21−d) and each σ > 0, we consider fε, the solution
of the initial boundary value problem
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(Ξε)


∂tfε + v.∇xfε + σ(fε −Kfε) = 0, (x, v) ∈ Zε × Sd−1, t > 0,

fε = 0, if nx · v > 0, (x, v) ∈ ∂Zε × Sd−1,

fε(0, x, v) = f in(x, v), (x, v) ∈ Zε × Sd−1,

with f in ∈ L∞(Rd × Sd−1) and is Zd−periodic in its first variable.

Contrary to the initial boundary value problem for the free transport equation
(0.1), the function fε cannot be explicitely computed as in formula (0.2). However,
it has the following probabilistic interpretation :

Let (Ti)i≥1 be independent and identically distributed random variables with
distribution

P (Ti > t) = e−σt for each t > 0.

Let (Wi)i≥1 be independent and identically distributed random unit vector fields
on Sd−1 with the following distribution : for each I ⊆ Sd−1:

P (W1(v) ∈ I) =
1

|Sd−1|

∫
I

k(v, w)dw,

where dw designates the surface element on Sd−1. Moreover the random variables
(Ti)i≥1 and (Wj)j≥1 are chosen so that (Wi, Tj)i,j≥1 are mutually independant.
Given x ∈ Zε and v ∈ Sd−1, we define by induction

X0 = x,
V0 = v,
Xn := Xn−1 − TnVn−1 for each n ∈ N∗,
Vn := Wn(Vn−1) for each n ∈ N∗.

Notice that (Vn)n≥0 is a Markov chain. We denote

S0 := 0, Sn := T1 + · · ·+ Tn for every n ≥ 1.

Finally, we set{
(X0, V0) = (x, v) ∈ Zε × Sd−1
(Xt, Vt) := (Xn − (t− Sn)Vn, Vn) if Sn ≤ t < Sn + Tn+1.

The transport process (Xt, Vt)t∈R+
(x, v) describes the motion of a particle starting

from x ∈ Zε in the direction v ∈ Sd−1 at time t = 0, changing direction according
to the law k at exponentially distributed times. Then the solution fε of the initial
boundary value problem (Ξε) for the linear Boltzmann equation is represented as
follows:

(1.3) fε(t, x, v) = Ex,v

[
f in(Xt, Vt)1t<θε(x,v)

]
a.e. in (t, x, v) ∈ R+ ×Rd × Sd−1

where Ex,v is the expectation for the transport process starting from (x, v) (see [6]
pp. 225-226), and θε(x, v) is the exit time for the process (Xt, Vt)(x,v). In other
words,

θε(x, v) := inf {t > 0|Xt(x, v) ∈ ∂Zε} .

We shall see that this probabilistic interpretation leads to an upper bound for the
total mass of the particle system.
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2. Main result

We may assume without loss of generality that f in ∈ L∞
(
R
d × Sd−1

)
and is

Z
d−periodic in the space variable x while ε is of the form ε = 1/n with n ∈ N∗,

so that the solution fε of Ξε is also Zd−periodic in the x variable and belongs to
L∞

(
R+ × Zε × Sd−1

)
. We define the total mass of the system in any spatial period

to be

Mσ,ε(t) :=

∫∫
Zε∩[0,1]d×Sd−1

fε(t, x, v)dxdv.

Notice that in the non-collisional case (σ = 0), the mass is controlled by the distri-
bution of free path lengths in Zε, as explained in the introduction. Our main result
is

Theorem 2.1. Under the assumptions and with the notations above,

(1) for each σ > 0, there exists ησ ∈ (−σ, 0) such that

Mσ,ε(t) ≤ ‖f in‖L∞(Rd×Sd−1)Cσe
ησt for each ε ∈ (0, 21−d).

Moreover, one has
(2) ησ ∼ −σ as σ → 0+.

Statement 1 above means that for each ε ∈ (0, 21−d) and σ > 0, Mσ,ε decays
exponentially fast as t → +∞ and at exponential speed that is independent of ε.
Statement 2 gives the behavior of the characteristic exponent ησ as σ → 0+ (non
collisional regime). In section 3, we give a functional inequality crucial for Theorem
2.1 while the exponential order estimate of the Mσ,ε is discussed in section 4.

3. A functional inequality

First, we recall the free path length, or forward exit time, for a particle starting
from x in the direction v without changing direction :

(3.1) τε(x, v) := inf {t > 0|x− tv ∈ ∂Zε} ,

We next introduce the function

(3.2) Tε(v) := sup
x∈Zε

τε(x, v)

and

Pε(t) :=
1

|Sd−1|

∫
v∈Sd−1

1t<Tε(v)dv for each t ≥ 0.

We recall next Theorem B in [3].

Proposition 3.1. For each d > 1, there exists C
′′
[d] > 0 such that, for each

r ∈ (0, 1/2) and each t > 0

|{v ∈ Sd−1| supy∈Yr Tr(y, v) > t}|
|Sd−1|

≤ C
′′
[d]

rd−1t
.

Since τε(x, v) = εT
ε

1
d−1

(xε , v), one has Tε = ε supy∈Y
ε

1
d−1

T
ε

1
d−1

(y, v) so that,

according to the proposition above

Pε(t) =
1

|Sd−1|

∫
v∈Sd−1

1ε supy∈Y
ε

1
d−1

T
ε

1
d−1

(y,v)>tdv

≤ C
′′
[d](

ε
1
d−1

)d−1
t
ε

=
C
′′
[d]

t
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for each t > 0 and ε ∈ (0, 21−d). Besides, since Pε(t) is a probability, one also has
Pε ≤ 1 for each t ≥ 0 and ε ∈ (0, 21−d), so that

Pε (t) ≤ inf

(
1,
C
′′
[d]

t

)
for each t ≥ 0 and ε ∈ (0, 21−d).

We also denote
gσ,ε(t) := σe−σtPε(t)1t>0 and each t ∈ R

and

gσ(t) := σe−σt inf

(
1,
C
′′
[d]

t

)
1t>0, for each t ≥ 0.

Notice that for each t > 0 and each ε ∈ (0, 21−d)

(3.3) gσ,ε(t) ≤ gσ(t), for each σ ≥ 0.

We establish in the present section the following

Proposition 3.2. Let σ > 0 and ε ∈ (0, 21−d), under the assumptions and with
the notations above, we have

Mσ,ε(t) ≤‖f in‖L∞(Rd×Sd−1)

|Zε||Sd−1|
εd

Punif (τε > t) e−σt

+ ‖f in‖L∞(Rd×Sd−1)

|Zε||Sd−1|
εd

∫ t

0

e−σ(t−s)
∑
n≥1

g∗nσ,ε(s)ds.

for each t ≥ 0, where f∗n := f ∗ · · · ∗ f︸ ︷︷ ︸
n factors

, and ∗ designates the convolution product

on R.

In view of (3.3), this proposition obviously entails

Corollary 3.3. For each σ and for each ε ∈ (0, 21−d), under the assumptions and
with the notations above, we have

Mσ,ε(t) ≤‖f in‖L∞(Rd×Sd−1)

|Zε||Sd−1|
εd

Punif (τε > t) e−σt

+ ‖f in‖L∞(Rd×Sd−1)

|Zε||Sd−1|
εd

∫ t

0

e−σ(t−s)
∑
n≥1

g∗nσ (s)ds

for each t ≥ 0.

The first inequality is based on the representation of the solution in terms of the
transport process. Notice that the series in the right-side of the second inequality
is independent of ε. It will imply a bound on Mσ,ε that depends only on σ > 0.

3.1. A first inequality. First, recall that (Ti)i≥1 denote independent and identi-
cally distributed random variables with distribution

P (Ti > t) = e−σt for each t ≥ 0,

and (Sn)n≥0 designate the sum of the random variables Ti:

Sn :=

{
0 if n = 0,

T1 + · · ·+ Tn otherwise.

The stochastic process (Xn, Vn)n≥0 is the one defined in Section 1. We denote for
the sake of simplicity

I0(t) :=

∫∫
Zε∩[0,1]d×Sd−1

Ex,v[1t<T11t<τε(x,v)]dxdv,
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and more generally for every n ≥ 1,

(3.4)

In(t) :=

∫∫
Zε∩[0,1]d×Sd−1

Ex,v[1Sn<t<Sn+Tn+1∏
1≤i≤n

1Ti<τε(Xi−1,Vi−1)]dxdv.

Lemma 3.4. Under the assumptions and with the notations above,

(3.5) Mσ,ε(t) ≤ ‖f in‖L∞(Rd×Sd−1)

∑
n≥0

In(t) for each t ≥ 0.

Proof. We recall equality (1.3)

fε(t, x, v) = Ex,v

[
f in(Xt, Vt)1t<θε(x,v)

]
a.e. in (t, x, v) ∈ R+ ×Rd × Sd−1,

where (Xt, Vt) (x, v) is the transport process defined starting from x ∈ Zε ∩ [0, 1]d

in the direction v ∈ Sd−1. We have

fε(t, x, v) = Ex,v

[
f in(Xt, Vt)1t<θε(x,v)

]
= Ex,v

f in(Xt, Vt)1t<θε(x,v)
∑
n≥0

1Sn≤t<Sn+1


=
∑
n≥0

Ex,v

[
f in(Xt, Vt)1t<θε(x,v)1Sn≤t<Sn+1

]
= Ex,v

[
f in(Xt, Vt)1t<θε(x,v)1t<T1

]
+
∑
n≥1

Ex,v

[
f in(Xt, Vt)1t<θε(x,v)1Sn≤t<Sn+1

]
.

Therefore we have for each ε ∈ (0, 21−d) and for each t ≥ 0, x ∈ Zε∩ [0, 1]d v ∈ Sd−1

(3.6)

fε(t, x, v) ≤ ‖f in‖L∞(Rd×Sd−1)Ex,v

[
1t<θε(x,v)1t<T1

]
+ ‖f in‖L∞(Rd×Sd−1)

∑
n≥1

Ex,v

[
1t<θε(x,v)1Sn≤t<Sn+1

]
.

As 1t<T1
implies that the particle has moved from x ∈ Zε ∩ [0, 1]d in the direction

v ∈ Sd−1 for t ∈ R+ without changing direction meanwhile, we have

(3.7) Ex,v

[
1t<θε(x,v)1t<T1

]
= Ex,v

[
1t<τε(x,v)1t<T1

]
.

Besides

(3.8) 1t<θε(x,v)1Sn≤t<Sn+1
≤ 1Sn<θε(x,v)1Sn≤t<Sn+1

and 1Sn<θε(x,v) means that the particle starting from x in the direction v has
changed direction n times, for each i ∈ [|0, n − 1|] from Xi in the direction Vi
without changing direction during Ti+1 and without falling into any hole. Therefore
for each n ≥ 1

(3.9)

Ex,v

[
1t<θε(x,v)1Sn≤t<Sn+1

]
≤ Ex,v

[
1Sn<θε(x,v)1Sn≤t<Sn+1

]
≤ Ex,v

[
1Sn≤t<Sn+1

n∏
i=1

1Ti<τε(Xi−1,Vi−1)

]
.
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In view of inequalities (3.7), (3.8) and (3.9), inequality (3.6) entails

fε(t, x, v) ≤ ‖f in‖L∞(Rd×Sd−1)Ex,v

[
1t<θε(x,v)1t<T1

]
+ ‖f in‖L∞(Rd×Sd−1)

∑
n≥1

Ex,v

[
1t<θε(x,v)1Sn≤t<Sn+1

]
,

≤ ‖f in‖L∞(Rd×Sd−1)Ex,v

[
1t<τε(x,v)1t<T1

]
+ ‖f in‖L∞(Rd×Sd−1)

∑
n≥1

Ex,v

[
1Sn≤t<Sn+1

n∏
i=1

1Ti<τε(Xi−1,Vi−1)

]
.

We integrate both sides of the inequality above in x ∈ Zε ∩ [0, 1]d and in v ∈
Sd−1. �

3.2. An estimate for In. We first give an estimate for In.

Lemma 3.5. Under the assumptions and with the notations above,

I0(t) :=
|Zε||Sd−1|

εd
e−σtPunif (τε > t) and each t ≥ 0,

and for every n ≥ 1,

In(t) ≤ |Zε||S
d−1|

εd

∫ t

0

e−σ(t−s) (gσ,ε)
∗n

(s)ds and each t ≥ 0.

Proof. We begin with case n = 0. Since T1 has distribution µT1(ds) := σe−σsds,
one has

I0(t) =

∫∫
Zε∩[0,1]d×Sd−1

Ex,v[1t<T1
1t<τε(x,v)]dxdv

=

∫∫
Zε∩[0,1]d×Sd−1

∫
σe−σs1t<s1t<τε(x,v)dxdvds

=

(∫ ∞
t

σe−σsds

)∫∫
Zε∩[0,1]d×Sd−1

1t<τε(x,v)dxdv

= e−σt
1

εd

∫∫
Zdε×Sd−1

1t<τε(x,v)dxdv

=
|Zε||Sd−1|

εd
e−σtPunif (τε > t) .

Consider next the case n > 0. Since for each (x, v) ∈ Zε ∩ [0, 1]d × Sd−1 and for
each t ≥ 0,

(3.10) 1t<τε(x,v) ≤ 1t<Tε(v),

we have in view of (3.4)

In(t) =

∫∫
Zε∩[0,1]d×Sd−1

Ex,v

1Sn<t<Sn+Tn+1

∏
1≤i≤n

1Ti<τε(Xi−1,Vi−1)

 dxdv
≤
∫∫

Zε∩[0,1]d×Sd−1

Ex,v

1Sn<t<Sn+Tn+1

∏
1≤i≤n

1Ti<Tε(Vi−1)

 dxdv.
And thus

In(t) ≤
∫∫

Zε∩[0,1]d×Sd−1

∫
1t1+···+tn<t<t1+···+tn+1

∏
1≤i≤n

1ti<Tε(vi−1)

dxdvµT1 (dt1) · · ·µTn+1 (dtn+1)µV1(v, dv1) · · ·µVn−1 (vn−2, dvn−1) .
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In view of our assumptions on the random variables (Ti)1≤i≤n+1 and (Vi)1≤i≤n ,

the distribution of Ti is µTi(dti) = σe−σtidti while the one of Vi is µVi(vi−1, dvi) =
k(vi−1,vi)
|Sd−1| dvi for each 1 ≤ i ≤ n. Since k ≤ 1, replace k with 1 in the integrand in

the right-hand side of the inequality above and integrate in v, (vi)1≤i≤n on Sd−1 to
obtain with inequality (3.10)

In(t) ≤|Sd−1|
∫
Zε∩[0,1]d

dx

∫
1t1+···+tn<t<t1+···+tn+1

n∏
i=1

Pε (ti)

µT1
(dt1) · · ·µTn+1

(dtn+1).

Since ∫
Zε∩[0,1]d

dx =
1

εd

∫
Zε
dx =

|Zε|
εd

,

one has

In(t) ≤|Zε||S
d−1|

εd

∫
1t1+···+tn<t<t1+···+tn+1

n∏
i=1

Pε (ti)

µT1(dt1) · · ·µTn+1(dtn+1).

Now integrate in tn+1 on [t− (t1 + · · ·+ tn),+∞] to obtain

In(t) ≤ |Zε||S
d−1|

εd

∫
1t1+···+tn<te

−σ(t−(t1+···+tn))
n∏
i=1

Pε (ti)

µT1
(dt1) · · ·µTn(dtn)

or equivalently

In ≤
|Zε||Sd−1|

εd

∫
1t1+···+tn<te

−σ(t−(t1+···+tn))
n∏
i=1

σe−σtiPε (ti) dt1 · · · dtn,

≤ |Zε||S
d−1|

εd

∫
1t1+···+tn<te

−σ(t−(t1+···+tn))
n∏
i=1

gσ,ε (ti) dt1 · · · dtn,

≤ |Zε||S
d−1|

εd

∫ t

0

e−σ(t−s) (gσ,ε)
∗n

(s)ds.

�

3.3. Proof of Proposition 3.2.

Proof. Lemma 3.4 states that

Mσ,ε(t) ≤ ‖f in‖L∞(Rd×Sd−1)

∑
n≥0

In(t).

That implies, by Lemma 3.5

Mσ,ε(t) ≤‖f in‖L∞(Rd×Sd−1)

|Zε||Sd−1|
εd

Punif (τε > t) e−σt

+ ‖f in‖L∞(Rd×Sd−1)

|Zε||Sd−1|
εd

∫ t

0

e−σ(t−s)
∑
n≥1

g∗nσ,ε(s)ds,

which is precisely the conclusion of Proposition 3.2. �
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4. The long-time behavior of the total mass

4.1. Introduction. By Corollary 3.3, for each t ≥ 0

Mσ,ε(t) ≤ ‖f in‖L∞(Rd×Sd−1)

|Zε||Sd−1|
εd

e−σtPunif (τε > t) +

∫ t

0

e−σ(t−s)
∑
n≥1

g∗nσ (s)ds

 ,

or

Mσ,ε(t) ≤ ‖f in‖L∞(Rd×Sd−1)

|Zε||Sd−1|
εd

(
e−σtPunif (τε > t) +

∫ t

0

e−σ(t−s)Fσ(s)ds

)
,

with
Fσ(t) :=

∑
n≥1

(gσ)
∗n

(t) for each t > 0.

We establish in the present section the following

Proposition 4.1. Let σ > 0, under the assumptions, and with the notations above,
there exists ησ ∈ (−s, 0) and C > 0 such that for each t ≥ 0

Fσ(t) ≤ Ceησt,
with Cη ∈ L∞ (R+) and Cη(t)→ 0 as t→ +∞. Moreover ησ ∼ −σ as σ → 0+.

We first show how this proposition entails Theorem 2.1.

Proof. Recall that for each σ > 0 and for each ε ∈ (0, 21−d),

Mσ,ε(t) ≤ ‖f in‖L∞(Rd×Sd−1)

|Zε||Sd−1|
εd

(
e−σtPunif (τε > t) +

∫ t

0

e−σ(t−s)Fσ(s)ds

)
,

or since

|Zε| = εd
(

1− ε
d
d−1 |B(0, 1)|

)
≤ εd,

and for each t ≥ 0 Punif (τε > t) ≤ 1,

Mσ,ε(t) ≤ ‖f in‖L∞(Rd×Sd−1)|Sd−1|
(
e−σt +

∫ t

0

e−σ(t−s)Fσ(s)ds

)
.

By Proposition 4.1,

Mσ,ε(t) ≤ ‖f in‖L∞(Rd×Sd−1)|Sd−1|
(
e−σt +

∫ t

0

e−σseησ(t−s)Cds

)
,

≤ ‖f in‖L∞(Rd×Sd−1)|Sd−1|G(t)eησt,

with

G(t) := e−(σ+ησ)t + C

∫ t

0

e−(σ+ησ)sds,

= e−(σ+ησ)t +
C

σ + ησ

(
1− e−(σ+ησ)t

)
.

Since ησ ∈ (−σ, 0), we have σ + ησ > 0 so that we have

G(t) ≤ 1 +
C

σ + ησ
for each t ≥ 0.

Hence for each σ > 0

Mσ,ε(t) ≤ ‖f in‖L∞(Rd×Sd−1)Ce
ησt for each ε ∈ (0, 21−d)

with

C = |Sd−1|
(

1 +
C

σ + ησ

)
which is precisely the conclusion of Theorem 2.1. �

4.2. A geometric series.
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4.2.1. The Lapace Transform. First, for each ξ ∈ R and each locally bounded
measurable function f : R+ 7→ R, define its Laplace transform

L [f ] (ξ) :=

∫ ∞
0

e−ξtf(t)dt.

Recall that for each f, g : R+ 7→ R, we have

L [f ∗ g] (ξ) = L [f ] (ξ)L [g] (ξ)

where ∗ denote the convolution product on the half-line, defined by

f ∗ g(t) =

∫ t

0

f(t− s)g(s)ds.

4.2.2. The function Fσ. Recall that

gσ(t) = σe−σt inf

(
1,
C ′[d]

td

)
for each t ≥ 0

We denote henceforth g : t 7→ inf
(

1, C
′[d]
td

)
so that for each t ≥ 0

gσ(t) = σe−σtg(t).

Obviously, g is nonincreasing, positive and nonintegrable.Since gσ is a locally bounded
measurable function vanishing identically on R∗−, we have for each ξ > −σ

e−ξtFσ(t) =
∑
n≥1

(
e−ξtgσ

)∗n
(t) =

∑
n≥1

σn
(
e−(σ+ξ)tg

)∗n
(t).

As Fσ is a series of nonnegative functions, by monotone convergence we can inte-
grate in t on R term by term so that

(4.1) L [Fσ] (ξ) =
∑
n≥1

σn (L [g] (ξ + σ))
n
.

The right-hand side of the equation above is a geometric series of ratio

σL [g] (ξ + σ),

so that L [Fσ] (ξ) < +∞ if and only if σL [g] (ξ+σ) < 1. Before going further in the
study of the Laplace Transform of Fσ, we establish some properties of this function.

Proposition 4.2. Under the assumptions and with the notations above, the func-
tion Fσ is continue, integrable and its derivative is piecewise continue.

Proof. First, we show that the sequence

Fσ,N (t) :=

N∑
n=1

g∗nσ (t)

converges pointwise to Fσ. On the first hand, as gσ is nonnegative, for each t ≥ 0,
the sequence (Fσ,n(t))n≥1 is nondecreasing. On the second hand, we have for each
t ≥ 0

gσ(t) ≤ σe−σt

thus one obtains by a straightforward computation for each n ≥ 1 each t ≥ 0

g∗(n+1)
σ (t) ≤ σσ

n

n!
tne−σt
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so that for each t ≥ 0

Fσ(t) = gσ(t) +
∑
n≥2

g∗nσ (t)

≤ gσ(t) + σe−σt
∑
n≥1

σn

n!
tn

≤ gσ(t) + σe−σt
(
eσt − 1

)
≤ gσ(t) + σ

(
1− e−σt

)
.

In other words, for each t ≥ 0 the sequence (Fσ,n(t))n≥1 is bounded. Therefore, for

each t ≥ 0, the series converges pointwise to Fσ.
Now we notice that it verifies for each t ≥ 0

Fσ = gσ + gσ ∗ Fσ
which implies, since gσ is continue, that Fσ is continue.

We show that Fσ ∈ L1 (R+) . We notice that g is differentiable a.e. with, since,
g being nonincreasing

ġ(t) ≤ 0 ∀t ∈ R+.

So that

‖gσ‖L1(R+) =

∫ ∞
0

σe−σsg(s)ds

= 1−
∫ ∞
0

e−σsġ(s)ds < 1,

moreover, Young inequality entails for each n ≥ 1

‖g∗nσ ‖L1(R+) ≤ ‖gσ‖
n
L1(R+) .

Therefore, the series converges normally in L1 (R+) and thus Fσ ∈ L1 (R+) .
Before establishing the piecewise differentiability of Fσ, we prove the

Lemma 4.3. For f, g ∈ L1 (R+) such that f is bounded, continue at t = 0 and
differentiable almost everywhere, we have

d

dt

(∫ t

0

f(t− s)g(s)ds

)
(t) = f(0)g(t) +

∫ t

0

(
d

dt
f

)
(t− s)g(s)ds.

Proof. We have for each h 6= 0

(4.2)

∫ t+h

0

f(t+ h− s)g(s)ds−
∫ t

0

f(t− s)g(s)ds =

∫ t+h

t

f(t+ h− s)g(s)ds

+

∫ t

0

(f((t− s) + h)− f(t− s)) g(s)ds.

As f is differentiable a.e., we have a.e. in s ∈ (0, t]

f((t− s) + h)− f(t− s)
h

→ d

dt
f(t− s) as h→ 0,

besides, f is bounded, which implies that there exists C > 0 such that

|(f((t− s) + h)− f(t− s)) g(s)| ≤ C |g(s)| ∈ L1 (R+) .

Thus, one obtains by dominated convergence

1

h

∫ t

0

(f((t− s) + h)− f(t− s)) g(s)ds→
∫ t

0

(
d

dt
f

)
(t− s)g(s)ds as h→ 0.

We notice that for each s ∈ [t, t+ h], we have t+ h− s ∈ [0, h] so that we have

1t≤s≤t+hf(t+ h− s)− f(0)→ 0 as h→ 0
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and we have

|1t≤s≤t+hf(t+ h− s)− f(0)| |g(s)| ≤ Cg(s) ∈ L1 (R+)

so that by dominated convergence

1

h

∫ t+h

t

(f(t+ h− s)− f(0)) g(s)ds→ 0 as h→ 0

and one has obviousely

1

h
f(0)

∫ t+h

t

g(s)ds→ f(0)g(t) as h→ 0.

Therefore
1

h

∫ t+h

t

f(t+ h− s)g(s)ds→ f(0)g(t) as h→ 0.

Consequently, equality (4.2) entails∫ t+h
0

f(t+ h− s)g(s)ds−
∫ t
0
f(t− s)g(s)ds

h
→ f(0)g(t) +

∫ t

0

(
d

dt
f

)
(t− s)g(s)ds

as h→ 0. �

That being established, we recall that Fσ verifies

Fσ = gσ + gσ ∗ Fσ
The function gσ is differentiable a.e. with ġσ piecwise continue. It is continue
at t = 0, bounded and Fσ is integrable, so that, by Lemma above, gσ ∗ Fσ is
differentiable and continue. So that Fσ is differentiable a.e. and Ḟσ is piecewise
continue. �

4.3. The characteristic exponent ησ.

4.3.1. The abscissa of convergence of L[Fσ].

Lemma 4.4. For each σ > 0, the equation∫ ∞
0

e−(σ+ξ)tg(t)dt =
1

σ

with unknown ξ has a unique real root ησ. This root ησ satisfies

−σ < ησ < 0.

Therefore L [F ] (ξ) < +∞ if and only if ξ > ησ.

Proof. Consider the function

Υ(x) :=

∫ ∞
0

e−xtg(t)dt, x ≥ 0.

As 0 < g ≤ 1 and g /∈ L1(R+), Υ is of class C1 on ]0,+∞[ and

Υ̇(x) = −t
∫ ∞
0

e−xtg(t)dt < 0

since g(t) > 0 for each t ≥ 0. The function Υ is therefore decreasing. For each
t > 0, e−xtg(t) → 0+ as t → +∞ and e−xtg(t) ≤ e−t for each x ≥ 1, so that by
dominated convergence,

Υ(x)→ 0+ as x→ +∞.
For each t > 0, e−xtg(t) converges increasly to g as x → 0+. Moreover, g is not
integrable so that by monotone convergence,

Υ(x)→ +∞ as x→ 0+.
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Therefore, by the intermediate value theorem, there exists a unique xσ > 0 such
that

(4.3) Υ(xσ) =
1

σ
.

Notice that

Υ(σ) =

∫ ∞
0

e−σtg(t)dt =
1

σ

(
σ

∫ ∞
0

e−σtg(t)dt

)
=

1

σ

(
1 +

∫ ∞
0

e−σtġ(t)dt

)
<

1

σ
= Υ(xσ)

as g is nonincreasing, thus 0 < xσ < σ since Υ is decreasing. We conclude by
defining:

ησ := xσ − σ.
�

4.3.2. The long-time behavior of Fσ.

Lemma 4.5. Under the assumptions and with the notations above, we have

Fσ(t) ∼ Ceησt as t→ +∞
with

C =
1∫∞

0
sgσ(s)e−ησsds

.

Proof. Notice that for each λ ∈ R+ and for each f, g ∈ L1 (R+) , we have

eλt(f ∗ g)(t) = (fλ ∗ gλ) (t)

where for each locally bounded measurable function fλ denotes

fλ(t) := eλtf(t) for each t ∈ R+.

Hence, as Fσ verifies
Fσ = gσ + gσ ∗ Fσ,

the function ψ : t 7→ e−ησtFσ(t) satisfies, with κσ(t) := gσe
−ησt,

ψ(t) = κσ + κσ ∗ ψ
which is a renewal integral equation in the sense of [8]. Besides, by definition of ησ,
we have ∫ ∞

0

e−ησsgσ(s)ds = 1

so that κσ is a decreasing probability density on R+ and in particular, it is directly
Riemann integrable (see [8] pp. 348-349). Thus, by Theorem 2 on p. 349 in [8],
one has

ψ(t)→ 1∫∞
0
sgσ(s)e−ησsds

as t→ +∞.

One obtains therefore the asymptotic behavior of Fσ. �

4.3.3. Proof of the first statement of Proposition 4.1.

Proof. By Lemma 4.5, there exists a measurable h such that

h(t)→ 0 as t→ +∞
and for each t ≥ 0

Fσ(t) = Ceησt + h(t)eησt.

By Proposition 4.2, Fσ is continue and thus h is continue. Hence there exists C > 0
such that

Fσ(t) ≤ Ceησt for each t ≥ 0,

which is the conclusion of Proposition 4.1. �
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4.4. Asymptotic behavior of ησ. We conclude here our proof of Proposition 4.1
with a discussion of the asymptotic behavior of ησ (statement 2 of Theorem 2.1) in
collisionless regime (σ → 0+).

Proof. Recall that xσ = σ + ησ, where xσ is defined in (4.3). Establishing that
ησ ∼ −σ as σ → 0+ amounts to proving that xσ

σ → 0 as σ → 0+. First, remark
that since −σ < ησ,

0 < xσ < σ

so xσ → 0+ as σ → 0+. Recall that∫ ∞
0

g(t)e−xσtdt =
1

σ
.

or after substituting z = xσt in the integral above, we obtain:

xσ
σ

=

∫ ∞
0

g

(
z

xσ

)
e−zdz.

Since xσ → 0+ as σ → 0+ and g(t) → 0+ as t → +∞, one has g(z/xσ) → 0+ as
σ → 0+. Besides 0 ≤ e−zpr(z/xσ) ≤ e−z so that, by dominated convergence∫ ∞

0

g

(
z

xσ

)
e−zdz → 0+ as σ → 0+,

consequently
xσ
σ
→ 0 as σ → 0+.

�

5. Conclusion

We have proved that the total mass of a monokinetic system of point particles
governed by a linear Boltzmann equation in a periodic distribution of spherical
absorbers at the critical size decays exponentially fast in the long time limit. This
behavior is at variance with the non collisional case, where the total mass decays
like C/t as t→ +∞.

As explained above, the alegraic decay in the noncollisional case is due to the
presence of sufficiently many “channels”, corresponding with arbitrary free particle
trajectories. The collision operator in the linear Boltzmann equation destroys the
purely geometric effect of these channels, even for very low collision frequencies.

It could be interesting to consider the analogous problem for a granular gas with
inelastic collisions, as such collisions have a cooling effect that might destroy the
exponential decay. For instance, if f ≡ f(t, v) is a space homogeneous solution of
the inelastic Boltzmann equation, then it is known that

f(t, v)→ δv=0 as t→ +∞
inM

(
R
N
)

(see for instance [15, 16].) The slowing down of gas particles obviously
downgrades the absorption effect of the holes.
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CHAPTER II

HOMOGENIZATION OF

THE LINEAR BOLTZMANN EQUATION

IN A DOMAIN WITH A PERIODIC DISTRIBUTION OF HOLES

1. Introduction

The homogenization of a transport process describing the motion of particles in
a system of fixed obstacles — such as scatterers, or holes — leads to very different
results according to whether the distribution of obstacles is periodic or random.
Before describing the specific problem analyzed in the present work, we recall a few
results recently obtained on a more complicated, and yet related problem.

An important example of the phenomenon mentioned above is the Boltzmann-
Grad limit of the Lorentz gas. The Lorentz gas is the dynamical system corre-
sponding to the free motion of a single point particle in a system of fixed spherical
obstacles, assuming that each collision of the particle with any one of the obstacles
is purely elastic. Since the particle is not subject to any external force, we assume
without loss of generality that its speed is 1. The Boltzmann-Grad limit is the
scaling limit where the obstacle radius and the reciprocal number of obstacles per
unit volume vanish in such a way that the average free path length of the particle
between two consecutive collisions with the obstacles is of the order of unity.

Call f(t, x, v) the particle distribution function in phase space in that scaling
limit — in other words, the probability that the particle be located in an infinites-
imal volume dx around the position x with direction in an infinitesimal element of
solid angle dv around the direction v at time t ≥ 0 is f(t, x, v)dxdv.

In the case of a random system of obstacles — more precisely, assuming that the
obstacles centers are independent and distributed in the 3-dimensional Euclidian
space under Poisson’s law — Gallavotti proved in [15, 16] (see also [17] on pp.
48–55) that the average of f over obstacle configurations (i.e. the mathematical
expectation of f) is a solution of the linear Boltzmann equation

(∂t + v · ∇x + σ)f(t, x, v) =
σ

π

∫
ω·v>0
|ω|=1

f(t, x, v − 2(ω · v)ω)ω · vdω .

If, on the contrary, the obstacles are periodically distributed — specifically, if
they are centered at the vertices of a cubic lattice — the limiting particle distri-
bution function f cannot be the solution of any linear Boltzmann equation of the
form

(∂t + v · ∇x + σ)f(t, x, v) = σ

∫
|w|=1

p(v|w)f(t, x, w)dw ,

where p is a continuous, symmetric transition probability density on the unit sphere:
see [18] for a complete proof of this negative result, based on earlier estimates on
the distribution of free path lengths for the periodic Lorentz gas [6, 19].

The correct limiting equation for the Boltzmann-Grad limit of the periodic
Lorentz gas was found only very recently: see [8, 25]. In the 2-dimensional case,
the most striking feature of the theory presented in these references, is that the
limiting equation is set on an extended phase space involving not only the particle
position x and direction v, as in all classical kinetic models, but also the (rescaled)
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distance τ to the next collision point with the obstacles and the impact parameter
h at this next collision point.

The particle motion is described in terms of its distribution function in this
extended phase space, F ≡ F (t, x, v, τ, h), which is governed by an equation of the
form

(1)

(∂t + v · ∇x − ∂τ )F (t, x, v, τ, h)

=

∫ 1

−1
P (τ, h|h′)F (t, x,R[π − 2 arcsin(h′)]v, 0, h′)dh′

where R[θ] designates the rotation of an angle θ, and P (τ, h|h′) is a nonnegative
integral kernel whose explicit expression is given in [8] but is of little interest for the
present discussion. The particle distribution function in the classical phase space
of kinetic theory is recovered in terms of F by the following formula:

f(t, x, v) =

∫ +∞

0

∫ 1

−1
F (t, x, v, τ, h)dhdτ .

However, the particle distribution function f itself does not satisfy a linear Boltz-
mann equation in closed form.

Loosely speaking, in the case of a periodic distribution of obstacles, the parti-
cle “feels” the correlations between the obstacles, since its trajectory consists of
segments of maximal length avoiding the obstacles. This explains the need for an
extended phase space in order to describe the Boltzmann-Grad limit of the Lorentz
gas, in the periodic case. In the random case studied by Gallavotti, the obstacles
centers are assumed to be independent, which reduces the complexity of the limiting
dynamics.

In the present work, we shall study a much simpler homogenization problem,
which can be formulated as follows:

Problem. Consider a system of point particles whose distribution function is
governed by a linear Boltzmann equation. The particles are assumed to move in
a periodic system of holes. Describe the asymptotic behavior of the total mass of
the particle system in the long time limit, assuming that the radius of the holes
and their reciprocal number per unit volume vanish so that the average distance
between holes is of the order of 1.

This problem is the analogue in kinetic theory of the one studied in [23] and [11]
for the diffusion equation, and in [2] for the Stokes equation.

Although the underlying dynamics in this problem is a lot simpler than that of
the Lorentz gas, the homogenized equation is also set on an extended phase space,
analogous to the one described above.

A we shall see, the mathematical derivation of the homogenized equation in
the extended phase space for the problem above involves only very elementary
arguments from functional analysis — at variance with the case of the Boltzmann-
Grad limit of the Lorentz gas, which requires a fairly detailed knowledge of particle
trajectories.

2. The model

We consider the monokinetic, linear Boltzmann equation

(2) ∂tfε + v · ∇xfε + σ(fε −Kfε) = 0

in space dimension 2.
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The unknown function f(t, x, v) is the density at time t ∈ R+ of particles with
velocity v ∈ S1, located at x ∈ R2. For each φ ∈ L2(S1), we denote

Kφ(v) :=
1

2π

∫
S1
k(v, w)φ(w)dw,

where dw is the uniform measure (arc length) on the unit circle S1. We henceforth
assume that

(3)

k ∈ L2(S1 × S1) , k(v, w) = k(w, v) ≥ 0 a.e. in v, w ∈ S1

and 1
2π

∫
S1
k(v, w)dw = 1 a.e. in v ∈ S1.

The case of isotropic scattering, where k is a constant, is a classical model in
the context of Radiative Transfer. Likewise, the case of Thomson scattering in
Radiative Transfer involves the integral kernel

k(v, w) = 3
16 (1 + (v · w)2)

— see for instance chapter I, §16 of [10]. Finally, the collision frequency is a constant
σ > 0.

The linear Boltzmann equation (2) is set on the spatial domain Zε, i.e. the space
R

2 with a periodic system of holes removed:

Zε :=
{
x ∈ R2 |dist(x, εZ2) > ε2

}
.

We assume an absorption boundary condition on ∂Zε:

fε = 0 for (t, x, v) ∈ R∗+ × ∂Zε × S1, whenever v · nx > 0 ,

where nx denotes the inward unit normal vector to Zε at the point x ∈ ∂Zε. This
condition means that a particle falling into any one of the holes remain there forever.

The same problem could of course be considered in any space dimension. Notice
however that, in space dimension N ≥ 2, the appropriate scaling, analogous to
the one considered here, would be to consider holes of radius εN/(N−1) centered
at the points of the cubic lattice εZN — see for instance [6, 19]. Most of the
arguments considered in the present paper can be adapted without change to the
higher dimensional case, except that the expression of one particular coefficient
appearing in the homogenized equation is not yet known explicitly at the time of
this writing.

The most natural question related to the dynamics of the system above is the
asymptotic behavior of the total mass of the particle system in the small obstacle
radius ε� 1 and long time limit.

Emanuele Caglioti and François Golse have considered in [7] the non-collisional
case (σ = 0) and proved that, in the limit as ε → 0+, the solution fε converges
in L∞(R+ × R2 × S1) weak-* to a solution f of the following non-autonomous
equation:

(4) ∂tf + v · ∇xf =
ṗ(t)

p(t)
f ,

where p is a positive decreasing function defined below. In that case, the total mass
of the particle system decays like Const./t as t→ +∞.

Observe that, starting from the free transport equation, we obtain a non-autono-
mous (in time) equation in the small ε limit. In particular, the solution of equation
(4) cannot be given by a semigroup in a function space such as Lp(R2

x × S1v). As
we shall see, the homogenization of the linear Boltzmann equation in the collisional
case (σ > 0) leads to an even more spectacular change of structure in the equivalent
equation obtained in the limit.
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The work of the last two authors [7] relies upon an explicit computation of the
solution of the free transport equation, where the effect of the system of holes is
handled with continued fraction techniques. In the present paper, we investigate the
analogous homogenization problem in the collisional case (σ > 0). As we shall see,
there is no explicit representation formula for the solution of the linear Boltzmann
equation, other than the one based on the transport process, a particular stochastic
process, defined for example in [26].

This representation formula was used in the previous chapter, who established a
uniform in ε upper bound for the total mass of the particle system by a quantity of
the form Const.e−aσt for some aσ > 0. This exponential decay is quite remarkable:
indeed, there is a “phase transition” between the collisionless case in which the
total mass decays algebraically as t → +∞, and the collisional case in which the
total mass decays at least exponentially fast in that same limit.

In the present paper, we further investigate this phenomenon and show that the
exponential decay estimate found in the previous chapter is sharp, by giving an
asymptotic equivalent of the total mass of the particle system in the small ε limit
as t→ +∞.

Instead of the semi-explicit representation formula by the transport process, our
argument is based on the very special structure of the homogenized problem. The
key observation in the present work is that this homogenized problem involves a
renewal equation, for which exponential decay is a classical result that can be found
in classical monographs such as [14].

3. The main results

First, we recall the definition of the free path length in the direction v for a
particle starting from x in Zε:

(5) τε(x, v) := inf {t > 0 |x− tv ∈ ∂Zε} .
The distribution of free path length has been studied in [6, 19, 7, 4]. In particular,

it is proved that, for each arc I ⊂ S1 and each t ≥ 0, one has

(6) meas({(x, v) ∈ (Zε ∩ [0, 1]2)× I | ετε(x, v) > t})→ p(t)|I|
as ε → 0+, where |I| denotes the length of I and the measure considered in the
statement above is the uniform measure on [0, 1]2 × S1.

The following estimate for p can be found in [6]: there exist C,C ′ > 0 such that,
for all t ≥ 1:

(7)
C

t
≤ meas({(x, v) ∈ (Zε ∩ [0, 1]2)× I | ετε(x, v) > t}) ≤ C ′

t

uniformly as ε→ 0+, so that

(8)
C

t
≤ p(t) ≤ C ′

t
.

In [4] F. Boca and A. Zaharescu have obtained an explicit formula for p:

(9) p(t) =

∫ +∞

t

(τ − t)Υ(τ)dτ ,

where the function Υ is expressed as follows:
(10)

Υ(t) =
24

π2

 1 if t ∈ (0, 12 ],

1
2t + 2(1− 1

2t )
2 ln(1− 1

2t )−
1
2 (1− 1

t )
2 ln |1− 1

t | if t ∈ ( 1
2 ,+∞) .

This is precisely at this point that the case of space dimension 2 differs from the
higher dimensional case. Indeed, in space dimension higher than 2, the existence
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Figure 1. The graphs of Υ (left) and of p (right)

of the limit (6) has been proved in [24], while the uniform estimate analogous to
(7) is to be found in [19]. However, no explicit formula analogous to (9) is known
in that case, at least at the time of this writing. We have chosen to treat in the
present paper only the case of the square lattice in space dimension 2 as it is the
only case where the limit (6-9) is known completely.

Throughout this paper, we assume that the initial data of (Ξε) satisfies the
assumption

(11) f in ≥ 0 on R2×S1 and

∫∫
R2×S1

f in(x, v)dxdv+ sup
(x,v)∈R2×S1

f in(x, v) < +∞.

For each 0 < ε � 1, let fε be the (mild) solution of the initial boundary value
problem

(Ξε)


∂tfε + v · ∇xfε + σ(fε −Kfε) = 0, (x, v) ∈ Zε × S1, t > 0,

fε = 0, if v · nx > 0, (x, v) ∈ ∂Zε × S1,

fε(0, x, v) = f in(x, v), (x, v) ∈ Zε × S1.
The classical theory of the linear Boltzmann equation guarantees the existence and
uniqueness of a mild solution fε of the problem (Ξε) satisfying

(12)

0 ≤ fε(t, x, v) ≤ sup
(x,v)∈R2×S1

f in(x, v) a.e. on R+ × Zε × S1 ,∫∫
Zε×S1

fε(t, x, v)dxdv ≤
∫∫

R2×S1
f in(x, v)dxdv .

Consider next F := F (t, s, x, v) the solution of the Cauchy problem

(Σ)



∂tF + v · ∇xF + ∂sF = −σF + ṗ
p (t ∧ s)F, t, s > 0, (x, v) ∈ R2 × S1 ,

F (t, 0, x, v) = σ

∫ +∞

0

KF (t, s, x, v)ds, t > 0, (x, v) ∈ R2 × S1 ,

F (0, s, x, v) = σe−σsf in(x, v), s > 0, (x, v) ∈ R2 × S1 ,

with the notation t ∧ s := min(t, s). Notice that F is a density defined on the
extended phase space: {

(s, x, v)|s ≥ 0, x ∈ R2, v ∈ S1
}

involving the extra variable s, whose physical meaning is explained as follows.
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Recall that the solution fε of the linear Boltzmann equation can be expressed
in terms of the transport process (see [26]), a stochastic process involving a jump
process in the v variable, perturbed by a drift in the x variable. The variable s is
the “age” of the current velocity v in that process, i.e. the time since the last jump
in the v variable.

Therefore, between jumps in the v variable, s increases with t, and this accounts
for the sign of the additional term +∂sF in the system (Σ).

On the contrary, in equation (1), the extra variable τ (the rescaled distance to
the next collision point with one of the scatterers) decreases as t increases between
collisions with the scatterers, which accounts for the minus sign in the additional
term −∂τF in that equation.

Henceforth, we shall frequently need to extend functions defined a.e. on Zε by
0 inside the holes (that is, in the complement of Zε). We therefore introduce the
following piece of notation.
Definition: For each function ϕ ≡ ϕ(x) defined a.e. on Zε, we denote

{ϕ} (x) =

{
ϕ(x) if x ∈ Zε,
0 if x /∈ Zε,

We use the same notation {fε} or {Fε} to designate the same extension by 0 inside
the holes for functions defined on cartesian products involving Zε as one of their
factors, such as R+×Zε× S1 in the case of fε, and R+×R+×Zε× S1 in the case
of Fε.

Our first main main result is

Theorem 1. Under the assumptions above,

{fε}⇀
∫ +∞

0

Fds

in L∞(R+ ×R2 × S1) weak-∗ as ε→ 0+, where F is the unique (mild) solution of
( Σ).

Notice that the limit of the (extended) distribution function of the particle
system is indeed defined in terms of the solution F of the homogenized integro-
differential equation (Σ). However, it does not seem that the limit of {fε} itself
satisfies any natural equation.

Next we discuss the asymptotic decay as t → +∞ of the total mass of the
particle system in the homogenization limit ε� 1. Obviously, the particle system
loses mass due to particles falling into the holes.

In order to do so, we introduce the quantity:

m(t, s) := 1
2π

∫∫
R2×S1

F (t, s, x, v)dxdv .

A key observation in our work is that m is the solution of a renewal type PDE, as
explained in the next proposition.

Proposition 1. Denote

B(t, s) = σ − ṗ

p
(t ∧ s) ,

and assume that f in satisfies the condition (11).
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Then the renewal PDE

∂tµ(t, s) + ∂sµ(t, s) +B(t, s)µ(t, s) = 0, t, s > 0 ,

µ(t, 0) = σ

∫ +∞

0

µ(t, s)ds, t > 0 ,

µ(0, s) = σe−σs, s > 0 ,

has a unique mild solution µ ∈ L∞([0, T ];L1(R+)) for all T > 0.
Moreover, one has

m(t, s) =
µ(t, s)

2π

∫∫
R2×S1

f in(x, v)dxdv

a.e. in (t, s) ∈ R+ ×R+.

Renewal equations are frequently met in many different contexts. For instance
they are used as a mathematical model in biology to study the dynamics of struc-
tured populations. The interested reader can consult [22] or [27] for more informa-
tion on this subject.

Consider next the quantity:

(13) M(t) := 1
2π

∫ +∞

0

∫∫
R2×S1

F (t, s, x, v)dxdvds =

∫ +∞

0

m(t, s)ds .

As explained in the theorem below, M(t) is the total mass at time t of the particle
system in the limit as ε→ 0+; besides, the asymptotic behavior of M as t→ +∞
is a consequence of the renewal PDE satisfied by the function (t, s) 7→ m(t, s).

Theorem 2. Under the same assumptions as in theorem 1,

(1) the total mass

1
2π

∫∫
Zε×S1

fε(t, x, v)dxdv →M(t)

in L1
loc(R+) as ε→ 0+, and a.e. in t ≥ 0 after extracting a subsequence of

ε→ 0+;
(2) the limiting total mass is given by the representation formula

M(t) = 1
2πσ

∫∫
R2×S1

f in(x, v)dxdv
∑
n≥1

κ∗n(t), t > 0

with

κ(t) := σe−σtp(t)1t≥0 , κ∗n := κ ∗ · · · ∗ κ︸ ︷︷ ︸
n factors

and ∗ denoting as usual the convolution product on the real line;
(3) for each σ > 0, there exists ξσ ∈ (−σ, 0) such that

M(t) ∼ Cσeξσt as t→ +∞

with

Cσ := 1
2πσ

∫∫
R2×S1

f in(x, v)dxdv∫ ∞
0

tp(t)e−(σ+ξσ)tdt

;

(4) finally, the exponential mass loss rate ξσ satisfies

ξσ ∼ −σ as σ → 0+, and ξσ → −2 as σ → +∞ .
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Statement (1) above means that M is the limiting mass of the particle system
at time t as ε → 0+. Statement (3) gives a precise asymptotic equivalent of M(t)
as t→ +∞.

As recalled in the previous section, if σ = 0 in the linear Boltzmann equation
(Ξε), the total mass of the particle system in the vanishing ε limit is asymptotically
equivalent to

1
2π

∫∫
R2×S1

f in(x, v)dxdv

π2t

as t → +∞. The reason for this slow, algebraic decay is the existence of channels
— infinite open strips included in the spatial domain Zε, i.e. avoiding all the
holes. Particles located in one such channel and moving in a direction close to
the channel’s direction will not fall into a hole before exiting the channel, and this
can take an arbitrarily long time as the particles’ direction approaches that of the
channel. This construction based on channels leads to a sufficiently large fraction
of the single-particle phase space and accounts for the algebraic lower bound in
(8). The asymptotic equivalent mentioned above in the collisionless case σ = 0 is a
consequence of a more refined analysis based on continued fractions given in [7].

When σ > 0, particles whose distribution function solves the linear Boltzmann
equation in (Ξε) travel on trajectories whose direction is discontinuous in time —
more specifically, time discontinuities are distributed under an exponential law of
parameter σ. Obviously, this circumstance destroys the channel structure that
is responsible of the algebraic decay of the total mass of the particle system in
the collisionless case, so that one expects that the total mass decay is faster than
algebraic as t→ +∞. That this decay is indeed exponential whenever σ > 0 is by
no means obvious: see the argument in the previous chapter, leading to an upper
bound for the total mass. Statement (3) above leads to an asymptotic equivalent
of the total mass, thereby refining the conclusions of the previous chapter.

In section 4, we give the proof of theorem 1; the evolution of the total mass in
the vanishing ε limit (governing equation and asymptotic behavior as t→ +∞) is
discussed in section 5.

4. The homogenized kinetic equation

Our argument for the proof of Theorem 1 is split into several steps.

4.1. A new formulation of the transport equation. Perhaps the most surpris-
ing feature in Theorem 1 is the introduction of the extended phase space involving
the additional variable s.

As a matter of fact, this additional variable s can be used already at the level
of the original linear Boltzmann equation — i.e. in the formulation of the problem
(Ξε).

Let us indeed return to the initial boundary value problem (Ξε) for the linear
Boltzmann equation.

As recalled above, the last two authors have obtained the homogenized equation
corresponding to (Ξε) in the noncollisional case (σ = 0) by explicitly computing the
solution of the linear Boltzmann equation for each 0 < ε � 1. In the collisionnal
case (σ > 0), as recalled above, there is no such explicit formula giving the solution
of the linear Boltzmann equation — except the semi-explicit formula involving the
transport process defined in [26].

However, not all the information in that semi-explicit formula is needed for the
proof of Theorem 1. The additional variable s is precisely the exact amount of
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information contained in that semi-explicit formula needed in the description of
the homogenized process in the limit as ε→ 0+.

Consider therefore the initial boundary value problem

(Σε)



∂tFε + v · ∇xFε + ∂sFε + σFε = 0, t, s > 0, (x, v) ∈ Zε × S1,

Fε(t, s, x, v) = 0, if v · nx > 0, t, s > 0, (x, v) ∈ (∂Zε × S1),

Fε(t, 0, x, v) = σ

∫ ∞
0

KFε(t, s, x, v)ds, t > 0, (x, v) ∈ Zε × S1,

Fε(0, s, x, v) = σe−σsf in(x, v), s > 0, (x, v) ∈ Zε × S1,

with unknown Fε := Fε(t, s, x, v).
The relation between these two initial boundary value problems, (Ξε) and (Σε),

is explained by the following proposition.

Proposition 2. Assume that f in satisfies the assumption (11). Then
a) for each ε > 0, the problem (Σε) has a unique mild solution such that

(t, x, v) 7→
∫ +∞

0

|Fε(t, s, x, v)|ds belongs to L∞([0, T ]× Zε × S1)

for each T > 0;
b) moreover

0 ≤ Fε(t, s, x, v) ≤ ‖f in‖L∞(R2×S1)σe
−σs

a.e. in t, s ≥ 0, x ∈ Zε and v ∈ S1, and∫ +∞

0

Fε(t, s, x, v)ds = fε(t, x, v),

for a.e. t ≥ 0, x ∈ Zε, v ∈ S1, where fε is the solution of (Ξε).

Proof. Applying the method of characteristics, we see that, should a mild solution
Fε of the problem (Σε) exist, it must satisfy

(14) Fε(t, s, x, v) = F1,ε(t, s, x, v) + F2,ε(t, s, x, v),

with

(15)

F1,ε(t, s, x, v) = 1s<ετε(
x
ε ,v)

1s<te
−σsFε(t− s, 0, x− vs, v)

= 1s<ετε(
x
ε ,v)

1s<tσe
−σs

∫ +∞

0

KFε(t− s, τ, x− sv, v)dτ

and

(16)
F2,ε(t, s, x, v) = 1t<ετε(

x
ε ,v)

1t<se
−σtFε(0, s− t, x− vt, v)

= 1t<ετε(
x
ε ,v)

1t<sσe
−σsf in(x− tv, v)

a.e. in (t, s, x, v) ∈ R+ ×R+ ×R2 × S1.
First, define XT to be, for each T > 0, the set of measurable functions G defined

on R+ ×R+ × Zε × S1 such that

(t, x, v) 7→
∫ +∞

0

|G(t, s, x, v)|ds belongs to L∞([0, T ]× Zε × S1) ,

which is a Banach space for the norm

‖G‖XT =

∥∥∥∥∫ +∞

0

|G(·, s, ·, ·)|ds
∥∥∥∥
L∞([0,T ]×Zε×S1)

.
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Next, for each G ∈ XT , we define

T G(t, s, x, v) := 1s<ετε(
x
ε ,v)

1s<tσe
−σs

∫ +∞

0

KG(t− s, τ, x− sv, v)dτ .

Obviously∥∥∥∥∫ +∞

0

|T nG(t, s, ·, ·)|ds
∥∥∥∥
L∞(Zε×S1)

≤ σ
∫ t

0

∥∥∥∥∫ +∞

0

|T n−1G(t1, τ, ·, ·)|dτ
∥∥∥∥
L∞(Zε×S1)

dt1

≤ σn
∫ t

0

. . .

∫ tn−1

0

∥∥∥∥∫ +∞

0

|G(tn, s, ·, ·)|ds
∥∥∥∥
L∞(Zε×S1)

dtn . . . dt1 ,

so that

‖T nG‖XT ≤
(σT )n

n!
‖G‖XT .

Now F1,ε = T Fε, so that (14) can be recast as

Fε = F2,ε + T Fε .

This integral equation has a solution Fε ∈ XT for each T > 0, given by the series

Fε =
∑
n≥0

T nF2,ε

which is normally convergent in the Banach space XT since

∑
n≥0

‖T nF2,ε‖XT ≤
∑
n≥0

(σT )n

n!
‖F2,ε‖XT < +∞ .

Assuming that the integral equation above has another solution F ′ε ∈ XT would
imply that

Fε − F ′ε = T (Fε − F ′ε) = . . . = T n(Fε − F ′ε) ,

so that

‖Fε − F ′ε‖XT = ‖T n(Fε − F ′ε)‖XT ≤
(σT )n

n!
‖Fε − F ′ε‖XT → 0

as n→ +∞: hence F ′ε = Fε. Thus we have proved statement a).
As for statement b), observe that T G ≥ 0 a.e. on R+ ×R+ × Zε × S1 if G ≥ 0

a.e. on R+ × R+ × Zε × S1. Hence, if f in ∈ L∞(R2 × S1) satisfies f in ≥ 0 a.e.
on R

2 × S1, one has F2,ε ≥ 0 a.e. on R+ × R+ × Zε × S1, so that T nF2,ε ≥ 0
a.e. on R+ × R+ × Zε × S1 and the series defining Fε is a.e. nonnegative on
R+ ×R+ × Zε × S1.

Next, integrating both sides of (14) with respect to s, and setting

gε(t, x, v) :=

∫ +∞

0

Fε(t, s, x, v)ds ,
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we arrive at

gε(t, x, v) =

∫ +∞

0

F2,ε(t, s, x, v)ds+

∫ +∞

0

F1,ε(t, s, x, v)ds

= 1t<ετε(
x
ε ,v)

f in(x− tv, v)

∫ +∞

0

1t<sσe
−σsds

+

∫ +∞

0

1s<ετε(
x
ε ,v)

1s<tσe
−σs

(∫ +∞

0

KFε(t− s, τ, x− sv, v)dτ

)
ds

= 1t<ετε(
x
ε ,v)

f in(x− tv, v)e−σt

+

∫ t

0

e−σs1s<ετε( xε ,v)σKgε(t− s, x− sv, v)ds

in which we recognize the Duhamel formula giving the unique mild solution fε of
(Ξε). Hence

fε(t, x, v) =

∫ +∞

0

Fε(t, s, x, v)ds a.e. in (t, x, v) ∈ R+ × Zε × S1 .

Finally, since (Ξε) satisfies the maximum principle, one has

fε(t, x, v) ≤ ‖f in‖L∞(R2×S1) a.e. in (t, x, v) ∈ R+ × Zε × S1 .

Going back to (14), we recast it in the form

Fε(t, s, x, v) = 1s<ετε(
x
ε ,v)

1s<tσe
−σsKfε(t− s, x− sv, v)

+ 1t<ετε(
x
ε ,v)

1t<sσe
−σsf in(x− tv, v)

≤ 1s<ετε( xε ,v)1s<tσe
−σs‖f in‖L∞(R2×S1)

+ 1t<ετε(
x
ε ,v)

1t<sσe
−σs‖f in‖L∞(R2×S1)

≤ σe−σs‖f in‖L∞(R2×S1)

a.e. in (t, s, x, v) ∈ R+ ×R+ × Zε × S1, which concludes the proof. �

Observe that if

Fε(0, s, x, v) = σe−σsf in(x, v)

is replaced with

Fε(0, s, x, v) = Π(s)f in(x, v)

where Π is any probability density on R+ vanishing at ∞, the conclusion of the
lemma above remains valid. In other words, the dependence of the solution Fε of
the problem (Σ) upon the choice of the initial probability density Π disappears after
integration in s, so that the particle distribution function fε is indeed independent
of the choice of Π.

The choice Π(s) = σe−σs corresponds with the situation where the gas molecules
have been evolving under the linear Boltzmann equation for t < 0 and the holes
are suddenly opened at t = 0.

Before giving the proof of Theorem 1, we need to establish a few technical lem-
mas.

4.2. The distribution of free path lengths. A straightforward consequence of
the limit in (6) is the following lemma, which accounts eventually for the coefficient
ṗ(t ∧ s)/p(t ∧ s) in the limiting equation (Σ).

Lemma 1. Let τε be the free path length defined in (5). Then for each t > 0

{1t<ετε( xε ,v)}⇀ p(t)

in L∞(R2 × S1) weak-∗ as ε→ 0+.
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(See the definition before Theorem 1 for the notation {1t<ετε( xε ,v)}.)

Proof. Since the linear span of functions φ ≡ φ(x, v) of the form

φ(x, v) = χ(x)1I(v) , χ ∈ C∞0 (R2) and I an arc of S1

is dense in L1(R2 × S1), and the family 1ετε( xε ,v)>t is bounded in L∞(R2 × S1), it
is enough to prove that∫∫

Zε×S1
φ(x, v)1ετε( xε ,v)>tdxdv → p(t)

∫∫
R2×S1

φ(x, v)dxdv as ε→ 0 .

Write ∫∫
Zε×S1

φ(x, v)1ετε( xε ,v)>tdxdv =

∫
Zε

χ(x)

(∫
I

1ετε(
x
ε ,v)>t

dv

)
dx

=

∫
Zε

χ(x)Tε

(x
ε

)
dx

with

Tε(y) :=

∫
I

1ετε(y,v)>tdv .

Obviously Tε is 1-periodic in y1 and y2 and satisfies 0 ≤ Tε ≤ |I|. Hence

1d(y,Z2)>εTε(y) =
∑
k∈Z2

T̂ε(k)e2iπk·y

in L2(R2/Z2) with

T̂ε(k) :=

∫
max(|z1|,|z2|)<1/2

|z|>ε

Tε(z)
−2iπk·zdz

for each k ∈ Z2.
Then, by Parseval’s identity,∫

Zε

χ(x)Tε

(x
ε

)
dx =

∫
R2

χ(x)

(∑
k∈Z2

T̂ε(k)e2iπ
k·x
ε

)
dx

= χ̂(0)T̂ε(0) +
∑

k∈Z2\(0,0)

T̂ε(k)χ̂(−2πk/ε) ,

with

χ̂(ξ) :=

∫
R2

χ(x)e−iξ·xdx .

Applying again Parseval’s identity,∑
k∈Z2

|T̂ε(k)|2 =

∫
max(|y1|,|y2|)<1/2

|y|>ε

|Tε(y)|2dy ≤ |I|

while

|χ̂(ξ)| ≤ 1

|ξ|2
‖∇2χ‖L∞ ,

so that

|χ̂(−2πk/ε)| ≤ ε2

4π2|ξ|2
‖∇2χ‖L∞ .

Hence, by the Cauchy-Schwarz inequality,∣∣∣∣∣∣
∑

k∈Z2\(0,0)

T̂ε(k)χ̂(−2πk/ε)

∣∣∣∣∣∣
2

≤
∑

k∈Z2\(0,0)

|T̂ε(k)|2
∑

k∈Z2\(0,0)

ε4‖∇2χ‖2L∞
16π4|k|4

= O(ε4)
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and therefore ∫
Zε

χ(x)Tε

(x
ε

)
dx = χ̂(0)T̂ε(0) +O(ε2)

as ε→ 0+.
By (6)

T̂ε(0) =

∫
max(|y1|,|y2|)<1/2

|y|>ε

Tε(y)dy → p(t)|I| as ε→ 0+ ,

so that

χ̂(0)T̂ε(0)→ p(t)|I|
∫
R2

χ(x)dx = p(t)

∫∫
R2×S1

φ(x, v)dxdv

as ε→ 0+, and hence∫
Zε

χ(x)Tε

(x
ε

)
dx = p(t)

∫∫
R2×S1

φ(x, v)dxdv + o(1) +O(ε2)

which entails the announced result. �

4.3. Extending fε by 0 in the holes. We begin with the equation satisfied by
the (extension by 0 inside the holes of the) distribution function {fε}.

Lemma 2. For each ε > 0, the function {fε} satisfies

(∂t + v · ∇x) {fε}+ σ({fε} −K {fε}) = (v · nx)fε
∣∣
∂Zε×S1

δ∂Zε

in D′(R∗+×R2×S1), where δ∂Zε is the surface measure concentrated on the boundary
of Zε, and nx is the unit normal vector at x ∈ ∂Zε pointing towards the interior of
Zε.

Proof. One has

∂t {fε} = {∂tfε}
and

∇x {fε} = {∇xfε}+ fε |∂Zε×S1 δ∂Zεnx
in D′(R∗+ ×R2 × S1). Hence

0 = {∂tfε + v · ∇xfε + σ(fε −Kfε)}
= ∂t {fε}+ v · ∇x {fε}+ (v · nx)fε

∣∣
∂Zε×S1

δ∂Zε + σ({fε} −K {fε})

in D′(R∗+ ×R2 × S1). �

A straightforward consequence of the scaling considered here is that the family
of Radon measures

(v · nx)fε
∣∣
∂Zε×S1

δ∂Zε

is controlled uniformly as ε→ 0+, in the following manner.

Lemma 3. For each R > 0, the family of Radon measures

(v · nx)fε
∣∣
∂Zε×S1

δ∂Zε
∣∣
[−R,R]2×S1

is bounded in1 M([−R,R]2 × S1).

1For each compact subset K of RN , we denote by M(K) the space of signed Radon measures
on K, i.e. the set of all real-valued continuous linear functionals on C(K) endowed with the
topology of uniform convergence on K.
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Proof. The total mass of the measure

(v · nx)fε
∣∣
∂Zε×S1

δ∂Zε
∣∣
[−R,R]2×S1

is less than or equal to

2π‖fε‖L∞(R+×Zε×S1)‖δ∂Zε |[−R,R]2 ‖M([−R,R]2)

which is itself less than or equal to

2π‖f in‖L∞(R2×S1)
∥∥δ∂Zε |[−R,R]2

∥∥
M([−R,R]2)

.

Since δ∂Zε |[−R,R]2 is the union of O
((

2R
ε

)2)
circles of radius ε2,

‖δ∂Zε |[−R,R]2 ‖M([−R,R]2) = O

((
2R

ε

)2
)

2πε2 = O(1)R2

as ε→ 0+, whence the announced result. �

4.4. The velocity averaging lemmas. As is the case of all homogenization re-
sults, the proof of Theorem 1 is based on the strong L1

loc convergence of certain
quantities defined in terms of Fε. In the case of kinetic models, strong L1

loc com-
pactness is usually obtained by velocity averaging — see for instance [1, 21, 20]
for the first results in this direction. Below, we recall a classical result in velocity
averaging that is a special case of theorem 1.8 in [5].

Proposition 3. Let p > 1 and assume that fε ≡ fε(t, x, v) is a bounded family in
Lploc(R

+
t ×Rdx × Sd−1v ) such that

sup
ε

∫ T

0

∫∫
B(0,R)×Sd−1

|∂tfε + v · ∇xfε|dxdvdt < +∞

for each T > 0 and R > 0. Then, for each ψ ∈ C(Sd−1 × Sd−1), the family ρψ[fε],
defined by

ρψ[fε](t, x, v) =

∫
Sd−1

fε(t, x, w)ψ(v, w)dw

is relatively compact in L1
loc(R

+
t ×Rdx × Sd−1v ).

A straightforward consequence of Proposition 3 is the following compactness
result in L1

loc strong, which is the key argument in the proof of Theorem 1.

Lemma 4. Let fε ≡ fε(t, x, v) be the family of solutions of the initial boundary
value problem (Ξε). Then the families

K {fε} = {Kfε}

and ∫
S1
{fε}dv

are relatively compact in L1
loc(R+ ×R2 × S1) strong.

Proof. We recall that, by the Maximum Principle for (Ξε),

|fε(t, x, v)| ≤ ‖f in‖L∞(R2×S1)

a.e. in t ≥ 0, x ∈ Zε and v ∈ S1, so that

(17) sup
ε
‖ {fε} ‖L∞(R+×R2×S1) ≤ ‖f in‖L∞(R2×S1).

By Lemma 2, {fε} satisfies the equation

∂t {fε}+ v · ∇x {fε} = σ(K {fε} − {fε})− δ∂Zε(v.nx)fε |∂Zε×S1
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in D′(R∗+ ×R2 × S1). Because of (17) and the fact that the scattering kernel k is
a.e. nonnegative (see (3)), one has

‖σ(K {fε} − {fε})‖L∞(R+×R2×S1) ≤ σ(1 + ‖K1‖L∞(S1))‖ {fε} ‖L∞(R+×R2×S1)

= 2σ‖ {fε} ‖L∞(R+×R2×S1)

since K1 = 1 (see again (3).) Besides the family of Radon measures

µε = fε |∂Zε×S1 (v · nx)δ∂Zε

satisfies

sup
ε

∫
[0,T ]×B(0,R)×S1

|µε| < +∞

for each T > 0 and R > 0 according to lemma 3.
Applying the Velocity Averaging result recalled above implies that the family∫

S1
gεdv

is relatively compact in L1
loc(R+ ×R2 × S1).

By density of C(S1 × S1) in L2(S1 × S1), replacing the integral kernel k with a
continuous approximant and applying the Velocity Averaging Proposition 3 in the
same way as above, we conclude that the family Kgε is also relatively compact in
L1
loc(R+ ×R2 × S1). �

4.5. Uniqueness for the homogenized equation. Consider the Cauchy prob-
lem with unknown G ≡ G(t, s, x, v)

(∂t + v · ∇x + ∂s)G = −σG+
ṗ(t ∧ s)
p(t ∧ s)

G, t, s > 0, x ∈ R2, v ∈ S1,

G(t, 0, x, v) = S(t, x, v), t > 0, (x, v) ∈ R2 × S1,

G(0, s, x, v) = Gin(s, x, v), s > 0, (x, v) ∈ R2 × S1.

If, for a.e. (t, s, x, v) ∈ R+×R+×R2×S1, the function τ 7→ G(t+τ, s+τ, x+τv, v)
is C1 in τ > 0, then, since the function p ∈ C1(R+) and p > 0 on R+, one has(

d

dτ
+ σ − ṗ(t ∧ s+ τ)

p(t ∧ s+ τ)

)
G(t+ τ, s+ τ, x+ τv, v)

= e−στp(t ∧ s+ τ)
d

dτ

(
eστG(t+ τ, s+ τ, x+ τv, v)

p(t ∧ s+ τ)

)
= 0 .

Hence

Γ : τ 7→ eστG(t+ τ, s+ τ, x+ τv, v)

p(t ∧ s+ τ)

is a constant. Therefore

Γ(0) =

{
Γ(−t) if t < s,
Γ(−s) if s < t,

so that

G(t, s, x, v) = 1t<se
−σtp(t)Gin(s− t, x− tv, v) + 1s<te

−σsp(s)S(t− s, x− sv, v) .

Proposition 4. Assume that f in ∈ L∞(R2 × S1). Then the problem (Σ) has a
unique mild solution F such that

(t, x, v) 7→
∫ +∞

0

|F (t, s, x, v)|ds belongs to L∞([0, T ]×R2 × S1)
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for each T > 0. This solution satisfies

F (t, s, x, v) = 1t<sσe
−σtp(t)f in(x− tv, v)

+ 1s<tσe
−σsp(s)

∫ +∞

0

KF (t− s, τ, x− sv, v)dτ

for a.e. (t, s, x, v) ∈ R+ ×R+ ×R2 × S1.
Besides, F ≥ 0 a.e. on R+ ×R+ ×R2 × S1 if f in ≥ 0 a.e. on R2 × S1.

Proof. That a mild solution of the problem (Σ), should it exist, satisfies the integral
equation above follows from the computation presented before the proposition.

As above, let YT be, for each T > 0, the set of measurable functions G defined
a.e. on R+ ×R+ ×R2 × S1 and such that

(t, x, v) 7→
∫ +∞

0

|G(t, s, x, v)|ds belongs to L∞([0, T ]×R2 × S1) ,

which is a Banach space for the norm

‖G‖YT =

∥∥∥∥∫ +∞

0

|G(·, s, ·, ·)|ds
∥∥∥∥
L∞([0,T ]×Zε×S1)

.

Next, for each G ∈ YT , we define

QG(t, s, x, v) := 1s<tσe
−σsp(s)

∫ +∞

0

KG(t− s, τ, x− sv, v)dτ .

Since 0 < e−σsp(s) ≤ 1, the integral kernel k ≥ 0 on S1× S1 and K1 = 1 by (3),
one has∫ +∞

0

|QG(t, s, x, v)|ds ≤ σ
∫ t

0

∥∥∥∥∫ +∞

0

|G(t− s, τ, ·, ·)|dτ
∥∥∥∥
L∞(R2×S1)

ds

a.e. in (t, x, v) ∈ [0, T ]×R2 × S1, meaning that∥∥∥∥∫ +∞

0

|QnG(t, s, ·, ·)|ds
∥∥∥∥
L∞(R2×S1)

≤ σ
∫ t

0

∥∥∥∥∫ +∞

0

|Qn−1G(t1, s, ·, ·)|ds
∥∥∥∥
L∞(R2×S1)

dt1

≤ σn
∫ t

0

. . .

∫ tn−1

0

∥∥∥∥∫ +∞

0

|G(tn, s, ·, ·)|ds
∥∥∥∥
L∞(R2×S1)

dtn . . . dt1 .

In particular

‖QnG‖YT ≤
(σT )n

n!
‖G‖YT .

The integral equation in the statement of the proposition is

F = F2 +QF

where

F2(t, s, x, v) = 1t<sσe
−σtp(t)f in(x− tv, v) .

Therefore, arguing as in the proof of Proposition 2, one obtains a mild solution of
(Σ) as the sum of the series

F =
∑
n≥0

QnF2 ,

which is normally convergent in the Banach space YT for each T > 0.
Should there exist another mild solution, say F ′, it would satisfy

(F − F ′) = Q(F − F ′) = . . . = Qn(F − F ′)
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for all n ≥ 0, so that

‖F − F ′‖YT = ‖Qn(F − F ′)‖YT ≤
(σT )n

n!
‖F − F ′‖YT → 0

as n→ +∞, which implies that F = F ′ a.e. on R+ ×R+ ×R2 × S1.
Finally, QF ≥ 0 a.e. on R+×R+×R2×S1 if F ≥ 0 a.e. on R+×R+×R2×S1.

Since F is given by the series above, one has F ≥ 0 a.e. on R+ ×R+ ×R2 × S1
whenever f in ≥ 0 a.e. on R2 × S1. �

4.6. Proof of the homogenization theorem. Start from the decomposition (14)
of Fε. Passing to the limit as ε→ 0+ in the term F2,ε is easy. Indeed, by Lemma 1

(18) {1t<ετε( xε ,v)}⇀ p(t)

in L∞(R2
x × S1v) weak-∗ for each t > 0, as ε→ 0+. Hence

(19)
{F2,ε}(t, s, x, v) =1t<se

−σsf in(x− tv, v){1t<ετε( xε ,v)}
⇀ 1t<se

−σsf in(x− tv, v)p(t) =: F2(t, s, x, v)

in L∞(R+
t ×R+

s ×R2
x × S1v) weak-∗ as ε→ 0+.

Next, we analyze the term F1,ε; this is obviously more difficult as this term
depends on the (unknown) solution Fε itself.

We recall the uniform bound

sup
ε
‖ {fε} ‖L∞(R+×R2×S1) ≤ ‖f in‖L∞(R2×S1)

— see Proposition 2 b), so that, by the Banach-Alaoglu theorem

(20) {fε}⇀ f in L∞(R+ ×R2 × S1) weak-∗
for some f ∈ L∞(R+×R2×S1), possibly after extracting a subsequence of ε→ 0+.

Thus, applying the strong compactness Lemma 4 shows that

K {fε} → Kf in L1
loc(R+ ×R2 × S1) strong

as ε→ 0+.
This and the weak-∗ convergence in Lemma 1 imply that

(21)
{F1,ε} =1s<tσe

−σsK {fε} (t− s, x− sv, v)1s<ετε( xε ,v)

⇀ 1s<tσe
−σsKf(t− s, x− sv, v)p(s)

in L1
loc(R+ ×R+ ×R2 × S1) weak as ε→ 0+. Therefore

(22)
{Fε} (t, s, x, v) ⇀1s<tσe

−σsKf(t− s, x− sv, v)p(s) + F2(t, s, x, v)

=: F̃ (t, s, x, v)

in L1
loc(R+ ×R+ ×R2 × S1) weak as ε→ 0+.

Fix T > 0; then, for t ∈ [0, T ], one has∫ ∞
0

Fε(t, s, x, v)ds =

∫ T

0

F1,ε(t, s, x, v)ds+ e−σtf in(x− tv, v)1t<ετε( xε ,v)

since F1,ε is supported in s ≤ t ≤ T , so that

(23)

∫ ∞
0

{Fε} (t, s, x, v)ds ⇀

∫ T

0

1s≤tKf(t− s, x− vs, v)σe−σsp(s)ds

+ f in(x− tv, v)e−σtp(t)

=

∫ ∞
0

F̃ (t, s, x, v)ds

in L1
loc(R+ ×R2 × S1) weakly as ε→ 0+, where F̃ is defined in (22).
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On the other hand∫ ∞
0

{Fε} (t, s, x, v)ds = {fε} (t, x, v) ⇀ f(t, x, v)

in L∞(R+×R2×S1) weak-∗ as ε→ 0+ — and therefore also in L1
loc(R+×R2×S1)

weak as ε→ 0+. By uniqueness of the limit, we conclude that

(24) f(t, x, v) =

∫ ∞
0

F̃ (t, s, x, v)ds a.e. in (t, x, v) ∈ R+ ×R2 × S1

so that F̃ satisfies

F̃ (t, s, x, v) = 1s<tσe
−σsK

(∫ ∞
0

F̃ (t− s, u, x− sv, ·)du
)

(v)p(s)

+ 1t<sσe
−σsf in(x− tv, v)p(t)

a.e. in (t, s, x, v) ∈ R+ ×R+ ×R2 × S1. By Proposition 4, this means that F̃ is a
solution of the Cauchy problem (Σ).

By uniqueness of the solution of (Σ), we conclude that F̃ = F , and that the
whole family

Fε ⇀ F in L1
loc(R+ ×R+ ×R2 × S1)

weakly as ε→ 0+.
Finally, (20) and (24) imply that

{fε}⇀ f =

∫ ∞
0

Fds

in L∞(R+ ×R2 × S1) weak-∗ as ε→ 0+, which concludes the proof of Theorem 1.
�

5. Asymptotic behavior of the total mass in the long time limit

The formulation of the homogenized equation (problem (Σ)) as an integro-
differential equation set on the extended phase space involving the additional vari-
able s is of considerable importance in understanding the asymptotic behavior of
the total mass of the particle system as the time variable t → +∞. Indeed, this
formulation implies that the total mass of the particle system satisfies a renewal
equation, i.e. a class of integral equations for which a lot is known on the asymp-
totic behavior of the solutions in the long time limit — see for instance in [14] the
basic results on renewal type integral equations.

5.1. The renewal PDE governing the mass. We begin with a proof of Propo-
sition 1.

Proof. That µ is a mild solution of the renewal PDE means that, for a.e. (t, s) ∈
R+ ×R+,

µ(t, s) = 1t<sσe
−σ(s−t)e−σtp(t) + 1s<te

−σsp(s)

∫ +∞

0

µ(t− s, τ)dτ

= σe−σsp(t ∧ s)
(
1t<s + 1s<t

∫ +∞

0

µ(t− s, τ)dτ

)
.

Let T > 0, and define

Rµ(t, s) = 1s<tσe
−σsp(s)

∫ +∞

0

µ(t− s, τ)dτ
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a.e. in (t, s) ∈ R+ × R+. Obviously, for each φ ∈ L∞([0, T ];L1(R+)) and a.e.
t ≥ 0,

‖Rφ(t, ·)‖L1(R+) ≤
∫ t

0

σe−σ(t−s)p(t− s)‖φ(s, ·)‖L1(R+)ds

≤ σ
∫ t

0

‖φ(s, ·)‖L1(R+)ds ,

so that, for each n ≥ 0, one has

‖Rnφ(t, ·)‖L1(R+) ≤
∫ t

0

∫ t1

0

. . .

∫ tn−1

0

‖φ(tn, ·)‖L1(R+)dtn . . . dt1

≤ (σt)n

n!
‖φ‖L∞([0,T ];L1(R+))

a.e. in t ∈ R+.
Arguing as in the proof of Proposition 2, we see that the renewal PDE has a

unique mild solution µ ∈ L∞([0, T ];L1(R+)) for all T > 0, which is given by the
series

µ =
∑
n≥0

Rn(µin)

where
µin(s) := σe−σs .

Obviously Rφ ≥ 0 a.e. on R+ ×R+ if φ ≥ 0 a.e. on R+ ×R+, so that µ ≥ 0
a.e. on R+ ×R+. Besides, for each T > 0,

‖µ‖L∞([0,T ];L1(R+)) ≤
∑
n≥0

(σT )n

n!
‖µin‖L1(R+) = eσT ,

which implies in turn that

0 ≤ µ(t, s) ≤ σe−σsp(t ∧ s)
(
1t<s + 1s<te

σT
)
≤ σeσT e−σs

a.e. in (t, s) ∈ [0, T ]×R+.
Finally, let F be the mild solution of the problem (Σ) obtained in Proposition 2.

Since F ≥ 0 a.e. on R+ ×R+ ×R2 × S1 is measurable, one can apply the Fubini
theorem to show that

m(t, s) : = 1
2π

∫∫
R2×S1

F (t, s, x, v)dxdv

= 1t<sσe
−σtp(t) 1

2π

∫∫
R2×S1

f in(x− tv, v)dxdv

+ 1t<sσe
−σtp(s)

∫ ∞
0

1
2π

∫∫
R2×S1

KF (t− s, τ, x− sv, v)dxdvdτ

= 1t<sσe
−σtp(t) 1

2π

∫∫
R2×S1

f in(y, v)dydv

+ 1t<sσe
−σtp(s)

∫ ∞
0

1
2π

∫∫
R2×S1

KF (t− s, τ, y, v)dydvdτ

= 1t<sσe
−σtp(t) 1

2π

∫∫
R2×S1

f in(y, v)dydv

+ 1t<sσe
−σtp(s)

∫ ∞
0

1
2π

∫∫
R2×S1

F (t− s, τ, y, w)dydwdτ

= 1t<sσe
−σtp(t) 1

2π

∫∫
R2×S1

f in(x− tv, v)dxdv

+ 1t<sσe
−σtp(s)

∫ ∞
0

m(t− s, τ)dτ ,



62 CHAPTER II

where the second equality follows from the substitution y = x− tv that leaves the
Lebesgue measure invariant, while the third equality follows from the identity

1
2π

∫
S1
k(v, w)dv = 1 ,

which implies that

1
2π

∫
S1
KF (t− s, τ, y, v)dv = 1

2π

∫
S1
F (t− s, τ, y, w)dw .

In other words,

m(t, s) satisfies the same integral equation as
µ(t, s)

2π

∫∫
R2×S1

f in(y, v)dydv.

Now the solution fε of (Ξε) satisfies

fε ≥ 0 a.e. on R+×R2×S1 and

∫∫
R2×S1

fε(t, y, v)dydv ≤
∫∫

R2×S1
f in(y, v)dydv ,

which implies by Theorem 1 that∫
|y|≤R

∫
S1
fε(t, y, v)dvdy ⇀

∫ +∞

0

∫
|y|≤R

∫
S1
F (t, s, y, v)dvdyds .

Hence, by Fatou’s lemma∫ +∞

0

∫
|y|≤R

∫
S1
F (t, s, y, v)dvdyds ≤ lim

ε→0+

∫∫
R2×S1

fε(t, x, v)dxdv

≤
∫∫

R2×S1
f in(y, v)dydv ,

a.e. in t ≥ 0.
Letting R → +∞ in the inequality above, we see that m ∈ L∞(R+;L1(R+))

and we have proved that the difference

Λ(t, s) = m(t, s)− µ(t, s)

2π

∫∫
R2×S1

f in(y, v)dydv

satisfies

Λ ∈ L∞(R+;L1(R+)) and Λ = RΛ .

By the same uniqueness argument as in the proof of Proposition 4, we conclude
that Λ = 0 a.e. on R+ ×R+. �

5.2. The total mass in the vanishing ε limit. By Theorem 1, the solution fε
of (Ξε) satisfies

{fε}⇀
∫ +∞

0

Fds in L∞(R+ ×R2 × S1) weak-∗;

therefore, checking that∫∫
R2×S1

{fε}dxdv ⇀
∫ +∞

0

∫∫
R2×S1

Fdxdvds =: 2πM(t)

reduces to proving that there is no mass loss at infinity in the x variable.

Lemma 5. Under the same assumptions as in Theorem 1

1
2π

∫∫
Zε×S1

fε(t, x, v)dxdv = 1
2π

∫∫
R2×S1

{fε}(t, x, v)dxdv →M(t)

strongly in L1
loc(R+) as ε→ 0+.
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Proof. Going back to the proof of Proposition 2 (whose notations are kept in the
present discussion), we have seen that

Fε =
∑
n≥0

T nF2,ε on R+ ×R+ × Zε × S1 ,

with the notation

F2,ε(t, s, x, v) = 1t<ετε(
x
ε ,v)

1t<sσe
−σsf in(x− tv, v) .

Since T Φ ≥ 0 a.e. whenever Φ ≥ 0 a.e., the formula above implies that

Fε ≤ G :=
∑
n≥0

T nG2 a.e. in (t, s, x, v) ∈ R+ ×R+ × Zε × S1 ,

where

G2(t, s, x, v) := 1t<sσe
−σsf in(x− tv, v) .

Thus, G satisfies the integral equation

G = G2 + T G

meaning that G is the mild solution of

(∂t + v · ∇x + ∂s)G = −σG , t, s > 0 , x ∈ R2 , |v| = 1 ,

G(t, 0, x, v) = σ

∫ +∞

0

KG(t, s, x, v)ds , t > 0 , x ∈ R2 , |v| = 1 ,

G(0, s, x, v) = f in(x, v)σe−σs , s > 0 , x ∈ R2 , |v| = 1 ,

Reasoning as in Proposition 2 shows that

g(t, x, v) :=

∫ +∞

0

G(t, s, x, v)ds

is the solution of the linear Boltzmann equation (∂t + v · ∇x)g + σ(g −Kg) = 0 , t > 0 , x ∈ R2 , |v| = 1 ,

g(0, x, v) = f in(x, v) , x ∈ R2 , |v| = 1 .

In view of the assumption (11) bearing on f in, we know that

G ≥ 0 a.e. on R+ ×R+ ×R2 × S1

and ∫ +∞

0

∫∫
R2×S1

G(t, s, x, v)dxdvds =

∫∫
R2×S1

g(t, x, v)dxdv

=

∫∫
R2×S1

f in(x, v)dxdv

for each t ≥ 0.
Summarizing, we have

0 ≤ {Fε} ≤ G

and ∫∫∫
R+×R2×S1

G(t, s, x, v)dsdxdv =

∫∫
R2×S1

f in(x, v)dxdv < +∞ .
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Then we conclude as follows: for each R > 0, one has∫∫
Zε×S1

fε(t, x, v)dxdv −
∫ +∞

0

∫∫
R2×S1

F (t, s, x, v)dxdvds

=

∫ +∞

0

∫
|x|>R

∫
S1
{Fε}(t, s, x, v)dvdxds

+

∫ +∞

0

∫
|x|≤R

∫
S1

({Fε} − F ) (t, s, x, v)dvdxds

−
∫ +∞

0

∫
|x|>R

∫
S1
{F}(t, s, x, v)dvdxds = IR,ε(t) + IIR,ε(t) + IIIR(t) .

First, for a.e. t > 0, the term IR,ε(t)→ 0 as R → +∞ uniformly in ε > 0 since
0 ≤ {Fε} ≤ G and G ∈ L∞(R+;L1(R+ ×R2 × S1)).

Next, the term IIR,ε(t) → 0 strongly in L1
loc(R+) as ε → 0+ for each R > 0 by

Lemma 4.
Finally, since {Fε} ⇀ F in L1

loc(R+ × R+ × R2 × S1) weak as ε → 0+, one
has 0 ≤ {F} ≤ G, so that F ∈ L∞(R+;L1(R+ × R2 × S1)). Hence the term
IIIR(t)→ 0 as R→ +∞ for a.e. t ≥ 0.

Thus we have proved that∫∫
Zε×S1

fε(t, x, v)dxdv →
∫ +∞

0

∫∫
R2×S1

F (t, s, x, v)dxdvds

in L1
loc(R+) and therefore for a.e. t ≥ 0, possibly after extraction of a subsequence

of ε→ 0+. �

5.3. An integral equation for M . Given a function ψ defined (a.e.) on the
half-line R+, we abuse the notation ψ1R+ to designate its extension by 0 on R∗−.

Henceforth we also denote

κ(t) := p(t)σe−σt1t≥0.

Lemma 6. The function M defined in (13) satisfies the integral equation

M(t) = κ ∗ (M1R+)(t) + 1
2πσκ(t)

∫∫
R2×S1

f in(x, v)dxdv, t ≥ 0

where ∗ denotes the convolution on the real line.

Proof. We apply the same method as for deriving the explicit representation formula
for F starting from the equation in Corollary 1, in order to find an exact formula
for m. Indeed, by the method of characteristics,

m(t, s) = 1s<tp(s)e
−σsm(t− s, 0) + 1t<sp(t)e

−σtm(0, s− t)

= 1s<tp(s)σe
−σs

∫ ∞
0

m(t− s, u)du

+ 1t<sp(t)σe
−σs 1

2π

∫∫
R2×S1

f in(x, v)dxdv .

The function m satisfies therefore

(25)

m(t, s) = 1s<tp(s)σe
−σsM(t− s)

+ 1t<sp(t)σe
−σs 1

2π

∫∫
R2×S1

f in(x, v)dxdv .

We next integrate both sides of (25) in s ∈ R+. By the definition (13) of M , we
obtain

M(t) =

∫ t

0

σp(s)e−σsM(t− s)ds+ p(t)e−σt 1
2π

∫∫
R2×S1

f in(x, v)dxdv
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a.e. in t ≥ 0, which is precisely the desired integral equation for M :

(26) M(t) =

∫ t

0

κ(s)M(t− s)ds+ 1
2πσκ(t)

∫∫
R2×S1

f in(x, v)dxdv .

�

5.4. An explicit representation formula for M .

Lemma 7. Let M be the function defined in (13). Then

M = 1
2πσ

∫∫
R2×S1

f in(x, v)dxdv
∑
n≥1

κ∗n

with the notation

κ∗n = κ ∗ · · · ∗ κ︸ ︷︷ ︸
n factors

.

Proof. Observe that

(27)

∫ +∞

0

κ(t)dt = σ

∫ +∞

0

e−σtp(t)dt

= 1 +

∫ +∞

0

ṗ(t)e−σtdt < 1 ,

where the second equality results from integrating by parts the integral defining κ,
and the final inequality is implied by the fact that p is a C1 decreasing function.

By Lemma 5, M ∈ L1
loc(R+) and M ≥ 0 a.e. on R+ since fε ≥ 0 a.e. on

R+ × Zε × S1 because f in ≥ 0 a.e. on R2 × S1 — see the positivity assumption in
(11). Applying the Fubini theorem shows that∫ +∞

0

M(t)dt=

∫ +∞

0

∫ t

0

κ(t− s)M(s)dsdt+ 1
2πσ

∫∫
R2×S1

f in(x, v)dxdv

∫ +∞

0

κ(t)dt

=

∫ +∞

0

M(s)

(∫ +∞

s

κ(t− s)dt
)
ds+ 1

2πσ

∫∫
R2×S1

f in(x, v)dxdv

∫ +∞

0

κ(t)dt.

In other words

‖M‖L1(R+) ≤ ‖M‖L1(R+)‖κ‖L1(R+) + 1
2πσ

∫∫
R2×S1

f in(x, v)dxdv ,

so that M ∈ L1(R+) since ‖κ‖L1(R+) < 1, and

‖M‖L1(R+) ≤
1

2πσ(1− ‖κ‖L1(R+))

∫∫
R2×S1

f in(x, v)dxdv .

In particular, if ∫∫
R2×S1

f in(x, v)dxdv = 0

then M = 0 a.e. on R+, so that the representation formula to be established
obviously holds in this case.

Otherwise ∫∫
R2×S1

f in(x, v)dxdv > 0 ;

define then

ψ(t) := 2πσ

(∫∫
R2×S1

f in(x, v)dxdv

)−1
M(t), t ≥ 0 .

According to Lemma 6, the function ψ verifies the integral equation

(28) ψ(t) = (κ ∗ (ψ1R+))(t) + κ(t) , a.e. in t ≥ 0 .
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Applying the Fubini theorem as above shows that the linear operator

A : L1(R+) 3 f 7→ κ ∗ (f1R+
) ∈ L1(R+)

satisfies

‖Af‖L1(R+) ≤ ‖A‖‖f‖L1(R+) with ‖A‖ =

∫ +∞

0

κ(t)dt < 1 .

Therefore (1 − A) is invertible in the class of bounded operators on L1(R+) with
inverse

(1−A)−1 =
∑
n≥0

An .

In particular

ψ = (I −A)−1κ =
∑
n≥1

κ?n

is the unique solution of the integral equation (28) in L1(R+), which establishes
the representation formula in the lemma. �

5.5. Asymptotic behavior of M in the long time limit.

5.5.1. The characteristic exponent ξσ.

Lemma 8. For each σ > 0, the equation∫ ∞
0

σe−(σ+ξ)tp(t)dt = 1

with unknown ξ has a unique real solution ξσ. This solution ξσ satisfies

−σ < ξσ < 0.

Proof. Consider the Laplace transform of the function κ defined above:

L[κ](ξ) :=

∫ ∞
0

σe−(σ+ξ)tp(t)dt.

As 0 < p ≤ 1, L[κ] is of class C1 on ]− σ,+∞[, and

L̇[κ](ξ) = −
∫ ∞
0

σe−(σ+ξ)ttp(t)dt < 0

as p(t) > 0 for each t ≥ 0. The function L[κ] is therefore decreasing on ]− σ,+∞[.
For each t > 0,

κ(t)e−ξt → 0+ as ξ → +∞ ,

while

κ(t)e−ξt ≤ σe−σt for each t ≥ 0 ,

since 0 < p ≤ 1. By dominated convergence, one concludes that

L[κ](ξ)→ 0+ as ξ → +∞.
Besides, for each t > 0,

σp(t)e−(σ+ξ)t ↑ σp(t) , as ξ ↓ −σ+ .

By monotone convergence,

L[κ](ξ)→ σ

∫ +∞

0

p(t)dt = +∞ , as ξ → −σ+ .

(Notice that the equality ∫ +∞

0

p(t)dt = +∞

follows from the lower bound in (8).)
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By the intermediate value theorem, there exists an unique ξσ > −σ such that

L[κ](ξσ) = 1.

Besides ξσ < 0 as L[κ] is decreasing and

L[κ](0) =

∫ ∞
0

κ(t)dt <

∫ +∞

0

σe−σtdt = 1 = L[κ](ξσ) ,

which concludes the proof. �

In particular

t 7→ κ(t)e−ξσt

is a decreasing probability density on R+.

5.5.2. The Renewal Equation. It remains to prove statement (3) in Theorem 2.
First, for each λ ∈ R and each locally bounded measurable function f : R 7→ R

supported in R+, denote

fλ(t) := eλtf(t) for each t ∈ R .

Notice that for each such f, g, we have

eλt(f ∗ g)(t) = (fλ ∗ gλ)(t) for each t ∈ R.

Hence, if ψ is a solution of the integral equation (28), the function ψ−ξσ satisfies

(29) ψ−ξσ (t) = (κ−ξσ ∗ ψ−ξσ )(t) + κ−ξσ ,

which is a renewal integral equation, in the sense of [14].
Moreover, as noticed above, κ−ξσ is a decreasing probability density on R+, so

that in particular κ−ξσ is directly Riemann integrable (see [14] pp. 348-349). Thus,
applying Theorem 2 on p. 349 in Feller’s Introduction to Probability Theory [14]
shows that

(30) ψ(t)e−ξσt → 1∫ ∞
0

tκ(t)e−ξσtdt

as t→ +∞.

By definition of ψ, this is precisely the asymptotic behavior of M in Theorem 2 (3).

5.6. Two important limiting cases for ξσ. We conclude our proof of Theorem
2 with a discussion of the asymptotic behavior of ξσ (statement (4) of Theorem 2)
in the two following regimes:

(1) the collisionless regime σ → 0+, and
(2) the highly collisional regime σ → +∞.

End of the proof of Theorem 2. Denote for the sake of simplicity λσ := σ + ξσ.
Establishing that ξσ ∼ −σ as σ → 0+ amounts to proving that λσ = o(σ). First,
notice that, since −σ < ξσ,

0 < λσ < σ

so λσ → 0+ as σ → 0+. Keeping this in mind, we have

(31)

∫ +∞

0

e−λσtp(t)dt =
1

σ

by definition of ξσ. Substituting z = λσt in the integral above, we obtain:

0 <
λσ
σ

=

∫ +∞

0

e−zp(z/λσ)dz.
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Since λσ → 0+ as σ → 0+ and p(t) → 0+ as t → +∞, one has p(z/λσ) → 0+ as
σ → 0+. Besides 0 ≤ e−zp(z/λσ) ≤ e−z so that, by dominated convergence

λσ
σ
→ 0 as σ → 0+.

This establishes the asymptotic behavior of ξσ in the collisionless regime.
As for the highly collisional regime, we return to the equation (31) defining ξσ

(written in terms of λσ):

1 = σ

∫ +∞

0

e−λσtp(t)dt

= λσ

∫ ∞
0

e−λσtp(t)dt− ξσ
∫ ∞
0

e−λσtp(t)dt

= 1 +

∫ ∞
0

e−λσtṗ(t)dt− ξσ
∫ ∞
0

e−λσtp(t)dt

where the last equality follows from integrating by parts the first integral on the
left hand side. Therefore

ξσ =

∫ ∞
0

e−λσtṗ(t)dt∫ ∞
0

e−λσtp(t)dt

,

or, after substituting t′ = λσt,

(32) ξσ =

∫ ∞
0

e−tṗ(t/λσ)dt∫ ∞
0

e−tp(t/λσ)dt

.

Equation (31) shows that λσ → +∞ as σ → +∞. Passing to the limit in the
right-hand side of (32), we find, by dominated convergence

ξσ →

∫ ∞
0

e−tṗ(0)dt∫ ∞
0

e−tp(0)dt

= ṗ(0) as σ → +∞ .

Indeed p is decreasing and convex, as can be verified for instance on the Boca-
Zaharescu explicit formula2 (10)-(9) for p, so that

0 ≤ −ṗ(t) ≤ −ṗ(0) , for each t ≥ 0 .

We conclude by observing that the same explicit formulas of Boca-Zaharescu [4]
imply that

˙p(0) = −2 .

�

6. Final remarks and open problems

The present work provides a complete description of the homogenization of the
linear Boltzmann equation for monokinetic particles in the periodic system of holes
of radius ε2 centered at the vertices of the square lattice εZ2 (Theorem 1.) In
particular, we have given an asymptotic equivalent of exponential type of the total
mass of the particle system in the long time limit (Theorem 2.)

2In space dimension higher than 2, one can show that the analogue of p is also nonincreasing
and convex, by using a variant of a formula due to L.A. Santalò established in [13], for want of an
explicit formula giving the limiting distribution of free path lengths.
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Since the discussion in the present paper is restricted to the two dimensional
setting, it would be useful to extend the results above to the case of higher space
dimensions, and to lattices other than the square or cubic lattice. Most of the
arguments considered here can be adapted to these more general cases; however,
the analogue of the distribution of free path lengths (the function p(t)) is not known
explicitly so far. See [3] for these more general cases.

Otherwise, it would also be interesting to investigate other scalings than the
Boltzmann-Grad type scaling considered here — holes of radius ε2 centered at the
vertices of a square lattice whose fundamental domain is a square of sise ε in the
case of space dimension 2. Typically, one would like to mix the homogenization
procedure considered in the present work with the assumption of a highly collisional
regime σ � 1, so that the size of the holes and the distance between neighboring
holes are scaled in a way that differs from the one considered here. We hope to
return to this problem in a forthcoming publication.

Another problem of potential interest is the case where the periodically dis-
tributed holes considered in the present paper are replaced with scatterers, assum-
ing that particles are specularly reflected on the surface of each scatterer. In other
words, the problem (Ξε) is replaced with

∂tfε + v · ∇xfε + σ(fε −Kfε) = 0, (x, v) ∈ Zε × S1, t > 0,

fε(t, x, v) = fε(t, x, v − 2(v · nx)nx, v), (x, v) ∈ ∂Zε × S1, t > 0,

fε(0, x, v) = f in(x, v), (x, v) ∈ Zε × S1.

Assume for simplicity that fε is periodic with period 1 in x1, x2, while ε designates
the sequence of 1/n, for each integer n ≥ 1.

Most likely, the homogenized equation governing the vanishing ε limit of fε
should involve an extended phase space, as in the case of the Boltzmann-Grad
limit of the periodic Lorentz gas [8, 25]. The structure of this homogenized equation
should be such that its solution converges to a constant state exponentially fast in
the long time limit for each σ > 0. However, while the limiting constant state is
fully determined by conservation of mass and is therefore independent of σ > 0,
the exponential decay to that constant state is not expected to hold uniformly as
σ → 0. Indeed, the case σ = 0 is precisely the Boltzmann-Grad limit of the periodic
Lorentz gas governed by the equation (1), and according to Theorem 3.5 in [9], this
equation (1) does not have the spectral gap property.

Finally, the homogenization result considered in the present paper raises an
interesting question, of quite general bearing. Usually, homogenization is a limiting
process leading to a macroscopic description of some material that is known at the
microscopic scale. In the problem considered here, it has been necessary to use a
more detailed description of the particle system than that provided by the linear
Boltzmann equation (problem (Ξε) set in the extended phase space that involves
the additional variable s.)

In other words, the formulation of the macroscopic homogenization limit for
the linear Boltzmann equation considered here involves remnants of an even more
microscopic description of the system than the linear Boltzmann equation itself —
namely the extended phase space and the additional variable s.

We do not know whether this phenomenon (i.e. the need for a more microscopic
description of a system to arrive at the formulation of a homogenized equation
for that system) can be observed in homogenization problems other than the one
considered here — for instance in the case of equations other than those found in
context of kinetic theory.
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CHAPTER III

THE DIFFUSION APPROXIMATION OF THE HOMOGENIZED

BOLTZMANN EQUATION

Introduction

A classical result in kinetic theory is that solutions of the linear Boltzmann
equation in the small mean free path limit are governed by a diffusion equation
-see [2, 8] for instance. However, the structure of the linear Boltzmann equation
can be deeply modified in the case of some homogenization limits involving perfo-
rated background media with a periodic distribution of holes : see [3]. Whether
a diffusion limit can be established in such cases is not entirely obvious, as the
homogenized equation may fail to have some of the crucial properties used in [2].
The purpose of the present work is to study this situation on an example.

We first recall more precisely the recent homogenization result evoked above and
proved in the previous chapter and published in [3]. Consider fη ≡ fη(t, x, v) the
solution of the boundary-value problem

∂tfη + v · ∇xfη + σ(fη − fη) = 0, t > 0, (x, v) ∈ Zη × S1,

fη(t, x, v) = 0, t > 0, (x, v) ∈ ∂Zη × S1 v · nx > 0,

fε(0, x, v) = f in(x), (x, v) ∈ Zη × Sd−1,

where

φ :=
1

2π

∫
S1
φ(v)dv

and where Zη designates the space R2 with a periodic system of holes removed

Zη := R
2 \

⋃
k∈Z2

B
(
ηk, η2

)
.

The authors proved in that

fη ⇀ f :=

∫ ∞
0

Fds as η → 0+

in L∞
(
R+ ×R2 × S1

)
−weak-*, where F ≡ F (t, s, x, v) is the solution of the

Cauchy problem

(0.1)


∂tF + v · ∇xF + ∂sF = −σF +

ṗ(t ∧ s)
p(t ∧ s)

F , x ∈ Rd , |v| = 1 , s, t > 0 ,

F (t, 0, x, v) = σ

∫ ∞
0

F (t, s′, x)ds′,

F (0, s, x, v) = f in(x)σe−σs.

Here, p is a positive decreasing function which definition is given here. Let τη
designate the free path length in the direction v for a particle starting from x in Zη

τη(x, v) := {t > 0|x− tv ∈ ∂Zη} .
73
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The distribution of free path lengths has been studied in [4, 5, 6, 7]. In particular,
we have established in Lemma 1 in [3] that for each t ≥ 0

1t<τη( xη ,v)
→ p(t) in L∞

(
R

2 × S1
)
− weak* as η → 0+.

F. Boca and A. Zaharescu have given an explicit representation formula for p

p(t) =

∫ ∞
t

(s− t)Υ(s)ds,

where

Υ(t) =
24

π2

{
1 if t ∈

(
0, 12
]
,

1
2t + 2

(
1− 1

2t

)2
ln
(
1− 1

2t

)
− 1

2 ln
∣∣1− 1

t

∣∣ if t > 1
2 .

In particular, t 7→ ṗ
p is not a constant. That remark will be crucial in the sequel.

In the present work, we shall study a diffusion approximation of (0.1) More
precisely, we scale σ and x in (0.1) so that

σ =
σ̂

ε2

and

x̂ =
x

ε
with ε� 1, and define

F̂ε (t, s, x̂, v) := F (t, s, x, v).

Since F is a solution of (0.1), F̂ε satisfies

∂tF̂ε +
v

ε
· ∇x̂F̂ε + ∂sF̂ε = − σ̂

ε2
F̂ε +

ṗ(t ∧ s)
p(t ∧ s)

F̂ε , x̂ ∈ Rd , |v| = 1 , s, t > 0 ,

F̂ε(t, 0, x̂, v) =
σ̂

ε2

∫ ∞
0

F̂ ε(t, s
′, x̂)ds′,

F̂ε(0, s, x̂, v) = f in(εx̂)
σ̂

ε2
e−

σ̂
ε2
s.

For the sake of simplicity, we henceforth drop the hat in σ̂, x̂ and F̂ε. In other words,
we consider Fε ≡ Fε(t, s, x, v) the solution of the Cauchy problem
(0.2)

∂tFε +
v

ε
· ∇xFε + ∂sFε = − σ

ε2
Fε +

ṗ(t ∧ s)
p(t ∧ s)

Fε , x ∈ R2 , |v| = 1 , s, t > 0 ,

Fε(t, 0, x, v) =
σ

ε2

∫ ∞
0

F ε(t, s
′, x)ds′,

Fε(0, s, x, v) = ρin(x)
σ

ε2
e−

σ
ε2
s.

The problem studied in this paper is to find the correct equation for Fε in the
vanishing ε limit.
Observe that by integrating equation (0.2) in s ∈ R+, one obtains

(0.3)


(
∂t +

v

ε
.∇x +

σ

ε2

)
fε −

σ

ε2
fε =

∫ ∞
0

ṗ(t ∧ s)
p(t ∧ s)

Fεds,

fε(0, x, v) = ρin(x).

This is not a closed equation for fε :=
∫∞
0
Fεds, since (t, s) 7→ ṗ(t∧s)

p(t∧s) is not a

constant as mentioned above. That being said, we observe that

Fε|t=0 → ρinδs=0 in M
(
R+ ×R2 × S1

)
, as ε→ 0+,
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which suggests that

(0.4) Fε → fδs=0 in M
(
R+ ×R+ ×R2 × S1

)
as ε→ 0+,

where f ≡ f(t, x, v).
In this case, we expect that, in the limit as ε tends to 0, the solution fε of (0.3)
behaves like the solution gε of the Cauchy problem

(0.5)


(
∂t +

v

ε
.∇x +

σ

ε2

)
gε −

σ

ε2
gε =

ṗ(0)

p(0)
gεds,

gε(0, x, v) = ρin(x).

This a classical linear Boltzmann equation for which the diffusion approximation is
well-known, i.e.

gε → ρ in L2
(
R+ ×R2 × S1

)
-strong as ε→ 0+

where ρ ≡ ρ(t, x) is the solution of the Cauchy problem

(0.6)


(
∂t −

1

2σ
∆x

)
ρ =

ṗ

p
(0)ρ(t, x), (t, x) ∈ R+ ×R2,

ρ(0, x) = ρin(x), x ∈ R2.

We now give a argument in support of (0.4).
We define φ(s) := s ∧ 1 for each s ≥ 0, and

mφ(t) :=

∫∫∫
R+×R2×S1

Fε(t, s, x, v)φ(s)dsdxdv for each t ≥ 0.

Multiplying both sides of (0.2) by φ and integrating in (s, x, v) ∈ R+ × R2 × S1,
one obtains

ṁφ +
σ

ε2
mφ −mφ̇ =

∫∫∫
ṗ

p
(s ∧ t)Fεφdsdxdv

≤
∥∥∥∥ ṗp
∥∥∥∥
L∞(R+)

∫∫∫
Fεφdsdxdv =

∥∥∥∥ ṗp
∥∥∥∥
L∞(R+)

mφ

or equivalently

ṁφ +
σ

ε2
mφ −

∫ 1

0

∫∫
Fεdxdvds ≤

∥∥∥∥ ṗp
∥∥∥∥
L∞(R+)

mφ.

Thus

ṁφ +
σ

ε2
mφ ≤

∥∥∥∥ ṗp
∥∥∥∥
L∞(R+)

mφ +

∫ ∞
0

Fεdxdvds.

By maximum principle, we have∫ ∞
0

Fεdxdvds ≤
∫
R2

ρin(x)dx for each ε > 0,

so that

ṁφ +
σ

ε2
mφ ≤

∥∥∥∥ ṗp
∥∥∥∥
L∞(R+)

mφ +

∫
R2

ρin(x)dx,

or equivalently

ṁφ + Cεmφ ≤ Cin

with the notation

Cε :=
σ

ε2
−
∥∥∥∥ ṗp
∥∥∥∥
L∞(R+)

,
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and

Cin :=

∫
R2

ρin(x)dx.

That implies in particular

d

dt

(
eCεtmφ

)
≤ CineCεt

so that for each t ≥ 0

0 ≤ mφ(t) ≤ e−Cεtmφ(0) +
Cin

Cε
= O

(
C−1ε

)
.

Since C1
ε → 0 as ε→ 0+

Fε → 0 as ε→ 0+.

in D′s (]0,∞[) . We can therefore expect that

(0.7) Fε → ρδs=0 as ε→ 0+

in M
(
R+ ×R+ ×R2 × S1

)
and where ρ is the solution of (0.6).

We have evoked above the diffusion approximation for some classical linear Boltz-
mann equation, that is established either by the Hilbert decomposition -see [2] for
instance, or compactness in L2 see for instance [8]. Both methods do not fit to a
convergence such that (0.7) so that our argument is based on a dual formulation
and Fourier transform.

0.1. Main result. We give here the diffusion approximation for the homogenized
equation. Consider Fε ≡ Fε(t, s, x, v) the solution of the Cauchy problem

(Σε)


∂tFε + v

ε .∇xFε + ∂sFε = − σ
ε2Fε + ṗ

p (t ∧ s)Fε, t, s > 0, (x, v) ∈ R2 × S1

Fε(t, 0, x, v) = σ
ε2

∫ +∞
0

F ε(t, s, x)ds, t > 0, (x, v) ∈ R2 × S1

Fε(0, s, x, v) = σ
ε2 e
−σs/ε2f in(x), s > 0, (x, v) ∈ R2 × S1

where p ∈ C1(R+;R+) and is decreasing. We assume besides that

f in ∈ L1(R2) ∩ L2(R2)

and there exists C > 0 such that

sup
x∈R2

∣∣f in(x)
∣∣ ≤ C.

The main result is then

Theorem 0.1. Under the assumptions and with the notations above,∫ ∞
0

Fε(s)ds→ u in L2
loc

(
R+;L2

(
R

2 × S1
))
− weak as ε→ 0+

where u is a solution in the sense of distributions of the Cauchy problem{
∂tu− 1

2σ∆u = ṗ(0)u t > 0, x ∈ R2,
u(0, x) = f in(x) x ∈ R2.

Moreover, we have in fact a strong convergence

Theorem 0.2. Under the assumptions and with the notations above,∫ ∞
0

∫
S1
Fεdvds→ u in L

3
2

(
[0, T ];L

2
3

loc

(
R

2
loc

))
− strong as ε→ 0+.

Theorem 0.2 is established in section 4 while Theorem 0.1 is proved in the sections
preceding.
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1. A priori bounds

In the present section, we establish some a priori estimates.

We recall that by Proposition 4 in [2], we have

Fε ≥ 0 a.e. on R+ ×R+ ×R2 × S1

so that

(1.1) fε ≥ 0 a.e. on R+ ×R2 × S1.

That being said, we recall that fε verifies the equation

∂tfε +
v

ε
.∇xfε +

σ

ε2
(
fε − fε

)
=

∫ ∞
0

ṗ

p
(t ∧ s)Fεds.

Since p ≥ 0 and is C1 and is nonicreasing, this implies that

∂tfε +
v

ε
.∇xfε +

σ

ε2
(
fε − fε

)
≤ 0.

Mutiplying both sides of the inequality above by fε and integrating in x, v ∈ R2×S1
gives

1

2
∂t

∫∫
R2×S1

f2ε dxdv+
1

2ε

∫∫
R2×S1

v.∇x (fε)
2
dxdv+

σ

ε2

∫∫
R2×S1

(
fε − fε

)
fεdxdv ≤ 0

As
1

2ε

∫∫
R2×S1

v.∇x (fε)
2
dxdv = 0

and
σ

ε2

∫∫
R2×S1

(
fε − fε

)
fεdxdv =

σ

ε2

∫∫
R2×S1

(
fε − fε

)2
dxdv

+
σ

ε2

∫∫
R2×S1

(
fε − fε

)
fεdxdv,

=
σ

ε2

∫∫
R2×S1

(
fε − fε

)2
dxdv,

the inequality above is equivalent to

1

2
∂t

∫∫
R2×S1

f2ε dxdv +
σ

ε2

∫∫
R2×S1

(
fε − fε

)2
dxdv ≤ 0.

Integrating both sides of this inequality further in t ∈ [0, T ] gives

‖fε‖2L2(R2×S1)(T ) +
2σ

ε2
‖fε − fε‖2L2([0,T ]×R2×S1) ≤ ‖f

in‖2L2(R2×S1).

We notice that by Jensen inequality, for each ε > 0 and for each t ≥ 0∫
R2

f
2

ε(t, x)dx =

∫
R2

(∫
S1
fε(t, x, v)dv

)2

dx

≤
∫
R2

(fε(t, x, v))
2
dvdx = ‖fε‖2L2(R2×S1)(t).

As a result, we obtain the following bounds.

Proposition 1.1. Under the notations and assumptions above, we have

• (fε)ε>0 = O(1) in L∞
(
R+;L2

(
R

2 × S1
))
.

•
(
fε
)
ε>0

= O(1) in L∞
(
R+;L2

(
R

2
))
.

• for each T > 0,
(
1
ε

(
fε − fε

))
ε>0

= O(1) in L2
(
[0, T ]×R2 × S1

)
.

The proposition above immediately entails the following
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Corollary 1.2. Under the assumptions and notations above, the family (ûε)ε>0 is

relatively compact in L∞
(
R+;L2

(
R

2
))

weak-*.

In particular, there exists u ∈ L∞
(
R+;L2

(
R

2
))

and εk → 0+ as k → +∞ such
that

ûε → û in L∞
(
R+;L2

(
R

2
))
− weak-*.

Now we give an integral equation for uε.

2. Integral Formulation of the Homogenized Equation

2.1. An Integral Equation for uε. First we recall some notations. Henceforth,
we denote Fε ≡ Fε(t, s, x, v) the solution of the Cauchy problem :

(Σε)


∂tFε + v

ε .∇xFε + ∂sFε = − σ
ε2Fε + ṗ

p (t ∧ s)Fε, t, s > 0, (x, v) ∈ R2 × S1

Fε(t, 0, x, v) = σ
ε2

∫ +∞
0

F ε(t, s, x)ds, t > 0, (x, v) ∈ R2 × S1

Fε(0, s, x, v) = σ
ε2 e
−σs/ε2f in(x), s > 0, (x, v) ∈ R2 × S1

where p ∈ C1(R+;R+) and is decreasing. We assume besides that

f in ∈ L1(R2) ∩ L2(R2)

and there exists C > 0 such that

sup
x∈R2

∣∣f in(x)
∣∣ ≤ C.

We denote also

fε(t, x, v) :=

∫ ∞
0

Fε(t, s, x, v)ds, t > 0, (x, v) ∈ R2 × S1,

and

uε(t, x) :=

∫
S1
fε(t, x, v)dv

where dv is the uniform probability measure in the unit sphere S2. We now give
some a priori estimates on fε and uε that will give the compactness of (uε)ε>0 in

L∞
(
R+;L2

(
R

2
))
−weak.

Let Fε ≡ Fε(t, s, x, v) a generalized solution of (Σε). For a.e. (t, s, x, v) ∈ R+ ×
R+×R2×S1, the function τ 7→ Fε

(
t+ τ, s+ τ, x+ τ vε , v

)
is C1 in τ > 0 and since

p ∈ C1 (R0) and does not vanish one has(
d

dτ
+
σ

ε2
− ṗ

p
(t ∧ s+ τ)

)
Fε

(
t+ τ, s+ τ, x+ τ

v

ε
, v
)

= e−
σ
ε2
τp(t ∧ s+ τ)

d

dτ

(
e
σ
ε2
τFε(t+ τ, s+ τ, x+ τ vε , v)

p(t ∧ s+ τ)

)
= 0.

Therefore the function

Γ : τ 7→
e
σ
ε2
τFε(t+ τ, s+ τ, x+ τ vε , v)

p(t ∧ s+ τ)

is constant. In particular

Γ(0) =

{
Γ(−t) if t < s,
Γ(−s) if s < t.
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We arrive therefore at the following expression for Fε :

Fε (t, s, x, v) = 1t<s
σ

ε2
e−

σ
ε2
sp(t)f in

(
x− tv

ε

)
+ 1s<t

σ

ε2
e−

σ
ε2
sp(s)

∫ ∞
0

F̄ε

(
t− s, τ, x− sv

ε

)
dτ.

The uniqueness of the solution of (Σε) can be found in the proof of Proposition 4
in [3]. Integrating the equality above in s ∈ R+ leads to

fε(t, x, v) = p(t)f in
(
x− tv

ε

)∫ ∞
t

σ

ε2
e−

σ
ε2 ds

+

∫ t

0

σ

ε2
e−

σ
ε2
sp(s)fε

(
t− s, x− sv

ε

)
ds,

or equivalently

(2.1)

fε(t, x, v) = p(t)f in
(
x− tv

ε

)
e−

σ
ε2
t

+

∫ t

0

σ

ε2
e−

σ
ε2
sp(s)fε

(
t− s, x− sv

ε

)
ds.

Integrating the equality above further in v ∈ S1 leads to the following integral
equation for uε :

(2.2)

uε(t, x) = p(t)e−
σ
ε2
t

∫
S1
f in

(
x− tv

ε

)
dv

+

∫
S1

∫ t

0

σ

ε2
e−

σ
ε2
sp(s)uε

(
t− s, x− sv

ε

)
dsdv.

We will apply the Fourier Transform to the equation above and give an integral
equation for the Fourier Transform of uε.

2.2. An Integral Equation in Fourier Variables. Recall that

ûε(t, ξ) :=

∫
R2

e−iξ.xu(t, x)dx, (t, ξ) ∈ R+ ×R2.

Applying the Fourier transform to equality (2.2) leads to

(2.3)

ûε(t, ξ) =

∫
R2

e−ix.ξp(t)e−
σ
ε2
t

∫
S1
f in

(
x− tv

ε

)
dvdx

+

∫
R2

e−ix.ξ
∫
S1

∫ t

0

σ

ε2
e−

σ
ε2
sp(s)uε

(
t− s, x− sv

ε

)
dsdvdx.

=

∫
S1
e−ivt.ξ/εp(t)e−σt/ε

2

f̂ in(ξ)dv

+

∫ t

0

e−ivs.ξ/ε
σ

ε2
e−

σ
ε2
sp(s)ûε(t− s, ξ)dsdv

=

(∫
S1
e−ivt.ξ/εdv

)
p(t)e−σt/ε

2

f̂ in(ξ)

+

∫ t

0

p(s)

(∫
S1
e−ivs.ξ/εdv

)
σ

ε2
e−σs/ε

2

ûε(t− s, ξ)ds.
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Therefore, the function ûε verifies

(2.4)

ûε(t, ξ) = J

(
tξ

ε

)
p(t)e−σt/ε

2

f̂ in(ξ)

+

∫ t

0

p(s)J

(
sξ

ε

)
σ

ε2
e−σs/ε

2

ûε(t− s, ξ)ds (t, ξ) ∈ R+ ×R2,

where

J(ω) :=

∫
S1
e−iω.vdv.

2.3. A dual formulation. Let φ ∈ C∞
(
R+ ×R2

)
be real-valued, so that

φ̂(t, ξ)∗ :=

∫
R2

eix.ξφ(t, x)dx, (t, ξ) ∈ R+ ×R2,

(denoting z∗ the complex conjugate of z.) Multiplying both sides of equation (2.4)

by φ̂(t, ξ)∗ and integrating in (t, ξ) ∈ R+ ×R2 leads to∫∫
R+×R2

ûε(t, ξ)φ̂(t, ξ)∗dtdξ =

∫∫
R+×R2

J

(
t
ξ

ε

)
e−σt/ε

2

p(t)f̂ in(ξ)φ̂(t, ξ)∗dtdξ

+

∫∫
R+×R2

∫ t

0

J

(
sξ

ε

)
p(s)

σ

ε2
e−σs/ε

2

ûε(t− s, ξ)φ̂(t, ξ)∗dsdtdξ.

Rewriting this equatlity as
(2.5)∫∫

R+×R2

J

(
t
ξ

ε

)
e−σt/ε

2

p(t)f̂ in(ξ)φ̂(t, ξ)∗dtdξ =

∫∫
R+×R2

ûε(t, ξ)φ̂(t, ξ)∗dtdξ

−
∫∫
R+×R2

∫ t

0

J

(
sξ

ε

)
p(s)

σ

ε2
e−σs/ε

2

ûε(t− s, ξ)φ̂(t, ξ)∗dsdtdξ,

we put it in the form

Sε = Kε, ∀ε > 0

with the notation

Sε :=

∫∫
R+×R2

J

(
t
ξ

ε

)
e−σt/ε

2

p(t)f̂ in(ξ)φ̂(t, ξ)∗dtdξ,

and

Kε :=

∫∫
R+×R2

ûε(t, ξ)φ̂(t, ξ)∗dtdξ

−
∫∫
R+×R2

∫ t

0

J

(
sξ

ε

)
p(s)

σ

ε2
e−σs/ε

2

ûε(t− s, ξ)φ̂(t, ξ)∗dsdtdξ.

We are going to compute the limits of both Sε and Kε as ε→ 0+.

3. Passing to the vanishing ε limit in the integral equation

3.1. The Source term. Consider the left-hand side of equality (2.5):

Sε :=

∫∫
R+×R2

J

(
t
ξ

ε

)
e−σt/ε

2

p(t)f̂ in(ξ)φ̂(t, ξ)∗dtdξ.

Substituting T = t
ε2

Sε = ε2
∫ ∞
0

∫
R2

e−σT f̂ in(ξ)p
(
ε2T

)
J (εTξ) φ̂(ε2T, ξ)∗dξdT,
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or equivalently

σ

ε2
Sε =

∫ ∞
0

∫
R2

σe−σT f̂ in(ξ)p
(
ε2T

)
J (εTξ) φ̂(ε2T, ξ)∗dξdT.

Since J(0) = p(0) = 1,

(3.1) σe−σT f̂ in(ξ)p
(
ε2T

)
J (εTξ) φ̂(ε2T, ξ)∗ → σe−σT f̂ in(ξ)φ̂(0, ξ)∗

as ε→ 0 a.e. in R+×R2. Moreover, for each (T, ξ) ∈ R+×R2, and each ε ∈ (0, 1)

(3.2)
∣∣∣σe−σT f̂ in(ξ)J (εTξ)φ(ε2T, ξ)

∣∣∣ ≤ σe−σT ∣∣∣f̂ in(ξ)
∣∣∣ sup
T≥0

∣∣∣φ̂(T, ξ)∗
∣∣∣

since |J(t)| ≤ 1 and |p(t)| ≤ 1 for each t ≥ 0 and φ ∈ C∞c (R+×R2). Besides, since
φ ∈ S

(
R+ ×R2

)
, we have∣∣∣φ̂(t, ξ)∗

∣∣∣ ≤ C

1 + |ξ|2
, (t, ξ) ∈ R+ ×R2,

and therefore

ξ 7→ sup
t≥0

∣∣∣φ̂(t, ξ)∗
∣∣∣ ∈ L2

(
R

2
)
.

Since f in ∈ L2
(
R

2
)
, we have f̂ in ∈ L2

(
R

2
)

so that

ξ 7→
∣∣∣f̂ in(ξ)

∣∣∣ sup
t≥0

∣∣∣φ̂(t, ξ)∗
∣∣∣ ∈ L1

(
R

2
)

;

Together with

t 7→ σe−σt ∈ L1 (R+) ,

it implies that

(t, ξ) 7→ σe−σt
∣∣∣f̂ in(ξ)

∣∣∣ sup
t≥0

∣∣∣φ̂(t, ξ)∗
∣∣∣ ∈ L1

(
R+ ×R2

)
.

We conclude from (3.1) and (3.2) that

σ

ε2
Sε →

∫ ∞
0

σe−σtdt

∫
R2

f̂ in(ξ)φ̂(0, ξ)∗dξ

by dominated convergence, or equivalently that

σ

ε2
Sε →

∫
R2

f̂ in(ξ)φ̂(0, ξ)∗dξ

as ε→ 0+.

3.2. The Diffusion term. We now consider the right-hand side of equality (2.5)

(3.3)

Kε :=

∫∫
R+×R2

ûε(t, ξ)φ̂(t, ξ)∗dtdξ

−
∫∫
R+×R2

∫ t

0

J

(
sξ

ε

)
p(s)

σ

ε2
e−σs/ε

2

ûε(t− s, ξ)φ̂(t, ξ)∗dsdtdξ

= K(1)
ε −K(2)

ε ,

with

K(1)
ε :=

∫∫
R+×R2

ûε(t, ξ)φ̂(t, ξ)∗dtdξ

and

K(2)
ε :=

∫∫
R+×R2

∫ t

0

J

(
sξ

ε

)
p(s)

σ

ε2
e−σs/ε

2

ûε(t− s, ξ)φ̂(t, ξ)∗dsdtdξ.
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3.2.1. A reformulation of the Diffusion Term. Let

K(2)
ε :=

∫∫
R+×R2

∫ t

0

J

(
sξ

ε

)
p(s)

σ

ε2
e−σs/ε

2

ûε(t− s, ξ)φ̂(t, ξ)∗dsdtdξ.

Substituting T = t− s into the expression above,

K(2)
ε =

∫∫
R+×R2

∫ ∞
0

1t−s≥0J

(
sξ

ε

)
p(s)

σ

ε2
e−σs/ε

2

ûε(t− s, ξ)φ̂(t, ξ)∗dsdtdξ

=

∫∫
R+×R2

∫ ∞
0

1T≥0J

(
sξ

ε

)
p(s)

σ

ε2
e−σs/ε

2

ûε(T, ξ)φ̂(T + s, ξ)∗dsdTdξ.

Substituting S = s
ε2 in the expression above, we find

(3.4) K(2)
ε =

∫∫
R+×R2

∫ ∞
0

J (εSξ) p(ε2S)σe−σS ûε(T, ξ)φ̂(T + ε2S, ξ)∗dSdTdξ.

Besides, for each ε > 0

(3.5)

K(1)
ε =

∫∫
R+×R2

ûε(t, ξ)φ̂(t, ξ)∗dtdξ

=

∫ ∞
0

σe−σS

(∫∫
R+×R2

ûε(T, ξ)φ̂(T, ξ)∗dTdξ

)
dS

Consequently, from (3.3) and (3.4) and (3.5), we conclude that
(3.6)

Kε =

∫ ∞
0

σe−σs

(∫∫
R+×R2

ûε(t, ξ)
(
φ̂(t, ξ)∗ − J (εsξ) p(ε2s)φ̂(t+ ε2s, ξ)∗

)
dtdξ

)
ds

=

∫ ∞
0

∫∫
R+×R2

ûε(t, ξ)
(
Ψ(t, s, 0, ξ)−Ψ(t, s, ε2, ξ)

)
dtdξds,

where

Ψ : (t, s, h, ξ) ∈ R3
+ ×R2 7→ σe−σsJ

(√
hsξ
)
p (hs) φ̂(t+ hs, ξ)∗.

3.2.2. The Function Ψ. Before going further, we consider first the function J :
R

2 7→ R
+ whose definition is recalled below :

J(ω) :=
1

2π

∫
S1
e−iv.ωdv, ω ∈ R2.

Obviously, by the symmetry v 7→ −v,

J(ω) =
1

2π

∫
S1

cos(v.ω)dv.

Since

cos(x) =

∞∑
n=0

(−1)n

(2n)!
x2n, x ∈ R.

one has

J(ω) = 1− 1

4
|ω|2 + o(|ω|2) as |ω| → 0+.

and let the function C : R+ 7→ R+ be the analytic function defined by

J(x) = C(|x|2), x ∈ R2,

where

C(r) =
∑
n≥0

(−1)n

2n!
rn.
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Obviously C(0) = 1 and Ċ(0) = − 1
4 . Thus

Ψ(t, s, h, ξ) = σe−σsC
(
hs2|ξ|2

)
p(hs)φ̂(t+hs, ξ)∗, (t, s, h, ξ) ∈ R+×R+×R+×R2,

Since C, p, φ̂∗ ∈ C1 (R+), for each (t, s, ξ) ∈ R+ ×R+ ×R2

h ∈ R+ 7→ Ψ(t, s, h, ξ) ∈ C1 (R+) ,

with

(3.7)

∂hΨ(t, s, ξ, h) = σe−σs∂h
(
C
(
hs2|ξ|2

))
p(hs)φ̂(t+ hs, ξ)∗

+ σe−σsC
(
hs2|ξ|2

)
p(hs)∂h

(
φ̂(t+ hs, ξ)∗

)
+ σe−σsC

(
hs2|ξ|2

)
∂h (p(hs)) φ̂(t+ hs, ξ)∗

= σe−σss2|ξ|2Ċ
(
hs2|ξ|2

)
p(hs)φ̂(t+ hs, ξ)∗

+ σe−σsC
(
hs2|ξ|2

)
p(hs)s∂tφ̂(t+ hs, ξ)∗

+ σe−σssṗ(hs)C
(
hs2|ξ|2

)
φ̂(t+ hs, ξ)∗.

In particular,

(3.8)
∂hΨ(t, s, 0, ξ) = σe−σss2|ξ|2Ċ (0) φ̂(t, ξ)∗

+ σe−σss∂tφ̂(t, ξ)∗ + σe−σssṗ(0)φ̂(t, ξ)∗,

for each (t, s, ξ) ∈ R+ ×R+ ×R2.

Lemma 3.1. Under the notations and assumptions above,

Ψ(t, s, 0, ξ)−Ψ(t, s, h, ξ)

h
→ −∂hΨ(t, s, 0, ξ) as h→ 0+

in L1
t

(
R+;L2

(
R+ ×R2

))
−strong.

Proof. We easily check that

Ψ(t, s, 0, ξ)−Ψ(t, s, h, ξ)

h
→ −∂hΨ(t, s, 0, ξ) as h→ 0+

a.e. in R+ ×R+ ×R2. Since φ ∈ S
(
R+ ×R2

)
there exists C,C ′ such that∣∣∣φ̂(t+ hs, ξ)∗

∣∣∣ ≤ C 1

1 + (t+ hs)2
1

1 + |ξ|4

≤ C 1

1 + t2
1

1 + |ξ|4
, ∀(t, s, h, ξ) ∈ R+ ×R+ ×R2 ×R2,

and ∣∣∣∂hφ̂(t+ hs, ξ)∗
∣∣∣ ≤ C ′ 1

1 + (t+ hs)2
1

1 + |ξ|2

≤ C ′ 1

1 + t2
1

1 + |ξ|4
, ∀(t, s, h, ξ) ∈ R+ ×R+ ×R2 ×R2.

Consequently by 3.7

sup
h>0
|∂hΨ(t, s, ξ, h)| ≤ Cσe−σss2|ξ|2 1

1 + t2
1

1 + |ξ|4

+ C ′σe−σss
1

1 + t2
1

1 + |ξ|4

+ Cσe−σss
1

1 + t2
1

1 + |ξ|4
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so that

(t, s, ξ) 7→ sup
h>0
|∂hΨ(t, s, ξ, h)| ∈ L1

t

(
R+;L2

(
R+ ×R2

))
.

By the Mean Value Theorem, for each h ∈ (0, 1)∣∣∣∣Ψ(t, s, 0, ξ)−Ψ(t, s, h, ξ)

h

∣∣∣∣ ≤ sup
h>0
|∂hΨ(t, s, ξ, h)|

and we conclude by Dominated Convergence. �

3.2.3. Passing to the limit in the Diffusion Term. We start from equality (3.6) in
the form

Kε =

∫ ∞
0

∫∫
R+×R2

ûε(t, ξ)
(
Ψ(t, s, 0, ξ)−Ψ(t, s, ε2, ξ)

)
dtdξds

or equivalently

σ

ε2
Kε = σ

∫ ∞
0

∫∫
R+×R2

ûε(t, ξ)
Ψ(t, s, 0, ξ)−Ψ(t, s, ε2, ξ)

ε2
dtdξds.

By Lemma (3.1), for each T > 0

Ψ(t, s, 0, ξ)−Ψ(t, s, ε2, ξ)

ε2
→ −∂hΨ(t, s, 0, ξ) as ε→ 0+

in L1
(
R+;L2

(
R+ ×R2

))
−strong while

ûε → û as ε→ 0+

in L∞
(
R+;L2

(
R

2
))

-weak-*, so that by weak-strong convergence,

σ

ε2
Kε → σ

∫∫
R+×R2

û(t, ξ)

(∫ ∞
0

−∂hΨ(t, s, 0, ξ)ds

)
dtdξ

as ε→ 0+. As for each (t, ξ) ∈ R+ ×R2, by (3.8)∫ ∞
0

∂hΨ(t, s, 0, ξ)ds

=

∫ ∞
0

(
σe−σss2|ξ|2Ċ (0) φ̂(t, ξ)∗ + σe−σss∂tφ̂(t, ξ)∗ + σe−σssṗ(0)φ̂(t, ξ)∗

)
ds.

= −|ξ|
2

4
φ̂(t, ξ)∗

∫ ∞
0

σe−σss2ds+ ∂tφ̂(t, ξ)∗
∫ ∞
0

σe−σssds

+ṗ(0)φ̂(t, ξ)∗
∫ ∞
0

σe−σssds

=
1

σ
∂tφ̂(t, ξ)∗ +

1

σ
ṗ(0)φ̂(t, ξ)∗ − 1

σ2

|ξ|2

4
φ̂(t, ξ)∗2.

Thus

σ

ε2
Kε →

∫∫
R+×R2

(
−∂tφ̂(t, ξ)∗ +

|ξ|2

2σ
φ̂(t, ξ)∗ − ṗ(0)φ̂(t, ξ)∗

)
û(t, ξ)dtdξ

as ε→ 0+.
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3.3. Summary. Starting from equation (2.5) in the form

Kε = Sε

where Kε is the Diffusion term and Sε the Source term, we have

σ

ε2
Kε =

σ

ε2
Sε.

According to the result obtained in section 4.1 and 4.2, we pass to the limit as
ε→ 0+ in both sides of the equality∫∫

R+×R2

(
−∂tφ̂(t, ξ)∗ +

|ξ|2

2σ
φ̂(t, ξ)∗ − ṗ(0)φ̂(t, ξ)∗

)
û(t, ξ)dtdξ

=

∫
R2

f̂ in(ξ)φ̂(0, ξ)∗dξ

which means that u is the solution in the sense of distributions of the Cauchy
problem for the damped diffusion equation{

∂tu− 1
2σ∆u = ṗ(0)u,

u(0, x) = f in(x).

Notice that ṗ(0) < 0 so that the right-hand side is a damping term indeed.

4. Strong convergence in L1
loc

(
R+;L2

(
R

2
))

In the present subsection, we show that the convergence uε → u holds in
L1
loc

(
R+;L2

(
R

2
))
−strong, and not only in L∞

(
R+;L2

(
R

2
))

weak-*. The two
key arguments are

(1) a velocity averaging result (to gain regularity in x),
(2) and a Aubin type lemma, to handle the time dependence.

4.1. Gaining regularity in x. The first key point of the argument is a result in
Velocity Averaging that is a special case of Averaging Lemma 2.1 in [9]

Proposition 4.1. Let f ≡ f(t, x, v) ∈ L2
loc(Rt × R2

x × S1) and let g be a locally
bounded measure, g ∈Mloc(Rt ×R2

x × S1). Assume that

∂tf + v.∇xf = g;

then for each s ∈ (0, 13 ) f :=
∫
S1 fdv belongs to W

s, 32
loc (Rt ×R2

x) and

‖f‖
W
s, 3

2
loc (Rt×R2

x)
. ‖g‖

1
3

Mloc(Rt×R2
x×S1)

‖f‖
2
3

L2
loc(Rt×R2

x×S1)
.

With the help of Proposition 4.1, we obtain the following control on uε.

Lemma 4.2. Under the definitions and with the assumptions above, then for each
T > 0 and s ∈ (0, 13 ),

(uε)ε>0 is unformly bounded in L
3
2 ([0, T ];W

s, 32
loc (R2))

Proof. We split the proof into several steps.
We recall that

uε(t, x) =

∫ ∞
0

∫
S1
Fε(t, s, x, v)dvds, (t, x) ∈ R+ ×R2
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where Fε is the solution of the Cauchy problem
∂tFε + v

ε .∇xFε + ∂sFε = − σ
ε2Fε + ṗ

p (t ∧ s)Fε, t, s > 0, (x, v) ∈ R2 × S1

Fε(t, 0, x, v) = σ
ε2

∫ +∞
0

F̄ε(t, s, x)ds, t > 0, (x, v) ∈ R2 × S1

Fε(0, s, x, v) = σ
ε2 e
−σs/ε2f in(x), s > 0, (x, v) ∈ R2 × S1

Therefore fε :=
∫∞
0
Fεds verifies

ε∂tfε + v.∇xfε = σ
ε

(
fε − fε

)
+ ε

∫∞
0

ṗ
p (t ∧ s)Fε(t, s, x, v)ds, t > 0, (x, v) ∈ R2 × S1

fε(0, x, v) = f in(x), (x, v) ∈ R2 × S1.

For each ε ∈ (0, 1), we define gε ≡ gε(t, x, v) and Gε ≡ Gε(t, s, x, v) by

gε

(
t

ε
, x, v

)
= fε(t, x, v), (t, x, v) ∈ R+ ×R2 × S1,

and

Gε

(
t

ε
, s, x, v

)
= Fε(t, s, x, v).

Denoting τ := t
ε , we easily check that the function gε is the solution of the Cauchy

problem

(4.1)

 ∂τgε + v.∇xgε = hε, (x, v) ∈ R2 × S1, τ > 0,

gε(0, x, v) = f in(x), (x, v) ∈ R2 × S1,

where

(4.2) hε(ετ, x, v) :=
σ

ε
(gε − gε) + ε

∫ ∞
0

ṗ

p
(ετ ∧ s)Gε(τ, s, x, v)ds.

Applying Proposition 4.1 to equation (4.1) gives the estimate

‖gε‖
W
s, 3

2
loc (Rt×R2

x)
. ‖hε‖

1
3

Mloc(Rt×R2
x×S1)

‖gε‖
2
3

L2
loc(Rt×R2

x×S1)
.

As

W
s, 32
loc (R+ ×R2) ↪→ L

3
2

loc(R+;W
s, 32
loc (R2)),

the inequality above leads to

(4.3) ‖gε‖
L

3
2
loc(R+;W

s, 3
2

loc (R2))
. ‖hε‖

1
3

Mloc(Rt×R2
x×S1)

‖gε‖
2
3

L2
loc(Rt×R2

x×S1)
.

Next, we easily verify that for each ε ∈ (0, 1)

‖hε‖Mloc(R+×R2×S1) =
1

ε

∥∥∥∥σε (fε − fε)+ ε

∫ ∞
0

ṗ

p
(t ∧ s)Fεds

∥∥∥∥
Mloc(R+×R2×S1)

,

≤ 1

ε

∥∥∥σ
ε

(
fε − fε

)∥∥∥
Mloc(R+×R2×S1)

+
1

ε

∥∥∥∥ε∫ ∞
0

ṗ

p
(t ∧ s)Fεds

∥∥∥∥
Mloc(R+×R2×S1)

≤ 1

ε

∥∥∥σ
ε

(
fε − fε

)∥∥∥
Mloc(R+×R2×S1)

+

∥∥∥∥∫ ∞
0

ṗ

p
(t ∧ s)Fεds

∥∥∥∥
Mloc(R+×R2×S1)

,
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and thus

‖hε)‖1/3Mloc(R+×R2×S1) ≤
1

ε1/3

∥∥∥σ
ε

(
fε − fε

)∥∥∥1/3
Mloc(R+×R2×S1)

+

∥∥∥∥∫ ∞
0

ṗ

p
(t ∧ s)Fεds

∥∥∥∥1/3
Mloc(R+×R2×S1)

.

and for each q ≥ 1

‖gε‖Lq(R+;B) =
1

ε1/q
‖fε‖Lq(R+

t ;B),

and

‖gε‖Lq(R+;B) =
1

ε1/q
‖fε‖Lq(R+

t ;B).

Therefore inequality (4.3) implies that(
1

ε

)2/3

‖fε‖
L

3
2
loc(R+;W

s, 3
2

loc (R2))

.
1

ε1/3

∥∥∥σ
ε

(
fε − fε

)∥∥∥1/3
Mloc(R+×R2×S1)

1

ε1/3
‖fε‖

2
3

L2
loc(Rt×R2

x×S1)

+

∥∥∥∥∫ ∞
0

ṗ

p
(t ∧ s)Fεds

∥∥∥∥1/3
Mloc(R+×R2×S1)

1

ε1/3
‖fε‖

2
3

L2
loc(Rt×R2

x×S1)
.

Consequently, the family (fε)ε>0 verifies
(4.4)

‖fε‖
L

3
2
loc(R+;W

s, 3
2

loc (R2))
.
∥∥∥σ
ε

(
fε − fε

)∥∥∥1/3
Mloc(R+×R2×S1)

‖fε‖
2
3

L2
loc(Rt×R2

x×S1)

+ ε
1
3

∥∥∥∥∫ ∞
0

ṗ

p
(t ∧ s)Fεds

∥∥∥∥1/3
Mloc(R+×R2×S1)

‖fε‖
2
3

L2
loc(Rt×R2

x×S1)
.

Next we show that
(
fε
)
ε>0

is uniformly bounded in L
3
2

loc(R+;W
s, 32
loc (R2)). Since

there exists C > 0 such that∣∣∣∣ ṗ(t)p(t)

∣∣∣∣ ≤ C, for each t ≥ 0,

indeed, one has∣∣∣∣∫ ∞
0

ṗ

p
(t ∧ s)Fε(t, s, x, v)ds

∣∣∣∣ ≤ Cfε(t, x, v) for each t, s ≥ 0.

Therefore by Proposition 1.1(∫ ∞
0

ṗ

p
(t ∧ s)Fεds

)
ε>0

= O(1) in L∞
(
R+;L2

(
R

2 × S1
))
,

and in particular

(4.5)

(∫ ∞
0

ṗ

p
(t ∧ s)Fεds

)
ε>0

= O(1) in Mloc(R+ ×R2 × S1).

By Proposition 1.1(σ
ε

(
fε − fε

))
ε>0

= O(1) in L2
loc

(
R+;L2

(
R

2 × S1
))

so that

(4.6)
(σ
ε

(
fε − fε

))
ε>0

= O(1) in Mloc(R+ ×R2 × S1).

Besides Proposition 1.1 also implies that

(4.7) (fε)ε>0 = O(1) in L∞
(
R+;L2

(
R

2 × S1
))
.
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By (4.5) and (4.6) and (4.7), inequality (4.4) implies that
(
fε
)
ε>0

is uniformly

bounded in L
3
2

loc(R+;W
s, 32
loc (R2)). �

4.2. Controlling time derivatives.

Lemma 4.3. Under the notations and with the definitions above, for each T > 0

the family (∂tuε)ε<1 is uniformly bounded in L2([0, T ];H−2(R2)).

Proof. We recall that

∂tfε +
v

ε
.∇xfε +

σ

ε2
(
fε − fε

)
=

∫ ∞
0

ṗ

p
(t ∧ s)Fεds.

Integrating the equation above in v ∈ S1 gives

(4.8) ∂tuε = −1

ε
∇x.

∫
S1
vfεdv +

∫
S1

∫ ∞
0

ṗ

p
(t ∧ s)Fεdsdv.

Notice that for each ε > 0

1

ε
∇x.

∫
S1
vfεdv = ∇x.

∫
S1
v

1

ε

(
fε − fε

)
dv.

By Proposition 1.1(
1

ε

(
fε − fε

))
ε>0

= O(1) in L2
(
[0, T ]×R2 × S1

)
so that the family

(
1
ε∇x.

∫
S1 vfεdv

)
ε>0

is uniformly bounded in L2([0, T ];H−2(R2)).

Besides, since for each t ≥ 0 ∣∣∣∣ ṗp (t)

∣∣∣∣ ≤ C < +∞,

one has

(4.9)

∣∣∣∣∫
S1

∫ ∞
0

ṗ

p
(t ∧ s)Fεdsdv

∣∣∣∣ ≤ C ∫
S1

∫ ∞
0

Fεdsdv ≤ C
∫
S1
fεdv . uε.

By Proposition 1.1

(uε)ε>0 = O(1) in L∞
(
R+;L2

(
R

2 × S1
))

so that by (4.9), for each T > 0 :(∫
S1

∫ ∞
0

ṗ

p
(t ∧ s)Fεdsdv

)
ε>0

= O(1) in L2
(
[0, T ];H−2

(
R

2
))
.

Therefore, by (4.8), the family (∂tuε)ε<1 is uniformly bounded in L2
(
[0, T ];H−2

(
R

2
))
�

4.3. Compactness in L
3
2

(
[0, T ];L

2
3

loc

(
R

2
))
−strong. By Aubin’s lemma [1], we

conclude that (uε)ε>0 is relatively compact in L
3
2

(
[0, T ];L

2
3

loc

(
R

2
))

strong. So

that we obtain the following lemma

Lemma 4.4. Under the assumptions and with the notations above, up to an ex-
traction

uε → u in L
3
2

(
[0, T ];L

2
3

loc

(
R

2
))

-strong as ε→ 0+.

Hence Theorem 0.2 is established.
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5. Conclusion

We have established a diffusion approximation for a linear Boltzmann equation
in extended phase space of the type (0.1). Our method applies to the case of
isotropic scattering, since it is based on studying the integral equation satisfied
by the macroscopic density (2.1). If we consider the same problem for scattering
operators as

Kf :=

∫
S1
k(v, w)f(w)dw, for each f ∈ L1

(
S1
)
,

we would obtain, by a similar argument as in section 2,

Fε = 1t<sp(t)
σ

ε2
e−

σ
ε2
sf in

(
x− tv

ε

)
+ 1s<t

σ

ε2
e−

σ
ε2
sp(s)

∫ ∞
0

(KFε)
(
t− s, τ, x− sv

ε
, v
)
dτ.

Applying K to both sides of the equality above leads to

KFε = 1t<s
σ

ε2
e−

σ
ε2
sp(t)

∫
S1
k(v, w)f in

(
x− tw

ε

)
dw

+ 1s<t
σ

ε2
e−

σ
ε2
sp(s)

∫
S1

∫ ∞
0

k(v, w) (KFε)
(
t− s, τ, x− sw

ε
,w
)
dτdw.

If we apply the Fourier transform to both sides of the equation above, the second
term on the right-hand side becomes, after substituting y = x− sw

ε

1s<t
σ

ε2
p(s)

∫
S1×R2

∫ ∞
0

k(v, w)e−iξ·(y+
sw
ε )KFε (t− s, τ, y, w) dτdwdy.

Notice that the velocity variable cannot be integrated out, as in the case studied in
the present paper, so that our method does not apply to general scattering kernels.
We hope to return to this question in a forthcoming publication.
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CHAPTER IV

HOMOGENIZATION OF

THE NONMONOKINETIC LINEAR BOLTZMANN EQUATION

IN A DOMAIN WITH A PERIODIC DISTRIBUTION OF HOLES

Introduction

We pursue here our analysis, started in the second chapter [1], of the homog-
enization problem for the linear Boltzmann equation in a domain with a periodic
distribution of holes. Specifically, we remove here the monokinetic assumption.
Before describing the specific problem analyzed here, we recall the results obtained
in the monokinetic case. For each ε ∈

(
0, 1

2

)
we define

Zε := {x ∈ Rd |dist(x, εZ2) > ε2} = Rd \
⋃
k∈Z2

B(εk, ε2) .

Consider next the linear Boltzmann equation for a monokinetic system of particles

(0.1) ∂tfε + v · ∇xfε + σ(fε − Tk (fε)) = 0

in Zε. The unknown function f ≡ f(t, x, v) is the density of particles located at the
position x ∈ R2 with velocity v ∈ S1, which amounts to assuming that the particles
moves with fixed speed, only direction can change, at time t ≥ 0. The frequency
collision is a constant σ > 0 and the operator Tk ∈ L(L1(S1)) governing the change
of direction is defined by:

(0.2) Tk (f) (t, x, v) =

∫
S1
k(v, w)f(t, x, w)dw

where dw is the uniform probability measure on the unit sphere S1, while k ∈
C(S1 × S1) is a scattering kernel satisfying

(0.3) k(v, w) = k(w, v) > 0 , and

∫
S1
k(v, w)dw = 1 .

Henceforth we supplement the equation (0.1) with the absorption condition

(0.4) f(t, εk + ε2ω, v) = 0 , for each k ∈ Z2 , ω, v ∈ S1 , whenever v · ω > 0 .

Finally, as initial data, we have:

(0.5) fε(0, x, v) = f in(x, v) , (x, v) ∈ Zε × S1

where 0 ≤ f in ∈ Cc(R2 × S1). Henceforth, for each measurable function f on Zε,
we denote its extension by 0 in the holes

{f} (x) =

{
f(x) if x ∈ Zε,
0 otherwise.

Consider next F ≡ F (t, s, x, v) the solution of the Cauchy problem
∂tF + v · ∇xF + ∂sF = −σF +

ṗ(t ∧ s)
p(t ∧ s)

F , x ∈ RN , |v| = 1 , s, t > 0 ,

F (t, 0, x, v) = σ

∫ ∞
0

Tk (F ) (t, s′, x, v)ds′

F (0, s, x, v) = f in(x, v)σe−σs
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with the notation t ∧ s = min(t, s) and where p is a decreasing function on R+

whose definition will be recalled in the sequel.

Theorem 0.1. Under the assumptions and with the notations above,

{fε} →
∫ ∞

0

Fds in L∞(R+ × R2 × S1) weak-* as ε→ 0.

Next, we recall the results about the total mass of the particle system in the
homogenization limit ε� 1. We introduce the quantity

M(t, s) :=
1

2π

∫∫
R2×S1

F (t, s, x, v)dxdv

and we denote

B(t, s) := σ − ṗ

p
(t ∧ s).

The first result is that M is the solution of a Renewal Equation :

Proposition 0.2. Under the notations above, and with the notations above, the
Renewal equation 

∂tµ+ ∂sµ+B(t, s)µ = 0 s, t > 0,

µ(t, 0) = σ

∫ ∞
0

µ(t, τ)dτ

µ(0, s) = σe−σs

has a unique mild solution µ ∈ L∞
(
[0, T ];L1 (R+)

)
for all T > 0. Moreover one

has

M(t, s) =
µ(t, s)

2π

∫∫
R2×S1

f in(x, v)dxdv

a.e. in (t, s) ∈ R+ × R+.

Consider next the quantity

m(t) :=

∫ ∞
0

M(t, s)ds

it is the total mass of the particle system in the homogenization limit ε � 1 and
the asymptotic behavior of M as t→ +∞ is a consequence of the renewal equation
above.

Theorem 0.3. Under the assumptions, and with the notations above,

(1) The total mass

1

2π

∫∫
Zε×S1

fε(t, x, v)dxdv → m(t)

in L1
loc (R+) as ε → 0+, and a.e. in t 0 after extracting a subsequence of

ε→ 0+;
(2) there exists ξσ ∈ (−σ, 0) such that:

m(t) ∼ Cσeξσt as t→ +∞,

with

Cσ :=
1

2πσ

∫∫
R2×S1 f

in(x, v)dxdv∫∞
0
tp(t)e−(σ+ξσ)t

;

(3) finally the exponential mass loss rate ξσ satisfies

ξσ ∼ −σ as σ → 0+ and ξσ → −2 as σ → +∞.
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In other words, statement (1) claims that m is the total mass in the ε-vanishing
limit and statement (2) claims that the mass has a exponential decay rate whenever
σ > 0. Retrieving these results without the monokinetic assumption is the present
question.

1. The model

1.1. The nonmonokinetic problem. In the present paper, we remove the monoki-
netic assumption treated in [1], which means that the speed is no longer fixed. More
precisely, we consider the linear Boltzman equation

(1.1) ∂tfε + v · ∇xfε + σ(fε − Tk (f)ε) = 0.

The quantity f(t, x, v)dxdv represents again the density of particles at time t ∈ R+,
located at x ∈ R2 and with velocity v ∈ B2, the unit disk of R2. The operator
Tk ∈ L(L1(B2)) is defined by

(Tkφ) (v) :=

∫
B2

k(v, w)φ(w)dw, φ ∈ L1(B2),

where dw is the uniform probability measure on the unit ball B2 and the kernel k
is such that

(1.2)

k ∈ C(B2
v × B2

w) , k(w, v) = k(v, w) ≥ 0 a.e. in v, w ∈ B2

and

∫
B2

k(v, w)dw = 1 a.e. in v ∈ B2.

The linear Boltzman equation (1.1) is set on the spatial domain, i.e. the plane R2

with a periodic system of holes removed:

Zε :=
{
x ∈ R2 |dist(x, εZ2) > ε2

}
and we still assume the absorption condition

fε(t, x, v) = 0, nx · v > 0

that means that every particle falling into a hole remains here for ever. To sum-up,
the function fε is the solution of the Initial Bounadry-value problem

(Ξε)


∂tfε + v · ∇xfε + σ(fε − Tk (f)ε) = 0, (x, v) ∈ Zε × B2, t > 0,

fε(t, x, v) = 0, if v · nx > 0, (x, v) ∈ ∂Zε × B2,

fε(0, x, v) = f in(x, v), (x, v) ∈ Zε × B2.

Eventually, we assume that the initial data satisfies the assumption

(1.3) f in ≥ 0 on R2×B2 and

∫∫
R2×B2

f in(x, v)dxdv+ sup
(x,v)∈R2×B2

f in(x, v) < +∞.

2. The main results

First, we recall the definition of the free path length in the direction ω for a
particle starting from x in Zε:

(2.1) τε(x, ω) := inf {t > 0 |x− tω ∈ ∂Zε} .
The distribution of free path length has been studied in [4, 12, 6, 2]. In particular,
it is proved that, for each arc I ⊂ S1 and each t ≥ 0, one has

(2.2) meas({(x, ω) ∈ (Zε ∩ [0, 1]2)× I | ετε(x, ω) > t})→ p(t)|I|
as ε → 0+, where |I| denotes the length of I and the measure considered in the
statement above is the uniform measure on [0, 1]2 × S1. That implies (see Lemma
1 in [1])
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Proposition 2.1. Under the assumptions and with the notations above,

1t<ετε( xε ,ω)∗⇀ p(t) in L∞(R2 × S1) weak-* as ε→ 0+.

The following estimate for p can be found in [4, 12]: there exist C,C ′ > 0 such
that, for all t ≥:

(2.3)
C

t
≤ p(t) ≤ C ′

t
.

In [2] F. Boca and A. Zaharescu have obtained an explicit formula for p:

(2.4) p(t) =

∫ +∞

t

(τ − t)Υ(τ)dτ ,

where the function Υ is expressed as follows:
(2.5)

Υ(t) =
24

π2

 1 if t ∈ (0, 1
2 ],

1
2t + 2(1− 1

2t )
2 ln(1− 1

2t )−
1
2 (1− 1

t )
2 ln |1− 1

t | if t ∈ ( 1
2 ,+∞) .

2.1. The homogenized equation. Consider next F := F (t, s, x, v) the solution
of the Cauchy problem

(Σ)



∂tF + v · ∇xF + ∂sF = −σF + |v| ṗp (|v|(t ∧ s))F, t, s > 0, (x, v) ∈ R2 × B2

F (t, 0, x, v) = σ

∫ +∞

0

Tk (F ) (t, s, x, v)ds, t > 0, (x, v) ∈ R2 × B2

F (0, s, x, v) = σe−σsf in(x, v), s > 0, (x, v) ∈ R2 × B2

with the notation t ∧ s := min(t, s). Notice that F is a density defined on the
extended phase space: {

(s, x, v)|s ≥ 0, x ∈ R2, v ∈ B2
}
.

Our first main result is

Theorem 2.2. Under the assumptions and with the notations above,

{fε}⇀
∫ ∞

0

Fds

in L∞(R+ × R2 × B2) weak-* as ε→ 0+, where F is the unique (mild) solution of
(Σ).

2.2. The mass and its asymptotic behavior in the long time limit. Consider
then the following equation

(R)


∂tµ(t, s, v) + ∂sµ(t, s, v) +B(t, s, v)µ(t, s, v) = 0, t, s > 0, v ∈ B2,

µ(t, 0, v) = σ
∫∞

0
Tk (µ) (t, s, v)ds t > 0, v ∈ B2,

µ(0, s, v) = σe−σs
∫
R2 f

in(x, v)dx, s > 0, v ∈ B2,

with

B(t, s, v) := σ − |v| ṗ
p

(|v|(t ∧ s)), t, s ≥ 0, v ∈ B2.

The first corollary of Theorem 2.2 is
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Corollary 2.3. For all T > 0, the PDE (R) has a unique mild solution µ in
L∞

(
[0, T ];L1

(
R+ × B2

))
. Moreover,∫∫

R+×B2

µ(t, s, v) =

∫
R+×R2×B2

F (t, s, x, v)dsdxd.

a.e. in t ∈ R+.

Next we discuss the asymptotic decay as t → +∞ of the total mass of the
particle system in the homogenization limit ε� 1. As in the monokinetic case, the
asymptotic behavior in the long time limit of the total mass of the solution of the
homogenized equation is a consequence of the renewal PDE sarisfied.

Theorem 2.4. Under the assumptions and with the notations above,

(1) the total mass∫∫∫
R+×R2×B2

Fεdsdxdv →
∫
R+×B2

µ(t, s, v)dsdv as ε→ 0+,

in L1
loc (R+) and a.e. in t ≥ 0 after extracting a subsequence of ε→ 0+;

(2) assume moreover for the sake of simplicity that Tk has finite rank, then
there exists Cσ > 0, nσ ∈ N and ξσ ∈ (−σ, 0) such that

m(t) ∼ Cσtneξσt as t→ +∞,

with Cσ and ξσ depending on Tk and σ and n depending only on Tk;
(3) and the exponential mass loss rate ξσ satisfies

ξσ ∼ −σ as σ → 0+.

Statement (1) above means that t 7→
∫
R+×B2 µ(t, s, v)dsdv is the limiting total

mass of the particle system at time t as ε → 0+. Statement (2) gives a precise
asymptotic equivalent of t 7→

∫
R+×B2 µ(t, s, v)dsdv as t→ +∞. The main difference

with the monokinetic case is the total mass decay. We recall that if σ = 0 in
the linear Boltzmann equation (Ξε), the total mass of the particle system in the
vanishing ε limit is asymptotically equivalent to∫∫

R2×B2 f
in(x, v)dxdv

π2t

as t → +∞. This algebraic decay is due to the existence of infinite open strips
included in the spatial domain Zε avoiding all the holes. A particle located in one
such channel and moving in a direction close to the channel’s direction will not
fall into a hole before exiting the channel and thus in a long time, longer as the
particle’s direction is closer to the channel’s one.

In the monokinetic case, the collision operator in the linear Boltzmann equation
destroys the influence of the channels, which entails a exponential decay — see [1].
If we keep σ > 0 whithout the monokinetic assumption, that means that the speed
can change. More precisely, as a particle slows down, it will obviously fall into a
hole in a longer time. Therefore, the decay of the total mass will be downgraded.

Indeed, as we will see in section 5 and section 6, the particle system is split into
subpopulations organized as a nest by the collision operator. That phenomenon is
illustrated by the graph in Figure 1
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γ
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α

Figure 1 : a graph

A, . . . , I designate the subpopulations. The arrow between two supopulations
means that the collision operator send one into the other, and the arrows with
greek letters mean that each subpopulation has a exponential mass decay rate
designated by that greek letter that depends upon the spectral properties of the
collision operator and σ. Obviously, the exponential decay rate ξσ of the total mass
is the lowest exponential decay rate among all the subpopulations. The integer
n is the length of the longest chain connecting the subpopulations with the same
exponential decay rate — see section 6.

It is worth noticing that it is similar to a random walk on graph with at least
one trap. When a graph is finite, the asymptotic decay has an exponential rate.
ON the contrary, in the case of a infinite graph, the asymptotic behavior may be
a power law — see the review [5]. Therefore, we may think that statement (2)
of Theorem 2.4 holds for each compact collision operator. And some noncompact
collision operators — as for the inelastic linear Boltzmann equation — will have a
cooling effect that destroys the exponential decay.

In section 3, we give the proof of Theorem 2.2; in section 4, we study the gov-
erning equation of the total mass in the vanishing ε limit; while its asymptotic
behavior as ε→ 0+ is discussed in section 5, section 6 and section 7.



CHAPTER IV : THE NONMONOKINETIC CASE 99

3. The homogenized kinetic equation

As in [1], our argument for Theorem 2.2 is splitted into the same steps.

3.1. A new formulation of the transport equation. As in the monokinetic
case, we introduce here a extended phase space involving the additional variable s.
Consider the initial boundary value problem

(Σε)



∂tFε + ∂sFε + v.∇xFε + σFε = 0, t, s > 0, (x, v) ∈ Zε × B2,

Fε(t, s, x, v) = 0, if v · nx > 0, t, s > 0, (x, v) ∈ ∂Zε × B2,

Fε(t, 0, x, v) = σ
∫∞

0
Tk (Fε) (t, s, x, v)ds, t > 0, (x, v) ∈ Zε × B2,

Fε(0, s, x, v) = σe−σsf in(x, v), s > 0, (x, v) ∈ Zε × B2,

with unknown Fε := Fε(t, s, x, v). We here establish the relation between theses
two initial boundary value problems, (Ξε) and (Σε)

Proposition 3.1. Assume that f in satisfies the assumptions above. Then

(1) for each ε > 0, the problem (Σε) has a unique mild solution such that

(t, x, v) 7→
∫ ∞

0

|Fε(t, s, x, v)|ds belongs to L∞([0, T ]× Zε × B2)

for each T > 0;
(2) moreover

0 ≤ Fε(t, s, x, v) ≤ ‖f in‖L∞(R2×B2)σe
−σs

a.e. in t, s ≥ 0, x ∈ Zε and v ∈ B2, and∫ ∞
0

Fε(t, s, x, v)ds = fε(t, x, v),

for a.e. t ≥ 0, x ∈ Zε and v ∈ B2, where fε is the solution of (Ξε).

Proof. (1) By the methods of characteristics, we see that if a mild solution Fε
of (Σε) exists then it must satisfy

(3.1) Fε = F1,ε + F2,ε

with

F1,ε := 1s<t1s<ετε( xε ,v)
e−σsFε(t− s, 0, x− sv, v)

= 1s<t1s<ετε( xε ,v)
σe−σs

∫ ∞
0

Tk (Fε) (t− s, τ, x− sv, v)dτ,

and
F2,ε := 1t<s1t<ετε( xε ,v)

e−σtFε(0, s− t, x− tv, v)

= 1t<s1t<ετε( xε ,v)
σe−σsf in(x− tv, v).

a.e. in (t, s, x, v) ∈ R+ × R+ × Zε × B2. We define then for all T > 0 XT
the set of measurable functions G defined on R+×R+×Zε×B2 such that

(t, x, v) 7→
∫ ∞

0

|G(t, s, x, v)|ds ∈ L∞
(
R+ × Zε × B2

)
.

It is obviously a Banach space for the norm

‖G‖XT :=

∥∥∥∥∫ ∞
0

|G(t, s, x, v)|ds
∥∥∥∥
L∞(R+×Zε×B2)

.
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Next, let T : XT 7→ XT defined by

T (G) := 1s<t1s<ετε( xε ,v)
σe−σs

∫ ∞
0

Tk (G) (t− s, τ, x− sv, v)dτ

for eachG ∈ XT .Notice that since k ∈ C
(
B2 × B2

)
, we have k ∈ L∞

(
B2 × B2

)
.

That being said, observe that for each n ≥ 0

‖T nG‖XT =

∥∥∥∥∫ ∞
0

(T nG)(t, s, x, v)ds

∥∥∥∥
L∞(R+×Zε×B2)

=

∥∥∥∥∫ t

0

σe−σs1s<ετε( xε ,v)

∫ ∞
0

Tk
(
T n−1G

)
(t− s, τ, x− sv, v)dτ

∥∥∥∥
L∞(R+×Zε×B2)

≤ σ
∥∥∥∥∫ t

0

∫ ∞
0

∫
B2

k(v, w)
(
T n−1G

)
(t− s, τ, x− sv, w)dvdτ

∥∥∥∥
L∞(R+×Zε×B2)

≤ σ‖k‖L∞(B2×B2)

∥∥∥∥∫ ∞
0

(
T n−1G

)
(t, τ, x, w)dτ

∥∥∥∥
L∞(R+×Zε×B2)

≤ σ‖k‖L∞(B2×B2)

∫ t

0

‖T n−1G‖XT ds.

By induction

‖T nG‖XT ≤
(
σ‖k‖L∞(B2×B2)

)n
n!

‖G‖XT .

We have

F1,ε = T Fε

so that

Fε = T Fε + F2,ε.

This integral equation has a solution Fε ∈ XT for each T > 0 given by the
serie

Fε =
∑
n≥0

T nF2,ε

that converges normally in the Banach XT as

∑
n≥0

‖T nF2,ε‖XT ≤
∑
n≥0

(
σ‖k‖L∞(B2×B2)

)n
n!

‖F2,ε‖XT < +∞.

Moreover, this solution is unique in XT since if Gε is another solution in
XT we have

‖Fε −Gε‖XT = ‖T n(Fε −Gε)‖XT

≤
(
σ‖k‖L∞(B2×B2)

)n
n!

‖Fε −Gε‖XT
→ 0 as n→ +∞.

(2) We observe that if G ∈ XT is nonnegative a.e. on R+ ×R+ ×Zε ×B2 then
T G ≥ 0 a.e. on R+ × R+ × Zε × B2. Since f in ≥ 0 a.e. on R2 × B2, we
have F2,ε ≥ 0 on R+ × R+ × Zε × B2 and consequently, the serie defined
above is nonnegative on R+ × R+ × Zε × B2. Next, integrating both sides
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of (3.1) with respect to s leads to∫ ∞
0

Fε(t, s, x, v)ds =

∫ ∞
0

F1,ε(t, s, x, v)ds+

∫ ∞
0

F2,ε(t, s, x, v)ds

= 1t<ετε( xε ,v)
f in(x− tv, v)e−σt

+ σ

∫ t

0

e−σs1s<ετε( xε ,v)

(
Tk

∫ ∞
0

Fεdτ

)
(t− s, x− sv, v)ds

in which we recognize the Duhamel formula giving the unique mild solution
fε of (Ξε). Hence

fε(t, x, v) =

∫ ∞
0

Fε(t, s, x, v)ds a.e. in (t, x, v) ∈ R+ × Zε × B2.

As (Ξε) satisfies the maximum principle, we have

0 ≤ fε(t, x, v) ≤ f in(x, v) a.e. in (t, x, v) ∈ R+ × Zε × B2.

And (3.1) can be recast in the form

Fε(t, s, x, v) = 1s<t1s<ετε( xε ,v)
σe−σsTk (fε) (t− s, x− sv, v)

+ 1t<s1t<ετε( xε ,v)
σe−σsf in(x− tv, v)

≤ σe−σs‖f in‖L∞(R2×B2)

a.e. in (t, s, x, v) ∈ R+ × R+ × Zε × B2 which concludes the proof.
�

3.2. The distribution of free path lengths. We extend the ε−vanishing limit
of 1t<ετε( xε ,v)

in the nonmonokinetic case.

Lemma 3.2. Let τε be the free path length defined in. Then for each t > 0

(3.2) 1t<ετε( xε ,v)
→ p (|v|t)

in L∞(R2 × B2) weak-* as ε vanishes.

Proof. Recall that for each t > 0

(3.3) 1t<ετε( xε ,ω) → p(t)

in L∞(R2 × S1) weak-* as ε vanishes — see Lemma 1 in chapter II ([1]). Since the
linear span of functions χ ≡ χ(x, v) ∈ C∞0 (R2 × B2) is dense in L1(R2 × B2), and
the family 1t<ετε( xε ,v)

is bounded in L∞(R2 × B2), it is enough to prove that∫∫
Zε×B2

χ(x, v)1t<ετε( xε ,v)
dxdv →

∫∫
R2×B2

p (|v|t)χ(x, v)dxdv as ε→ 0+,

for each χ ∈ C∞0 (R2 × B2). Notice that∫∫
Zε×B2

χ(x, v)1t<ετε( xε ,v)
dxdv =

∫
Zε

∫ 1

0

∫
S1
χ(x, rω)1t<ετε( xε ,rω)rdrdωdx

=

∫
Zε

∫ 1

0

(∫
S1
χ(x, rω)1rt<ετε( xε ,ω)dω

)
rdrdx.

As χ ∈ C∞0 (R2 × B2), for each r > 0, (x, ω) 7→ χ(x, rω) ∈ L∞(R2
x × S1

ω). That
implies by (3.3)∫

S1
χ(x, rω)1rt<ετε( xε ,ω)dω → p(rt)

∫
S1
χ(x, rω)dω as ε→ 0+.
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Thus∫
Zε

∫ 1

0

(∫
S1
χ(x, rω)1rt<ετε( xε ,ω)dω

)
rdrdx→

∫
R2

∫ 1

0

p(rt)

∫
S1
χ(x, rω)dωrdrdx

=

∫
R2

∫
B2

p (|v|t)χ(x, v)dxdv.

which is the announced result. �

3.3. Extending fε by 0 in the holes. We recall (see Lemma 2 in chapter II ([1])
) that for each ε > 0 the function {fε} satisfies

(∂t + v.∇x) {fε}+ σ({fε} − Tk ({fε})) = (v.nx)fε |∂Zε×B2 δ∂Zε

inD′(R∗+×R2×B2), where δ∂Zε is the surface measure concentrated on the boundary
of Zε, and nx is the unit normal vector at x ∈ ∂Zε pointing towards the interior of
Zε. Moreover (see lemma 3) for each R > 0 the family of Radon measures

(v.nx)fε |∂Zε×B2 δ∂Zε |[−R,R]2×B2

is bounded in M([−R,R]2 × B2).

3.4. The velocity averaging lemma. We recall first a classical result averaging
that is a special case of Theorem 1.8 in [3].

Proposition 3.3. Let p > 1 and assume that fε ≡ fε(t, x, v) is a bounded family
in Lploc(R

+
t × Rdx × Bd−1

v ) such that

sup
ε>0

∫ T

0

∫∫
B(0,R)×Bd−1

|∂t + v · ∇xfε|dxdvdt < +∞

for each T > 0 and each R > 0. Then, for each ψ ∈ C(Bd−1 × Bd−1), the family
ρψ [fε] , defined by

ρψ [fε] (t, x, v) =

∫
Bd−1

fε(t, x, w)ψ(v, w)dw,

is relatively compact in L1
loc(R

+
t × Rdx × Bd−1

v ).

A straighforward consequence of Proposition 3.3 is the compactness in L1
loc of

(Tk ({fε}))ε>0 which a key argument in the proof of Theorem 2.2.

Lemma 3.4. Let fε ≡ fε(t, x, v) be the family of solutions of the initial boundary
value problem. Then the families

Tk ({fε}) = {Tk (fε)}

and ∫
B2

{fε} dv

are relatively compact in L1
loc(R

+
t × Rdx × Bd−1

v ) strong.

Proof. By the Maximum Principle,

|fε(t, x, v)| ≤ ‖f in‖L∞(R2×B2)

a.e. in t ≥ 0, x ∈ Zε and v ∈ B2, so that

sup
ε
‖ {fε} ‖L∞(R+×R2×B2).

We recall that {fε} satisfies

(∂t + v.∇x) {fε}+ σ({fε} − Tk ({fε})) = (v.nx)fε |∂Zε×B2 δ∂Zε
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in D′(R∗+×R2×B2). By the inequality above and given that k is nonnegative, one
has

‖σ(Tk ({fε})− {fε})‖L∞(R+×R2×B2) ≤ 2σ‖ {fε} ‖L∞(R+×R2×B2)

since Tk(1) = 1. Besides we know that the family of Radon measures

µε := fε |∂Zε×B2 (v.nx)δ∂Zε

satisfies

sup
ε>0

∫
[0,T ]×[−R,R]2×B2

|µε| < +∞

for each T > 0 and R > 0. Consequently, Proposition 3.3 implies that the family

Tk ({fε})

is relatively compact in L1
loc(R+ × R2 × B2). �

3.5. Uniqueness for the homogenized equation. Consider the Cauchy prob-
lem with unknown G ≡ G(t, s, x, v)

(∂t + v · ∇x + ∂s)G = −σG+ |v| ṗ(|v|(t ∧ s))
p(|v|(t ∧ s))

G, t, s > 0, x ∈ R2, v ∈ B2,

G(t, 0, x, v) = S(t, x, v), t > 0, (x, v) ∈ R2 × B2,

G(0, s, x, v) = Gin(s, x, v), s > 0, (x, v) ∈ R2 × B2.

If, for a.e. (t, s, x, v) ∈ R+×R+×R2×B2, the function τ 7→ G(t+τ, s+τ, x+τv, v)
is C1 in τ > 0, then, since the function p ∈ C1(R+) and p > 0 on R+, one has(

d

dτ
+ σ − |v| ṗ(|v|(t ∧ s+ τ))

p(|v|(t ∧ s+ τ))

)
G(t+ τ, s+ τ, x+ τv, v)

= e−στp(|v|(t ∧ s+ τ))
d

dτ

(
eστG(t+ τ, s+ τ, x+ τv, v)

p(|v|(t ∧ s+ τ))

)
= 0 .

Hence

Γ : τ 7→ eστG(t+ τ, s+ τ, x+ τv, v)

p(|v|(t ∧ s+ τ))

is a constant. Therefore

Γ(0) =

{
Γ(−t) if t < s,
Γ(−s) if s < t,

so that
(3.4)
G(t, s, x, v) = 1t<se

−σtp(|v|t)Gin(s−t, x−tv, v)+1s<te
−σsp(|v|s)S(t−s, x−sv, v) .

Proposition 3.5. Under the assumptions and with the notations above, the prob-
lem (Σ) has a unique mild solution F such that

(t, x, v) 7→
∫ ∞

0

|F (t, s, x, v)|ds ∈ L∞
(
R+ × R2 × B2

)
.

This solution satisfies

F (t, s, x, v) = 1t<sσe
−σtp (|v|t) f in(x− tv, v)

+ 1s<tσe
−σs

∫ ∞
0

(TkF ) (t− s, τ, x− sv, v)dτ

for a.e. (t, s, x, v) ∈ R+×R+×R2×B2. Besides, F ≥ 0 a.e. on R+×R+×R2×B2

if f in ≥ 0 a.e. on R2 × B2.
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Proof. If a mild solution exists, it must satisfies the integral equation worked out
before the proposition. For each T > 0 define YT the set of measurable functions
G defined a.e. on R+ × R+ × R2 × B2 such that

(t, x, v) 7→
∫ ∞

0

|G(t, s, x, v)|ds ∈ L∞
(
R+ × R2 × B2

)
.

It is obviously a Banach space for the norm

‖G‖YT :=

∥∥∥∥∫ ∞
0

|G|ds
∥∥∥∥
L∞(R+×R2×B2)

.

Let the operator Q ∈ L (YT ) defined by

QG = 1s<tσe
−σs

∫ ∞
0

(TkG) (t− s, τ, x− sv, v)dτ

for each G ∈ YT . A computation similar as in the proof of Proposition 3.1 shows
that for each n ≥ 1

‖QnG‖YT ≤
(σ‖k‖L∞(B2×B2))

n

n!
‖G‖YT .

Besides integral equation (3.4) can be recasted in the form

F = F1 +QF
where

F1(t, s, x, v) := 1t<sσe
−σtp (|v|t) f in(x− tv, v).

Consequently, as established in the proof of Proposition 3.1, the integral equation
has a unique mild solution F in YT given by

F =
∑
n≥0

QnF1.

Finally, we observe that if G ≥ 0 a.e. on R+ × R+ × R2 × B2 then for each n ≥ 0
Qn ≥ 0 a.e. on R+ ×R+ ×R2 ×B2. Therefore, if f in ≥ 0 a.e. on R2 ×B2, we have
F1 ≥ 0 a.e. on R+ × R+ × R2 × B2 and thus F ≥ 0 on R+ × R+ × R2 × B2. �

3.6. Proof of Theorem 2.2.

Proof. We recall that the solution Fε of (Σε) admits a decomposition (see equality
(3.1))

Fε = F1,ε + F2,ε

with

F1,ε(t, s, x, v) = 1s<t1s<ετε( xε ,v)
σe−σs

∫ ∞
0

Tk (Fε) (t− s, τ, x− sv, v)dτ,

and

F2,ε(t, s, x, v) := 1t<s1t<ετε( xε ,v)
σe−σsf in(x− tv, v).

Passing to the limit as ε→ 0+ in the term F2,ε is easy. By Lemma 3.2 we have

(3.5) 1t<ετε( xε ,v)
⇀ p (|v|t)

in L∞
(
R2 × B2

)
weak-* as ε→ 0+ for each t ≥ 0. Hence

F2,ε(t, s, x, v) = 1t<s1t<ετε( xε ,v)
σe−σsf in(x− tv, v)

⇀ 1t<sp (|v|t)σe−σsf in(x− tv, v)

in L∞
(
R+ × R+ × R2 × B2

)
. We denote in the sequel

F2 = 1t<sp (|v|t)σe−σsf in(x− tv, v)
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Next, consider the term F1,ε We have the uniform bound

sup
ε>0
‖ {fε} ‖L∞(R+×R2×B2) ≤ ‖f in‖L∞(R2×B2)

thus by the Banach-Alaoglu theorem

(3.6) {fε} → f in L∞(R+ × R2 × B2) weak-*

for some f ∈ L∞(R+×R2×B2) after a possible extraction of subsequence ε→ 0+.
Therefore, by the strong compactness lemma implies then

Tk ({fε})→ Tk (f) in L1
loc(R+ × R2 × B2),

as ε→ 0+. Hence we have

{Fε}⇀ F2 + 1s<tp (|v|s)σe−σs (Tkf) (t− s, x− sv, v),

=: F̃

in L1
loc

(
R+ × R2 × B2

)
. Fix T > 0, we remark that for each t ∈ [0, T ], on has∫ T

0

Fε(t, s, x, v)ds =

∫ T

0

F1,ε(t, s, x, v)ds+ e−σt1t<ετε( xε ,v)
f in(x− tv, v)

since F1,ε is supported in s ≤ t ≤ T so that∫ T

0

Fε(t, s, x, v)ds ⇀

∫ T

0

F̃ (t, s, x, v)ds

in L1
loc(R+ × R2 × B2)-weak as ε→ 0+. And on the other hand we have∫ ∞

0

{Fε} ds ⇀ f

in L∞(R+ ×R2 ×B2) weak-* as ε→ 0+ and therefore in L1
loc(R+ ×R2 ×B2) weak

as ε→ 0+. By uniqueness of the limit, we have

(3.7)

∫ ∞
0

F̃ ds = f

and so that F̃ satisfies

F̃ (t, s, x, v) = F2 + 1s<tp (|v|s)σe−σs
∫ ∞

0

(
TkF̃

)
(t− s, τ, x− sv, v)dτ.

By Proposition 3.5 the integral equation above has a unique mild solution that is
F and thus

F̃ = F

and

Fε ⇀ F in L1
loc

(
R+ × R+ × R2 × B2

)
− weak

as ε→ 0+. Finally, (3.6) and (3.7) imply

{fε}⇀ f =

∫ ∞
0

Fds

in L1
loc

(
R+ × R2 × B2

)
-weak as ε → 0+ which concludes the proof of Theorem

2.2. �
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4. The mass equations

4.1. The Renewal PDE governing the total mass of the homogenized
system. We begin with a proof of Corollary 2.3.

Proof. Should a mild solution M of the Renewal PDE above exist, it must satisfy
(4.1)

µ(t, s, v) = 1t<sσe
−σsp(|v|t)µin(v) + 1s<te

−σsp(|v|s)
∫ ∞

0

Tk (µ) (t− s, τ, v)dτ.

We define for each T > 0, VT the set of measurable function G defined on R+ ×
R+ × B2 such that

(t, v) 7→
∫ ∞

0

|M(t, s, v)| ds ∈ L∞
(
[0, T ];L1

(
B2
))
.

It is a Banach space for the norm

‖M‖VT :=

∥∥∥∥∫
B2

∫ ∞
0

|M(t, s, v)| dsdv
∥∥∥∥
L∞([0,T ])

.

Introduce here K : VT 7→ VT defined by

K (M) := 1s<te
−σsp(|v|s)

∫ ∞
0

Tk (M) (t− s, τ, v)dτ

for each M ∈ VT . As for each v ∈ B2 and t ≥ 0, p (|v|) ≤ 1, we show, with a
argument similar as in Proposition 3.1, that for each n ≥ 0

‖KnM‖VT ≤
(
σ‖k‖L∞(B2×B2)

)n
n!

‖M‖VT .

Equation (4.1) is equivalent to

µ(t, s, v) = 1t<sσe
−σsp(|v|t)µin(v) + (Kµ) (t, s, v).

It has a solution µ ∈ VT for each T > 0 given by the serie

(4.2) µ =
∑
n≥0

Knνin

with

νin(t, s, v) := 1t<sσe
−σsp(|v|t)µin(v) ∈ VT .

This serie converges normally in the Banach VT since∑
n≥0

∥∥Knνin∥∥VT ≤∑
n≥0

(
σ‖k‖L∞(B2×B2)

)n
n!

∥∥µin∥∥VT < +∞.

Moreover, this solution is unique in VT since if µ′ est another solution in VT , we
would have

‖µ− µ′‖VT = ‖Kn(µ− µ′)‖VT

≤
(
σ‖k‖L∞(B2×B2)

)n
n!

‖µ− µ′‖VT
→ 0 as n→ +∞.

Observe that since k ≥ 0, K
(
V+
T

)
⊆ V+

T where V+
T is the cone of nonnegative

functions of VT . Therefore (4.2) implies, as µin is nonnegative, that

µ is nonnegative on R+ × R+ × B2.
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Finally, let F be the mild solution of the problem (Σ) obtained in Proposition 3.1.
Since F ≥ 0 a.e. on R+ × R+ × R2 × B2 is measurable, one can apply the Fubini
theorem to show that

m(t, s, v) : =

∫
R2

F (t, s, x, v)dx

= 1t<sσe
−σtp(|v| t)

∫
R2

f in(x− tv, v)dx

+ 1s<tσe
−σsp(|v| s)

∫ ∞
0

∫
R2

Tk (F ) (t− s, τ, x− sv, v)dxdτ

= 1t<sσe
−σtp(|v| t)

∫
R2

f in(y, v)dy

+ 1s<tσe
−σsp(|v| s)

∫ ∞
0

∫
R2

Tk (F ) (t− s, τ, y, v)dydτ

= 1t<sσe
−σtp(|v| t)

∫
R2

f in(y, v)dy

+ 1s<tσe
−σsp(|v| s)

∫ ∞
0

∫
B2

k(v, w)

∫
R2

F (t− s, τ, y, w)dydwdτ

= 1t<sσe
−σtp(|v| t)µin(v)

+ 1s<tσe
−σsp(|v| s)

∫ ∞
0

Tk(m)(t− s, τ)dτ ,

where the second equality follows from the substitution y = x− tv that leaves the
Lebesgue measure invariant. In other words,

m satisfies the same integral equation as µ.

Now the solution fε of (Ξε) satisfies

fε ≥ 0 a.e. on R+×R2×B2 and

∫∫
R2×B2

fε(t, y, v)dydv ≤
∫∫

R2×B2

f in(y, v)dydv ,

which implies by Theorem 2.2 that∫
|y|≤R

∫
B2

fε(t, y, v)dvdy ⇀

∫ +∞

0

∫
|y|≤R

∫
B2

F (t, s, y, v)dvdyds .

Hence, by Fatou’s lemma∫ +∞

0

∫
|y|≤R

∫
B2

F (t, s, y, v)dvdyds ≤ lim
ε→0+

∫∫
R2×B2

fε(t, x, v)dxdv

≤
∫∫

R2×B2

f in(y, v)dydv ,

a.e. in t ≥ 0.
Letting R→ +∞ in the inequality above, we see that m ∈ L∞(R+

t ;L1(R+
s ×B2))

and so that for each T > 0

m ∈ VT .
Therefore, since the mild solution of the Renewal PDE is unique and nonegative
a.e. on R+ × R+ × B2, one has∫∫∫

R+×R2×B2

F (t, s, x, v)dsdxdv =

∫∫
R+×B2

µ(t, s, v) a.e. in t ∈ R+.

�
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4.2. The total mass in the vanishing ε limit. By Theorem 2.2, the solution fε
of (Ξε) satisfies

{fε}⇀
∫ +∞

0

Fds in L∞(R+ × R2 × B2) weak-∗;

therefore, checking that∫∫
R2×B2

{fε}dxdv ⇀
∫ +∞

0

∫∫
R2×B2

Fdxdvds =: M(t)

reduces to proving that there is no mass loss at infinity in the x variable.

Lemma 4.1. Under the same assumptions as in Theorem 2.2∫∫
Zε×B2

fε(t, x, v)dxdv =

∫∫
R2×B2

{fε}(t, x, v)dxdv →M(t)

strongly in L1
loc(R+) as ε→ 0+.

Proof. Going back to the proof of Proposition 3.1 (whose notations are kept in the
present discussion), we have seen that

Fε =
∑
n≥0

T nF2,ε on R+ × R+ × Zε × B2 ,

with the notation

F2,ε(t, s, x, v) = 1t<ετε(
x
ε ,v)1t<sσe

−σsf in(x− tv, v) .

Since T Φ ≥ 0 a.e. whenever Φ ≥ 0 a.e., the formula above implies that

Fε ≤ G :=
∑
n≥0

T nG2 a.e. in (t, s, x, v) ∈ R+ × R+ × Zε × B2 ,

where

G2(t, s, x, v) := 1t<sσe
−σsf in(x− tv, v) .

Thus, G satisfies the integral equation

G = G2 + T G

meaning that G is the mild solution of

(∂t + v · ∇x + ∂s)G = −σG , t, s > 0 , (x, v) ∈ R2 × B2 ,

G(t, 0, x, v) = σ

∫ +∞

0

KG(t, s, x, v)ds , t > 0 , (x, v) ∈ R2 × B2 ,

G(0, s, x, v) = f in(x, v)σe−σs , s > 0 , (x, v) ∈ R2 × B2 ,

Reasoning as in Proposition 3.1 shows that

g(t, x, v) :=

∫ +∞

0

G(t, s, x, v)ds

is the solution of the linear Boltzmann equation (∂t + v · ∇x)g + σ(g −Kg) = 0 , t > 0 , x ∈ R2 , |v| = 1 ,

g(0, x, v) = f in(x, v) , x ∈ R2 , |v| = 1 .

In view of the assumption (1.3) bearing on f in, we know that

G ≥ 0 a.e. on R+ × R+ × R2 × B2
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and ∫ +∞

0

∫∫
R2×B2

G(t, s, x, v)dxdvds =

∫∫
R2×B2

g(t, x, v)dxdv

=

∫∫
R2×B2

f in(x, v)dxdv

for each t ≥ 0.
Summarizing, we have

0 ≤ {Fε} ≤ G

and ∫∫∫
R+×R2×B2

G(t, s, x, v)dsdxdv =

∫∫
R2×B2

f in(x, v)dxdv < +∞ .

Then we conclude as follows: for each R > 0, one has∫∫
Zε×B2

fε(t, x, v)dxdv −
∫ +∞

0

∫∫
R2×B2

F (t, s, x, v)dxdvds

=

∫ +∞

0

∫
|x|>R

∫
B2

{Fε}(t, s, x, v)dvdxds

+

∫ +∞

0

∫
|x|≤R

∫
B2

({Fε} − F ) (t, s, x, v)dvdxds

−
∫ +∞

0

∫
|x|>R

∫
B2

{F}(t, s, x, v)dvdxds = IR,ε(t) + IIR,ε(t) + IIIR(t) .

First, for a.e. t > 0, the term IR,ε(t)→ 0 as R → +∞ uniformly in ε > 0 since
0 ≤ {Fε} ≤ G and G ∈ L∞(R+;L1(R+ × R2 × B2)).

Next, the term IIR,ε(t) → 0 strongly in L1
loc(R+) as ε → 0+ for each R > 0 by

Lemma 3.4.
Finally, since {Fε} ⇀ F in L1

loc(R+ × R+ × R2 × B2) weak as ε → 0+, one has
0 ≤ {F} ≤ G, so that F ∈ L∞(R+;L1(R+×R2×B2)). Hence the term IIIR(t)→ 0
as R→ +∞ for a.e. t ≥ 0.

Thus we have proved that∫∫
Zε×B2

fε(t, x, v)dxdv →
∫ +∞

0

∫∫
R2×B2

F (t, s, x, v)dxdvds

in L1
loc(R+) and therefore for a.e. t ≥ 0, possibly after extraction of a subsequence

of ε→ 0+. �

4.3. An integral equation for t, v 7→ m(t, v). We recall the notation

m(t, v) :=

∫ ∞
0

µ(t, s, v)ds.

with µ is the unique mild solution of the renewal PDE.

Lemma 4.2. The function m satisfies the integral equation

m(t, v) = m(0, v)p (|v|t) e−σt + σ

∫ t

0

p (|v|s) e−σsTk(m)(t− s, v)ds.

Proof. We apply the same method as in Proposition 3.5 for deriving the explicit
representation formula for F in order to find an exact formula for m. Indeed, by
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the method of characteristics,

(4.3)

µ(t, s, v) = 1s<tp(|v| s)e−σsµ(t− s, 0, v) + 1t<sp(|v| t)e−σtµ(0, s− t, v)

= 1s<tp(|v| s)σe−σs
∫ ∞

0

Tk (µ) (t− s, u, v)du

+ 1t<sp(|v| t)σe−σs
∫
R2

f in(x, v)dv .

We notice that∫ ∞
0

Tk (µ) (t− s, u, v)du =

∫ ∞
0

∫
B2

k(v, w)µ(t− s, u, w)dwdu

=

∫
B2

k(v, w)m(t− s, w)dw = Tk(m)(t− s, v).

Therefore, integrating both sides of (4.3) in s ∈ R+ gives

m(t, v) = e−σtp(|v| t)m(0, v) +

∫ t

0

σe−σsp (|v| s)Tk(m)(t− s, v)

a.e. in t ≥ 0 and v ∈ B2 with

m(0, v) =

∫
R2

f in(x, v)dx,

which is precisely the desired integral equation for m. �

5. Asymptotic behavior of the mass in the long time limit in the
irreducible case

We recall that we henceforth assume for simplicity that the operator Tk has finite
rank. That means there exists n ∈ N and two finite sequences (φi)1≤i≤n ∈ L∞(R2)
and (ψi)1≤i≤n ∈ L1(R2) such that for each f ∈ L1(R2)

(5.1) Tk(f)(v) =

n∑
i=1

(∫
R2

f(w)φi(w)dw

)
ψi(v).

In other words Tk ∈ L∞(R2)⊗ L1(R2) ⊂ L
(
L1
(
B2
))
, and

Tk =

n∑
i=1

φi ⊗ ψi in L(L1(R2)).

5.1. A system of integral equations. Let us return to the integral equation

m(t, v) = m(0, v)p(|v|t)e−σt + σ

∫ t

0

p(|v|s)e−σsTk(m)(t− s, v)

Define

(5.2) µi(t) :=

∫
R2

m(t, v)φi(v)dv, 1 ≤ i ≤ n,

so that

m(t, v) = m(0, v)p(|v|t)e−σt + σ

∫ t

0

p(|v|s)e−σsTk(m)(t− s, v)ds

= m(0, v)p(|v|t)e−σt

+ σ

∫ t

0

p(|v|s)e−σs
n∑
i=1

(∫
R2

φi(w)m(t− s, w)dw

)
ψi(v)ds

= m(0, v)p(|v|t)e−σt + σ

n∑
i=1

∫ t

0

µi(t− s)p(|v|s)e−σsψi(v)ds.
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If the asymptotic behavior of µi in the long time limit are known for each i ∈ [|1, n|],
then one deduces from the equality above the asymptotic behavior of m(., v). We
begin with the integral equation governing the evolution of (µi)1≤i≤n .

Introduce here the matrix convolution product:

Definition 5.1. Let n,m, p ∈ N and let F be a n× p matrix valued function and
G be a p × m matrix-valued function whose entries belong to L1(R+). We define
H := F ∗G the matrix convolution product by the formula

hij(t) :=

p∑
k=1

∫ t

0

fik(t− s)gkj(s)ds,
1 ≤ i ≤ n,
1 ≤ j ≤ m,

where fik(t), gkj(t) and hij(t) designate the entries of F (t), G(t) and H(t) respec-
tively.

In the case n = p = m = 1, we recover the classical convolution product of two
functions defined on the half-line. We have thus defined the convolution exactly as
we define matrix multiplication except that we convolve entries instead of multi-
plying them. Like matrix multiplication, matrix convolution product is associative
but is noncommutative except in the scalar case n = m = p = 1.

Let us return to equation above:

m(t, v) = m(0, v)p(|v|t)e−σt + σ

n∑
i=1

∫ t

0

µi(t− s)p(|v|s)e−σsψi(v)ds.

Multiplying both sides of the equality above by φj , integrating in v ∈ R2 and
applying Fubini’s Theorem leads

(5.3)

µj(t) =

∫
R2

m(0, v)p(|v|t)e−σtφj(v)dv

+ σ

n∑
i=1

∫ t

0

µi(t− s)
(∫

R2

p(|v|s)ψi(v)φj(v)dv

)
e−σsds.

We define the matrix-valued function

(5.4) P (t) := (pij(t))1≤i,j≤n for each t ≥ 0,

where

pij(t) :=

∫
R2

φi(v)ψj(v)p(|v|t)dv for each t ≥ 0, 1 ≤ i, j ≤ n

together with

(5.5) K(t) := σe−σtP (t) for each t ≥ 0.

We also define

(5.6) g(t) :=

 g1(t)
...

gn(t)


with

gi(t) :=

∫
R2

m(0, v)p(|v|t)e−σtφi(v)dv for each t ≥ 0 and 1 ≤ i ≤ n.

With these notations, (5.3) is transformed into the system of integral equations

(5.7) µj(t) = gj(t) +

n∑
i=1

(kji ∗ µi)(t) for each 1 ≤ j ≤ n.
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In other words, the vector-valued function µ defined by

µ(t) :=

 µ1(t)
...

µn(t)


is a solution of the following vector-valued integral equation

(5.8) µ(t) = g(t) + (K ∗ µ)(t).

The equation above is of renewal type. At variance with the scalar Renewal equation
(see [11], pages?) the asymptotic behavior of the vector-valued case is much more
involved, as it relies on the algebraic structure of the matrix kernel K. More
precisely, if the matrix ∫ ∞

0

K(s)ds

is irreducible then the asymptotic behavior of µ is homogeneous (see [8],[10] or [13]).
But dropping the irreducibility assumption may lead to a much intricate behavior,
as we shall see below (see also [9] for an other example).

So that, the present section is devoted to the study of the asymptotic behavior
of (µ) in the long time limit with the further assumption if irreducibility of the
operator Tk. The evolution of (µ) when Tk is reducible is discussed in the next
section.
For each measurable A ⊆ B2, we denote

IA :=
{
f ∈ L1

(
B2
)
|supp f ⊆ A

}
,

and denote by λ the uniform probability measure on B2. In other words, for each
measurable A ⊆ B2,

λ(A) :=

∫
v∈A

dv.

We next give the definition of irreducibility for an operator of L1
(
B2
)
.

Definition 5.2. Let T ∈ L
(
L1
(
B2
))
. The operator T is irreducible if and only if

T (IA) ⊆ IA ⇔ λ(A) ∈ {0, 1} .
We call reducible an operator that is not irreducible.

Notice that Tk being irreducible is equivalent to∫
B2\Ω

(∫
Ω

k(w, v)dw

)
dv > 0

holding for every subset Ω ⊂ B2 satisfying

0 < λ (Ω) < 1.

We establish in the present section

Proposition 5.3. Assume that Tk is irreducible. Then there exists ξσ ∈ (−σ, 0)
and ci > 0 for each i ∈ [|1, n|] such that

µi(t) ∼ cieξσt as t→ +∞.

Before going further, we establish a lemma about Tk. We will establish that
assumption (0.3) excludes precisely the possibility of Tk nilpotent.

Lemma 5.4. Let Tk ∈ L
(
L1
(
B2
))

be as in (0.3). Then for each nonnegative

f ∈ L1
(
B2
) ∫

B2

Tk(f)(v)dv =

∫
B2

f(v)dv.
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Proof. Denote L1
+(R2) the cone of nonnegative integrable function. Since the kernel

is nonnegative, Tk
(
L1

+(R2)
)
⊂ L1

+(R2) and for each f ∈ L1
+(R2), by the Fubini-

Tonelli Theorem ∫
R2

Tk (f) (v)dv =

∫
R2

(∫
R2

k(v, w)f(w)dw

)
dv,

=

∫
R2

f(w)dw.

�

5.2. A renewal theorem for vector-valued equations.

5.2.1. The Banach spaceMn

(
L1 (R)

)
and the renewal equation. We denoteMn(R)

the real n × n square matrix algebra and Mn(R+) the subset of matrices whoses
entries are nonnegative. Notice that it is a cone, i.e. a closed convex set K such
that λK ⊂ K for all λ ≥ 0. Moreover it is proper: K ∩ (−K) = {0}. As proper
cone, Mn(R+) induces a partial order ≤ on Mn(R) by the following rule:

For each A,B ∈Mn(R), A ≤ B if and only if B −A ∈Mn(R+).

In the same way, we denote A < B if and only if B − A is a matrix whose each
entry is positive.
As matrix norm, we take

‖A‖∞,∞ := sup
1≤i≤n

n∑
j=1

|aij |.

Define nowMn

(
L1 (R)

)
the vector space of matrices whoses entries are integrable

functions defined on R+ with values in R. It is a Banach space for the norm

|‖F‖|1 := sup
1≤i≤n

n∑
j=1

∫ ∞
0

|fij(s)| ds.

Moreover, we notice that for each F,G ∈Mn

(
L1 (R)

)
we have

|‖F ∗G‖|1 = sup
1≤i≤n

n∑
j=1

∫ ∞
0

∣∣∣∣∣
n∑
k=1

∫ t

0

fik(t− s)gkj(s)ds

∣∣∣∣∣ dt,
≤ sup

1≤i≤n

n∑
j=1

∫ ∞
0

n∑
k=1

∫ t

0

|fik(t− s)| |gkj(s)| dsdt,

≤ sup
1≤i≤n

n∑
j=1

∫ ∞
0

|fik(s)| ds
∫ ∞

0

|gkj(s)| ds.

In other words

(5.9)

|‖F ∗G‖|1 ≤
∥∥∥∥∫ ∞

0

F (s)ds

∫ ∞
0

G(s)ds

∥∥∥∥
∞,∞

,

≤
∥∥∥∥∫ ∞

0

F (s)ds

∥∥∥∥
∞,∞

∥∥∥∥∫ ∞
0

G(s)ds

∥∥∥∥
∞,∞

= |‖F‖|1 |‖G‖|1 ,

since ‖ · ‖∞,∞ is a norm for the Banach algebra Mn (R) .
Hence

(
Mn

(
L1 (R)

)
, ∗, |‖.‖|1

)
is a Banach algebra. Eventually, introduceMn (L∞ (R))

the Banach space of matrices whose entries are essentially bounded functions with
the norm

|‖F‖|∞ = sup
1≤i,j≤n

sup
t∈R+

|fij(t)| .
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We check easily that for each F ∈Mn

(
L1 (R)

)
and G ∈ L∞ (R+;Mn (R)) we have

F ∗G,G ∗ F ∈Mn

(
L1 (R)

)
with

|‖F ∗G‖|1 ≤ |‖F‖|1 |‖G‖|∞ ,

and

|‖G ∗ F‖|1 ≤ |‖G‖|∞ |‖F‖|1 .
We henceforth denote for each F ∈Mn

(
L1 (R)

)
∫ ∞

0

F (s)ds :=

(∫ ∞
0

fij(s)ds

)
1≤i,j≤n

.

Now (Lp (R+)) with p ∈ [1,+∞] denotes the vector spaces of vectors whose entries
are Lp−integrable functions defined on R+ with values in R. It is a Banach space
for the norm

‖f‖∞,p := sup
1≤j≤n

‖fj‖Lp(R+) .

With the Young inequality and a similar argument as in 5.9, we have for each
F ∈ Mn

(
L1 (R)

)
and for each f ∈ (Lp (R+)) with p ∈ [1,+∞], F ∗ f ∈ (Lp (R+))

with

(5.10) ‖F ∗ f‖∞,p ≤ |‖F‖|1 ‖f‖∞,p .

Let A ∈Mn (R), we designate its spectral radius with ρ(A). We now give

Proposition 5.5. Let F be in Mn

(
L1 (R)

)
with F ≥ 0 such that

ρ

(∫ ∞
0

F (s)ds

)
< 1

and let g be in (Lp (R+))
n

with p ∈ [1,+∞] then the renewal equation

f = g + F ∗ f

has a unique solution in (Lp (R+))
n

that is

∞∑
n≥0

F ∗n ∗ g,

with F ∗0 := δIn where δ is the identity element for the scalar convolution product
and In the matrix identity and F ∗n := F ∗ F ∗ · · · ∗ F︸ ︷︷ ︸

n factors

.

Proof. For each N ≥ 0 one has∥∥∥∥∥∥
N∑
n≥0

F ∗n ∗ g

∥∥∥∥∥∥
∞,p

≤
N∑
n≥0

‖F ∗n ∗ g‖∞,p

≤
N∑
n≥0

|‖F ∗n‖|1 ‖g‖∞,p by (5.10)

≤ ‖g‖∞,p
N∑
n≥0

∥∥∥∥(∫ ∞
0

F (s)ds

)n∥∥∥∥
∞,∞

by (5.9).

Noticing that(∥∥∥∥(∫ ∞
0

F (s)ds

)n∥∥∥∥
∞,∞

) 1
n

→ ρ

(∫ ∞
0

F (s)ds

)
< 1 as n→ +∞,
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one concludes by the root test that the series

N∑
n≥0

F ∗n ∗ g

converges absolutely in (Lp (R+))
n

and so that

∞∑
n≥0

F ∗n ∗ g ∈ (Lp (R+))
n
.

Now, one observe that

∞∑
n≥0

F ∗n ∗ g ∈ (Lp (R+))
n

= (δIn) ∗ g +

∞∑
n≥1

F ∗n ∗ g

= g + f ∗

 ∞∑
n≥0

F ∗n ∗ g


hence, it a solution of the Renewal equation. Finally, for the uniqueness. Assume
that f1 and f2 are solution, so that f := f1 − f2 is a solution of

f = F ∗ f

and verifies for each n ≥ 1

f = F ∗n ∗ f.
That implies that for each n ≥ 1

‖f‖∞,p ≤
∥∥∥∥(∫ ∞

0

F (s)ds

)n∥∥∥∥
∞,∞

‖f‖∞,p .

Since

ρ

(∫ ∞
0

F (s)ds

)
< 1

one has ∥∥∥∥(∫ ∞
0

F (s)ds

)n∥∥∥∥
∞,∞

→ 0 as n→ +∞,

so that

‖f‖∞,p = 0,

meaning that f1 = f2 in (Lp (R+))
n
. �

With a similar argument, one has

Proposition 5.6. Let F be in Mn

(
L1 (R)

)
with F ≥ 0 such that

ρ

(∫ ∞
0

F (s)ds

)
< 1

and let g be in (Lploc (R+))
n

with p ∈ [1,+∞] then the renewal equation

f = g + F ∗ f

has a unique solution in (Lploc (R+))
n

that is

∞∑
n≥0

F ∗n ∗ g.
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5.2.2. Irreducibility. Recall now the notion of irreducibility for matrix.

Definition 5.7. A square matrix M is said reducible if and only if there exists a
permutation matrix P such that

PMPT =

(
A B
0 C

)
with A,B and C are matrices. If M is not reducible, it is said irreducible.

We give here two criteria characterizing the reducibility of a matrix.

Criterion 1. A matrix A is reducible if and only if there exists a non trivial
partition I, J of [|1, n|] such that for each (i, j) ∈ I × J one has aij = 0.

For the other criterion, we first give a definition.

Definition 5.8. Let A a matrix and i, j ∈ 1, · · · , n. One said that there is a chain
joining i and j if and only if there exists a finite sequence (kl)

p
l=1 ∈ [|1, n|] with

p ≤ n,k0 = i and kp = j such that aklkl+1
6= 0 for every 0 ≤ l < p. A such sequence

(kl) is denoted Cij and is called a chain joining i and j.

The second criterion is then

Criterion 2. A matrix A is irreducible if and only if for each i, j ∈ [|1, n|], there
exists a chain joining i and j.

We recall then the Perron-Frobenius Theorem

Theorem 5.9. Let A be an irreducible matrix with nonnegative entries then

(1) ρ(A) is a simple eigenvalue of A and there exists two vectors x, y with
positive entries

Ax = ρ(A)x

and
(y)TA = ρ(A)(y)T .

(2) Let B ∈ Mn (R+) such that 0 ≤ B ≤ A then ρ(B) ≤ ρ(A). Moreover
B 6= A implies ρ(B) < ρ(A).

5.2.3. The Renewal Theorem. Let M ∈Mn

(
L1 (R+)

)
, we denote

M∞ :=

(∫ ∞
0

mij(s)ds

)
1≤i,j≤n

.

One assumes M∞ is irreducible with ρ (M∞) = 1. By The Perron-Frobenius Theo-
rem, there exists a positive right eigenvector mr and a positive left eigenvector ml

such that
M∞mr = mr

and
mlM∞ = ml.

We construct a matrix-valued renewal measure H by the formula

H(dt) :=
∑
n=0

M∗n(t)dt,

and each solution of the renewal equation

(5.11) x(t) = y(t) + (M ∗ x)(t)

with y ∈ L1(R+;Rn), has the form

x(t) :=

∫ t

0

H(ds)y(t− s),∀t ≥ 0.



CHAPTER IV : THE NONMONOKINETIC CASE 117

Theorem 5.10. Under the assumptions and with the notations above, the matrix-
valued renewal measure H is decomposed as

H = H1 +H2,

where H2 is a finite matrix-valued measure on R+ and H1(dt) := (hij(t))
n
i,j=1dt

where for each 1 ≤ i, j ≤ n, hij is bounded and continuous with

(5.12) lim
t→+∞

(hij(t))
n
i,j=1 =

mrml

ml

(∫∞
0
sM(s)ds

)
mr

.

In other words, for each f ∈ L1(R+;Rn)∫ t

0

H(ds)f(t− s) = (H1 ∗ f)(t) +

∫ t

0

H2(ds)f(t− s) ∀t ≥ 0

with
∫∞

0
H2(ds) < +∞.

For the proof of this theorem, see for instance [10, 13]. Any decomposition
above is known as a Stone decomposition. It is not unique but the limit (5.12) is
unique. It enables to remove the directly Riemann integrable assumption (see [11],
pp. 348-349) and gives us an short proof of the following renewal theorem

Theorem 5.11. Assume moreover that y ∈ L∞ (R+;Rn) and limt→+∞ y(t) = 0.
Then

lim
t→+∞

x(t) = D∞

∫ ∞
0

y(s)ds

with

D∞ :=
mrml

ml

(∫∞
0
sM(s)ds

)
mr

.

Proof. We have for each t ≥ 0

x(t) =

∫ t

0

H(ds)y(t− s).

And let (H1, H2), a Stone decomposition, then

x(t) = (H1 ∗ y)(t) +

∫ t

0

H2(ds)y(t− s).

First, since y ∈ L∞(R+;Rn), there exists 0 < C < ∞ such that |y(t)| ≤ C a.e.
in t ∈ R+. Since H2 is finite measure, t 7→ C ∈ L1

H2
(R+;Rn) so that (y(t− s))t≥s

is dominated by a H2−integrable function. Besides y(t) → 0 as t → +∞. Conse-
quently, one has by dominated convergence that∫ t

0

H2(ds)y(t− s)→ 0 as t→ +∞.

We establish with a similar argument that

lim
t→+∞

(H1 ∗ y)(t) =
mrml

ml

(∫∞
0
sM(s)ds

)
mr

∫ ∞
0

y(s)ds.

�

5.3. The vector-valued intergral equation (5.8) and the matrix kernel K.
We have noticed that the essential assumption for the Renewal Theorem is the irre-
ducibility of the matrix M∞. Thus, we have to discuss the long-time limit behavior
of the mass according the irreducibility of the matrix kernel K.
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5.3.1. The irreducibility of P (0). We recall that we have assumed in the present
section that the operator Tk ∈ L

(
L1
(
B2
))

is irreducible (see Definition 5.2). We
now give the relation between the two notions of irreducibility presented above.

Proposition 5.12. Let Tk and P be as in (5.1) and (5.4).The following statements
are equivalent.

(1) the matrix P (0) is irreducible,
(2) the operator Tk is irreducible.

Proof. We first show that (2) implies (1). Indeed, assume that P (0) is reducible.
By criterion 1, there exists a non trivial partition I, J of [|1, n|] such that

pij(0) =

∫
B2

φiψj = 0 for (i, j) ∈ I × J.

We define
A :=

⋃
j∈J

supp ψj

and
B :=

⋃
i∈I

supp φi.

As (ψj , φi)1≤i,j≤n are nonnegative,∫
B2

φi(v)ψj(v)dv = 0

for (i, j) ∈ I × J implies that λ (A ∩B) = 0. Besides, 0 < λ (A) < 1. That being
said, we have for each f ∈ IA

Tk (f) =

(
n∑
i=1

φi ⊗ ψi

)
(f)

=

n∑
i=1

(∫
B2

φi(v)f(v)dv

)
ψi

=
∑
i∈I

(∫
B2

φi(v)f(v)dv

)
ψi +

∑
i∈J

(∫
B2

φi(v)f(v)dv

)
ψi

=
∑
i∈J

(∫
B2

φi(v)f(v)dv

)
ψi ∈ IA.

Therefore, Tk is reducible, and by contraposition, if Tk is irreducible, the matrix
P (0) is irreducible.

Now show that the irreducibility of P (0) implies the one of Tk. Assume that Tk
is reducible. There exists A ⊂ B2 with 0 < λ(A) < 1 such that

Tk (IA) ⊆ IA.
In particular, we have

Tk (1A) =

(
n∑
i=1

φi ⊗ ψi

)
(1A) =

n∑
i=1

(∫
A

φi(v)dv

)
ψi

=
∑
i∈I

(∫
A

φi(v)dv

)
ψi,

with
I := {i ∈ [|1, n|]|λ (A ∩ supp φi) > 0} .

Define
J := [|1, n|] \ I.
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These set I, J form a partition of [|1, n|]. Since Tk (1A) ∈ IA and
(∫
A
φi(v)dv

)
> 0

for each i ∈ I, we have supp ψi ⊆ A for each i ∈ I and
∫
B2 φj(v)ψi(v)dv = 0 for

each j ∈ J . In other words,

for each i, j ∈ I × J pij(0) = 0.

Consequently, by Criterion 1, if I, J is a nontrivial partition of [|1, n|], the matrix
P (0) is reducible. Therefore it remains to show that I, J is nontrivial, meaning
that I 6= ∅ and I 6= [|1, n|].
If I was empty, it would imply that

Tk (1A) = 0

but we have ∫
B2

Tk (1A) = λ(A) > 0.

If I = [|1, n|], it would imply that
∫
A
φi(v)dv > 0 for each i ∈ [|1, n|] and, since

Tk (1A) ∈ IA, for each i ∈ [|1, n|], supp ψi ⊆ A. Yet, the assumptions∫
B2

k(v, w)dv = 1

and

k(v, w) = k(w, v), for each (v, w) ∈ B2

imply ∫
B2

k(v, w)dw = 1.

In other words∫
B2

k(v, w)dw =

n∑
i=1

(∫
B2

φi(w)dw

)
ψi(v) =

n∑
i=1

αiψi(v) = 1 for each w ∈ B2.

This is obviously incompatible with the condition supp ψi ⊆ A for each i ∈ [|1, n|].
Therefore, I 6= ∅ and I 6= [|1, n|], so that I, J is a nontrivial partition of [|1, n|]. �

Lemma 5.13. Assume that P (0) is irreducible, then P (t),K(t) are irreducible for
each t > 0, and

∫∞
0
e−ξtK(t)dt is irreducible for each ξ > −σ.

Proof. We recall that the function (t, v) 7→ p(|v|t) is positive and that (ψi, φi)1≤i≤n
are nonnegative. As

pij(t) =

∫
B2

φi(v)ψj(v)p(|v|t)dv.

for each t ≥ 0, i, j ∈ [|1, n|], one has pij(0) 6= 0 if and only if pij(t) 6= 0 for each
t ≥ 0, i, j ∈ [|1, n|].

Assume now that P (0) is irreducible, there exists for each i, j a chain Cij joining
i and j, hence by the remark above this very chain Cij also joins i and j in P (t)
for each t ≥ 0. Therefore by Criterion 2, P (t) is irreducible for each t > 0.

Finally, we establish that K(t) and
∫∞

0
e−ξtK(t)dt are irreducible for each t >

0, ξ > −σ with a similar argument. �

Proposition 5.14. Let Tk and P (0) be as in (5.1) and (5.4). Assume moreover
that Tk is irreducible, then

ρ

(∫ ∞
0

K(t)dt

)
< 1.
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Proof. By Proposition 5.12 the irreducibility of Tk entails the irreducibility of P (0).
We shall show that

ρ

(∫ ∞
0

K(t)dt

)
< ρ(P (0)).

Notice that for each v ∈ B2 \ {0}, and we recall that ṗ(t) < 0 for each t ≥ 0.
Therefore for each i, j ∈ [|1, n|] such that pij(0) 6= 0 the function pij is decreasing
with ṗij(t) < 0 for each t ≥ 0. We have∫ ∞

0

kij(t)dt =

∫ ∞
0

σe−σtpij(t)dt

=

∫ ∞
0

e−σtṗij(t)dt+ pij(0)

≤ pij(0).

The inequality above is strict if pij(0) 6= 0 since the term
∫∞

0
e−σtṗij(t)dt is nega-

tive. So that

0 ≤
∫ ∞

0

K(t)dt ≤ P (0),

with ∫ ∞
0

K(t)dt 6= P (0).

That implies by the Perron-Frobenius theorem that

ρ

(∫ ∞
0

K(t)dt

)
< ρ(P (0)).

We now establish that

ρ(P (0)) = 1.

As P (0) is irreducible, by the Perron-Frobenius Theorem, there exists a vector x
whose entries are positive such that

P (0)x = ρ(P (0))x.

We have for each j ∈ [|1, n|]

Tk (ψj) =

n∑
i=1

(∫ ∞
0

φi(v)ψj(v)dv

)
ψi

=

n∑
i=1

pij(0)ψi.

As
∫
B2 Tk (f) =

∫
B2 f for each nonnegative function, the equality above entails that

n∑
i=1

(∫
B2

ψi(v)dv

)
pij(0) =

∫
B2

ψj(v)dv.

In other words,

yTP (0) = yT

with

y :=

(∫
B2

ψi(v)dv

)
1≤i≤n

.

That implies that

ρ (P (0)) yTx = yTx > 0

since yTx is a matrix whose entries are positive. Thus

ρ (P (0)) = 1.

�
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Henceforth we denote

(5.13) H(t) :=

∞∑
n=0

K∗n(t) for each t ≥ 0.

5.3.2. An explicit representation formula for µ.

Proposition 5.15. Under the assumptions and with the notations above, Equation
(5.8) has a unique solution in L1(R+;Rn) that is H ∗ g.

Proof. It is an immediate consequence of Proposition 5.14 and Proposition 5.5. �

5.4. The characteristic exponent ξσ.

Proposition 5.16. Let Tk and P be as in (5.1) and (5.4) and let

K(t) := σe−σtP (t)

for each t ≥ 0. Assume moreover that Tk is irreducibleo then for each σ > 0, the
equation

ρ

(∫ ∞
0

e−ξsK(s)ds

)
= 1

with unknown ξ has a unique real solution ξσ. Moreover, one has

−σ < ξσ < 0.

Proof. Consider the Laplace transform of the matrix-valued function

L [K] (ξ) := (L [kij ] (ξ))1≤i,j≤n

=

(∫ ∞
0

σe−(σ+ξ)tpij(t)dt

)
1≤i,j≤n

.

We define

(5.14) λ : (−σ,+∞) 3 ξ 7→ ρ(L [K] (ξ)) ∈ R+.

To prove the proposition, we must show that there exists a unique ξσ ∈ (−σ, 0)
such that

λ (ξσ) = 1.

As 0 ≤ p ≤ 1 and the functions (φi, ψi)1≤i≤n ∈ L∞
(
B2
)
× L1

(
B2
)

and are non-
negative, the function

L [kij ] (ξ)

is of class C1 on (−σ,+∞) for each i, j ∈ [|1, n|], and

d

dξ
L [kij ] = −

∫ ∞
0

σe−(σ+ξ)tt

∫
R2

p(|v|t)φi(v)ψj(v)dv ≤ 0,

with strict inequality whenever pij(0) 6= 0. Therefore one has, for each ξ1 < ξ2,

L [K] (ξ2) ≤ L [K] (ξ1),

with
L [K] (ξ2) 6= L [K] (ξ1),

and L [K] (ξ1) being irreducible by Lemma 5.13. So that by the Perron-Frobenius
Theorem

ρ(L [K] (ξ2)) < ρ(L [K] (ξ1)).

In other words, the function λ is decreasing on ]− σ,+∞[.
Moreover the spectral radius is continuous on Mn(R) and thus λ is also contin-

uous on ]− σ,+∞[.
Notice that whenever pij(0) 6= 0,

kij(t)e
−ξt → 0+ as ξ → +∞,
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for each t > 0 and i, j ∈ [|1, n|] while

kij(t)e
−ξt ≤ Cσe−σt

where
C := sup

1≤i,j≤n
pij(0)

Therefore one obtains by dominated convergence,

L [K] (ξ)→ 0+ as ξ → +∞,
and since ρ is continuous, one concludes that

λ(ξ)→ 0+ as ξ → +∞.
We denote

K̃ ≡
(
k̃ij

)
1≤i,j≤n

:=

{
1 if pij(0) > 0,
0 otherwise.

As P (0) is irreducible, K̃ is irreducible by a similar argument as in the proof of
Lemma 5.13 and thus by the Perron-Frobenius Theorem, we have

ρ
(
K̃
)
> 0.

That being said for each t > 0, i, j ∈ [|1, n|], whenever pij(0) 6= 0

kij(t) ↑ σpij(t) as ξ ↓ −σ+.

As (t, v) 7→ p(|v|t)φi(v)ψj(v) is nonnegative, applying the Tonelli Theorem for each
(i, j) such that pij(0) 6= 0 shows that∫ ∞

0

σpij(t)dt = σ

∫
R2

φi(v)ψj(v)

(∫ ∞
0

p(|v|t)dt
)
dv

= +∞

since p /∈ L1(R+). So that by monotone convergence, for each (i, j) ∈ [|1, n|]
L [kij ] (ξ)→ +∞ as ξ ↓ −σ+.

whenever pij(0) 6= 0. Hence, for each M > 0, there exists, ξ0 such that ξ < ξ0
implies L [kij ] (ξ) ≥ M for each i, j such that pij(0) 6= 0. In other words, for each
M > 0, there exists, ξ0 such that for each ξ < ξ0 one have

L [K] (ξ) ≥MK̃

and thus
ρ (L [K] (ξ)) ≥Mρ(K̃).

Therefore
λ(ξ)→ +∞ as ξ ↓ −σ+.

The function λ is a continuous decreasing function on (−σ,+∞) with

λ(ξ)→ +∞ as ξ ↓ −σ+,

and
λ(ξ)→ 0 as ξ ↑ +∞,

so that, by the intermediate value theorem, there exists a unique ξσ > −σ such
that

λ(ξσ) = 1.

Finally, we show that ξσ is negative. By corollary 5.14, we have

ρ

(∫ ∞
0

K(t)dt

)
= ρ(L [K] (0)) = λ(0) < 1 = λ(ξσ);

and since λ is decreasing,
ξσ < 0.
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�

5.5. The asymptotic behavior of µ in the irreducible case.

Proof. First, for each η ∈ R and each locally bounded measurable matrix-valued
function M : R 7→ Mn,p(R) supported in R+, denote

(5.15) ηM :=
(
eηtmij(t)

)
1≤i≤n,1≤j≤p for each t ∈ R.

Notice that for each such M,N , we have

eηt(M ∗N)(t) = (ηM ∗η N)(t) for each t ∈ R.

Hence, if µ is a solution of the equation (5.8), the function µ−ξσ satisfies

(5.16) −ξσµ(t) =−ξσ g(t) + (−ξσK ∗−ξσ µ)(t)

which is a system of renewal equations in the sense of Theorem 5.11. Thus, applying
this theorem to the equation above shows that

µ(t)e−ξσt → mrml

∫∞
0
e−ξσsg(s)ds

ml

(∫∞
0
se−(σ+ξσ)tP (s)ds

)
mr

.

�

6. The asymptotic behavior of µ in the reducible case

6.1. Summary of the previous section and main result. We have seen in the
previous section that the function m verifies

m(t, v) = m(0, v)p(|v|t)e−σt + σ

n∑
i=1

∫ t

0

µi(t− s)p(|v|s)e−σsψi(v)ds.

with µ defined in (5.2). Moreover, µ is solution of the vector-valued equation

(6.1) µ = g +K ∗ µ

where g is defined in (5.6) and

K(t) := σe−σtP (t)

for each t ≥ 0 with P defined in (5.4). Besides, if Tk is irreducible, then there exists
ξσ ∈ (−σ, 0) and a vector c with positive entries such that

µ(t) ∼ eξσtc as t→ +∞.

In other words, the irreducibility assumption entails both an exponential-type decay
and a uniform behavior for (µi)1≤i≤n . In the present section, we discuss the as-
ymptotic behavior of µ in the long time limit without the irreducibility assumption.
The main result is

Proposition 6.1. Let Tk be defined as in (5.1) and µ be the solution of equation
(6.1). Then for each i ∈ [|1, n|] there exists ci > 0, ξi ∈ (−σ, 0) and ni ∈ [|0, n|]
such that

µi(t) ∼ citnieξit as t→ +∞.
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6.2. A new formulation for the Renewal Equation in the reducible case.
Return to the equation (6.1)

µ(t) = g(t) + (K ∗ µ) (t),

for each t ≥ 0 with P defined in (5.4). By Proposition 5.12, the reducibility of Tk
entails that P (0) is reducible, meaning that there exists a permutation matrix Π
such that

(6.2) ΠP (0)ΠT =


P11(0) · · · · · · P1k(0)

0 P22(0) · · · P2k(0)
...

. . .
. . .

...
0 · · · 0 Pkk(0)


with k ≤ n and, for each i ∈ [|1, k|], either Pii(0) = 0 or is an irreducible matrix.
Since Π is a permutation matrix ΠT = Π−1, so that

Sp(P (0)) = ∪1≤i≤kSp(Pii(0)).

Likewise as pij(t) 6= 0 if and only if pij(0) 6= 0, the same permutation induces

ΠP (t)ΠT =


P11(t) · · · · · · P1k(t)

0 P22(t) · · · P2k(t)
...

. . .
. . .

...
0 · · · 0 Pkk(t)


with Pii(t) = 0 or irreducible for each t ≥ 0 (see the argument for Lemma 5.13).
Returning to equation (6.1) and multiplying both sides by Π leads to

(6.3)
Πµ(t) = Πg(t) + (ΠK ∗ µ)(t)

= Πg(t) + ((ΠKΠT ) ∗Πµ)(t) for each t ≥ 0,

with for each t ≥ 0

(6.4)

ΠK(t)ΠT = Πσe−σtP (t)ΠT

= σe−σtΠP (t)ΠT

= σe−σt


P11(t) · · · · · · P1k(t)

0 P22(t) · · · P2k(t)
...

. . .
. . .

...
0 · · · 0 Pkk(t)



=


K11(t) · · · · · · K1k(t)

0 K22(t) · · · K2k(t)
...

. . .
. . .

...
0 · · · 0 Kkk(t)


where Kab(t) := σe−σtPab(t) for each 1 ≤ a, b ≤ k. Each permutation in Sn

defines a partition of [|1, n|] (the subsets of [|1, n|] invariant under that permuta-
tion). We therefore deduce from ((6.4) a partition of [|1, n|] into k disjoint classes
C1, C2, · · · , Ck such that

(6.5) Ka,b(t) = (kij(t))i∈Ca,j∈Cb for each t ≥ 0.

For a, b = 1, 2, · · · , k define

νa(t) := (µi(t))i∈Ca for each t ≥ 0,

and

ha(t) := (gi(t))i∈Ca for each t ≥ 0.
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Therefore the system of equations (6.3) can be written in the form

(6.6) νa(t) = ha(t) +
∑
b>a

(Kab ∗ νb)(t) + (Kaa ∗ νa)(t), a = 1, · · · , k.

We shall prove the following proposition that entails obviously Proposition 6.1.

Proposition 6.2. Under the assumptions and with the notations above, for each
a ∈ [|1, k|]

(1) either Kaa(t) is a zero matrix for all t ≥ 0, then for each i ∈ Ca, there
exists ci > 0, ni ∈ [|0, k − a|] and ξi ∈ (−σ, 0) such that

µi(t) ∼ citnieξit as t→ +∞;

(2) or Kaa(t) is an irreducible matrix for all t ≥ 0, then there exists a vector
ca with positive entries, ξa ∈ (−σ, 0) and an integer na ∈ [|0, k − a|] such
that

νa(t) ∼ catnaeξat as t→ +∞.
6.2.1. Summary of the argument. Equation (6.6) shows that the behavior of νa is
determined by that of (νb)b>a. Hence, we proceed as follows.

First, we prove that Proposition 6.2 holds for νk that is the solution of the
equation

(6.7) νk(t) = hk(t) + (Kkk ∗ νk)(t).

Then, we eprove the desired estimate for each νa with a ∈ [|1, k−1|] assuming that
it holds for νb with b > a.

6.3. A few technical lemmas. Before going further, we give two technical lem-
mas

Lemma 6.3. Let f, g be two nonnegative functions on R+. We assume that there
exists c > 0 and n ∈ N and α ≤ 0 such that

f(t) ∼ ctneαt as t→ +∞.
(1) If t 7→ e−αtg(t) ∈ L1(R+) then

(f ∗ g)(t) ∼ c
(∫ ∞

0

e−αsg(s)ds

)
tneαt as t→ +∞;

(2) if there exists d > 0 such that

lim
t→+∞

e−αtg(t) = d

then

(f ∗ g)(t) ∼ cd

n+ 1
tn+1eαt as t→ +∞.

The (elementary) proof is given in Appendix.

Lemma 6.4. Let P (0) be defined as in (5.4) then

ρ (P (0)) ≤ 1.

Proof. First recall given a nonnegative matrix A, then for each r and each x with
positive entries such that

Ax ≤ rx,
then

ρ(A) ≤ r.
That being said, since

∫
B2 Tk (f) (v)dv =

∫
B2 f(v)dv, for each j ∈ [|1, n|]∫

B2

Tk(ψj)(v)dv =

n∑
i=1

(∫
B2

φi(v)ψj(v)dv

)∫
B2

ψi(v)dv.
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In other words, on has
P (0)x ≤ x

with

x =


∫
B2 ψ1(v)dv

...∫
B2 ψn(v)dv

 .

Thus, by the argument above,
ρ (P (0)) < 1.

�

6.4. The asymptotic behavior of νk in the long time limit. Consider the
case a = k for which equation (6.6) reads

νk(t) = hk(t) + (Kkk ∗ νk)(t).

First, we show that Pkk(0) is irreducible. Assume that Pkk(0) is a zero matrix,
then for each i, j ∈ Ck, with Ck defined in (6.5), one has

pij(0) =

∫
B2

φi(v)ψj(v)dv = 0

And by (6.2), ∫
B2

φi(v)ψj(v)dv = 0

for each i ∈ Ck, j ∈ [|1, n|]. That implies, as (φi, ψj)1≤i≤n are nonnegative,

λ

Supp φi⋂
 n⋃
j=1

Supp ψj

 = 0,

for each i ∈ Ck, j ∈ [|1, n|], with λ the uniform probability measure on B2. The
assumption ∫

B2

k(v, w)dw = 1

implies∫
B2

k(v, w)dw =

n∑
i=1

(∫
B2

φi(w)dw

)
ψi(v) =

n∑
i=1

αiψi(v) = 1 for each v ∈ B2

so that
n⋃
j=1

Supp ψj = B2

which means that
φi ≡ 0 for each i ∈ Ck.

Hence Pkk(0) is irreducible and therefore Kkk is irreducible (see Lemma 5.13).
Besides, since ρ (Pkk(0)) ∈ Sp (P (0)), one has by Lemma 6.4

ρ (Pkk(0)) ≤ 1.

Therefore, with a similar argument as in the section devoted to the irreducible case,
we show that there exists a unique ξk ∈ (−σ, 0) such that

ρ

(∫ ∞
0

e−ξksKkk(s)ds

)
= 1,

and conclude that there exists a vector ck with positive entries such that

νk(t) ∼ ckeξkt as t→ +∞.
Therefore Proposition 6.2 holds for νk.
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6.5. The asymptotic behavior of (νa)1≤a<k in the long time limit with

Kaa(t) = 0 for each t ≥ 0. Let a ∈ [|1, k − 1|]. We assume that Proposition 6.2
holds for each (νb)b>a, and consider the case where Kaa(t) = 0 for each t ≥ 0. By
Equation (6.6)

νa(t) = ha(t) +
∑
b>a

(Kab ∗ νb)(t) for each t ≥ 0.

which means that for each i ∈ Ca

(6.8)

µi(t) = gi(t) +
∑
b>a

(Kab ∗ νb)(i)(t)

= gi(t) +
∑
b>a

∑
j∈Cb

(kij ∗ µj) (t).

We define

I(i)
a := {j ∈ Cb, b > a |pij(0) 6= 0} .

We first show that I
(i)
a is not empty whatever i ∈ Ca. Assume that there exists

i ∈ Ca such that

I(i)
a = ∅.

That means that for each j ∈ Cb with b > a, one has pij(0) = 0. But one has
already pij(0) = 0 for each j ∈ Cb, b ≤ a. As (Cb)b∈[|1,k|] is a partition of [|1, n|],
that implies that for each j ∈ [|1, n|]

pij(0) =

∫
B2

φi(v)ψj(v)dv = 0

which contradicts
n⋃
j=1

Supp ψj = B2.

Hence I
(i)
a is not empty for each i ∈ Ca. Let i ∈ Ca, one deduces from equation

(6.8)

(6.9) µi(t) = gi(t) +
∑
j∈I(i)a

(kij ∗ µj)(t).

By definition, for each j ∈ I
(i)
a , there exists cj > 0, ξj ∈ (−σ, 0) and an integer

nj ∈ [|0, k − b|] (b denoting the class Cb containing j) such that

(6.10) µj(t) ∼ cjtnjeξjt as t→ +∞.

That being said, we define for each i ∈ Ca,

ξi := max
j∈I(i)a

ξj ,

and

J (i)
a :=

{
j ∈ I(i)

a |ξj = ξi

}
,

together with

ni := max
j∈J(i)

a

nj ,

and

N (i)
a :=

{
j ∈ J (i)

a |nj = ni

}
.
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Obviously, ξi ∈ (−σ, 0) and ni ∈ [|0, k − a|]. Since kij(t) = σe−σtpij(t), for each

j ∈ I(i)
a , the function t 7→ e−ξitkij(t) ∈ L1 (R+) . With (6.10) and Lemma 6.3, this

implies that

(kij ∗ µj) (t) ∼ cj
(∫ ∞

0

e−ξiskij(s)ds

)
tnjeξjt as t→ +∞.

Hence for each j ∈ I(i)
a \N (i)

a

(kij ∗ µj) (t) = o
(
tnieξit

)
as t→ +∞.

Besides, one has

gi(t) = o
(
tnieξit

)
as t→ +∞.

Therefore in view of (6.9), one deduces that for each i ∈ Ca

µi(t) ∼ citnieξit as t→ +∞,

with

ci :=
∑
j∈N(i)

a

cj

(∫ ∞
0

e−ξiskij(s)ds

)
> 0.

Thus Proposition 6.2 holds for νa.

6.6. The asymptotic behavior of νa with 1 ≤ a < k in the long time limit
with Kaa(t) irreducible for each t ≥ 0. We consider here the other case, where
Kaa is an irreducible matrix. By Equation (6.6), one has

νa(t) = ha(t) +

(∑
b>a

Kab ∗ νb

)
(t) + (Kaa ∗ νa) (t).

With a similar argument as for the equation governing the evolution of νk, we show
that there exists a unique αa ∈ (−σ, 0) such that

ρ

(∫ ∞
0

e−αasKaa(s)ds

)
= 1.

As in the case Kaa(t) = 0 for each t ≥ 0, we define

I(i)
a := {j ∈ Cb, b > a |pij(0) 6= 0} ,

and

Ia :=
⋃
i∈Ca

I(i)
a .

Finally, we set

βα := max
i∈Ia

ξi.

Notice that

Ia = {j ∈ Cb, b > a |∃ i ∈ Ca s.t. pij(0) 6= 0} .

We distinguish three cases, namely βa < αa, βa > αa and βa = αa.
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6.6.1. The case βa < αa. Returning to the equation above

νa(t) = ha(t) +

(∑
b>a

Kab ∗ νb

)
(t) + (Kaa ∗ νa) (t),

and multiplying both sides by e−αat leads to

−αaνa(t) =−αa ha(t) +
∑
b>a

e−αat (Kab ∗ νb) (t) + (−αaKaa ∗−αa νa) (t)

with the notation used in (5.15).
Proposition 6.2 holds for (νb)b>a , meaning that for each j ∈ Cb with b > a, there

exists cj > 0, nj ∈ [|0, k − b|] and ξi ∈ (−σ, 0) such that

µj(t) ∼ cjtnjeξjt as t→ +∞.
Since kij(t) = σe−σtpij(t) for each i, j ∈ [|1, n|] and ξj ∈ (−σ, 0) for each j ∈ Cb
with b > a, one has by Lemma 6.3

(kij ∗ µj) (t) ∼ cj
(∫ ∞

0

e−ξjskij(s)ds

)
tnjeξjt as t→ +∞.

Since ξj ≤ βa < αa for each j ∈ Ia, the long time limit asymptotic behavior
established above implies that t 7→

∑
b>a e

−αat (Kab ∗ νb) (t) is a vector whose all
of entries are integrable. Besides −αaha is also a vector with integrable entries.

Hence, by a similar argument as in the section devoted to the irreducible case,
one has

νa(t) ∼ ceαat as t→ +∞,
where c is a vector with positive entries. Therefore Proposition 6.2 holds for νa.

6.6.2. The case βa > αa. Returning to the equation

νa(t) = ha(t) +

(∑
b>a

Kab ∗ νb

)
(t) + (Kaa ∗ νa) (t).

and multiplying both sides by e−βat leads to

−βaνa(t) =−βa ha(t) +

(∑
b>a

−βaKab ∗−βa νb

)
(t) + (−βaKaa∗−βaνa) (t).

Obviously t 7→−βa ha(t) +
(∑

b>a −βaKab ∗−βa νb
)

(t) is locally bounded and by a
similar argument as in the proof of Proposition 5.16, one has

ρ

(∫ ∞
0

e−βasKaa(s)ds

)
< 1.

Therefore by Proposition 5.6,

−βaνa(t) = −βaha(t) +

(∑
b>a

−βaKab ∗−βa νb

)
(t)

+ (Fa ∗ −βaha) (t) +

(
Fa ∗

(∑
b>a

−βaKab ∗−βa νb

))
(t)

with

Fa :=
∑
n≥1

( −βaKaa)
∗n
.

Define

ζa(t) := e−βatha(t) + e−βat

(∑
b>a

Kab ∗ νb

)
(t),
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and for each b > 0

Fab(t) := (Fa ∗−βa Kab) (t).

The equation above is then recast as

−βaνa(t) = ζa(t) +
∑
b>a

(Fab ∗−βa νb) (t).

or equivalently, with the notation

Fab(t) =
(
f

(ab)
ij

)
i∈Ca,j∈Cb

,

as

(6.11) µi(t) = eβatζi(t) + eβat
∑
b>a

∑
j∈Cb

∫ t

0

f
(ab)
ij (t− s)e−βasµj(s)ds,

for each i ∈ Ca. We denote

βi := max
j∈I(i)a

βj ,

and

J (i)
a :=

{
j ∈ I(i)

a |βi = ξj

}
while

γi := max
j∈J(i)

a

nj

and

N (i)
a :=

{
j ∈ J (i)

a |γi = nj

}
.

By definition, one has for each i ∈ Ca

(6.12)

eβatζi = gi(t) +
∑
b>a

∑
j∈Cb

∫ t

0

kij(t− s)µj(s)ds

= gi(t) +
∑
j∈I(i)a

∫ t

0

kij(t− s)µj(s)ds.

Since Proposition 6.2 holds for (νb)b>a , and t 7→ e−ξjskij(s)ds ∈ L1 (R+), one
deduces from by Lemma 6.3 that∫ t

0

kij(t− s)µj(s)ds ∼ cj
(∫ ∞

0

kij(s)ds

)
tnjeξjt as t→ +∞.

Therefore, in view of the equality (6.12), one has

(6.13) eβatζi(t) ∼ Ctγieβit as t→ +∞

with

C :=
∑
j∈N(i)

a

cj

(∫ ∞
0

kij(s)ds

)
.

We now discuss the asymptotic beahvior of

t 7→ eβat
∑
b>a

∑
j∈Cb

∫ t

0

f
(ab)
ij (t− s)e−βsµj(s)ds
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in the long time limit. Before going further in the computation of the long time
asymptotic behavior of νa, we show that

∫∞
0
Fa(s)ds is a matrix with positive

entries.We recall that∫ ∞
0

Fa(s)ds =

∫ ∞
0

∑
n≥1

( −βaKaa)
∗n

(s)ds

=
∑
n≥1

(∫ ∞
0

e−βasKaa(s)ds

)n
.

With a similar argument as in Lemma 5.13, we show that the matrix∫ ∞
0

e−βasKaa(s)ds

is irreducible meaning that for each i, j, there exists n ≥ 1 such that((∫ ∞
0

e−βasKaa(s)ds

)n)
i,j

> 0.

Hence,
∫∞

0
Fa(s)ds is a matrix with positive entries. Besides for each b > a,∫ ∞

0

Fa ∗βa Kab(s)ds =

∫ ∞
0

Fa(s)ds

∫ ∞
0

e−βasKab(s)ds.

As
∫∞

0
Fa(s)ds is a matrix with positive entries, a j-th column of the matrix∫∞

0
Fa∗βaKab(s)ds is a zero vector if and only if the j-th column of

∫∞
0
e−βasKab(s)ds

is a zero vector. And in the case where the j-th column of
∫∞

0
e−βasKab(s)ds is

not a zero vector, each entry of the j-th column of the matrix
∫∞

0
Fa ∗βa Kab(s)ds

is positive. Indeed f
(ab)
ij 6= 0 if and only if j ∈ Ia. Hence

eβat
∑
b>a

∑
j∈Cb

∫ t

0

f
(ab)
ij (t− s)e−βasµj(s)ds = eβat

∑
j∈Ia

∫ t

0

f
(ab)
ij (t− s)e−βasµj(s)ds.

Now, we show that for each i ∈ Ca, j ∈ Ia the function t 7→ e(βa−ξj)tf
(ab)
ij (t) ∈

L1 (R+) . Observe indeed that

e(βa−ξj)tFab(t) = e(βa−ξj)t (Fa ∗−βa Kab) (t)

= e(βa−ξj)t

∑
n≥1

(−βaKaa)
∗n

 ∗−βa Kab

 (t)

= e−ξjt

∑
n≥1

(Kaa)
∗n

 ∗Kab

 (t).

Thus, sinceK(t) = σe−σtP (t), the function t 7→ e(βa−ξj)tFab(t) ∈MCard Ca,Card Cb

(
L1 (R+)

)
.

Therefore, by Lemma 6.3, for each (i, j) ∈ Ca × Ia
(6.14)

eβat
∫ t

0

f
(ab)
ij (t−s)e−βasµj(s)ds ∼ cj

(∫ ∞
0

e(βa−ξj)sf
(ab)
ij (s)ds

)
tnjeξjt as t→ +∞.

Let

Ja := {j ∈ Ia |ξj = βa }
with

na := max
j∈Ia

nj

and

Na := {j ∈ Ja |nj = na } .
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In view of equality (6.11), one easily deduce from (6.13) and (6.14) that

µi(t) ∼ ctnaeβat as t→ +∞

with

c :=

 c1
...
cm

 ,

where m = Card Ca and

ci =


∑
j∈N(i)

a
cj
(∫∞

0
kij(s)ds

)
+
∑
j∈Na cj

(∫∞
0
f

(ab)
ij (s)ds

)
if (βi, γi) = (βa, na) ,∑

j∈Na cj

(∫∞
0
f

(ab)
ij (s)ds

)
otherwise.

Thus Proposition 6.2 holds for νa.

6.6.3. The case βa = αa. Returning to the equation

νa(t) = ha(t) +

(∑
ba

Kab ∗ νb

)
(t) + (Kaa ∗ νa) (t).

and multiplying both sides by e−αa leads to

−αaνa(t) =−αa ha(t) +
∑
b>a

e−αat (Kab ∗ νb) (t) + (−αaKaa ∗−αa νa) (t)

with the notation in (5.15). We denote the renewal measure by

Ha(t) :=
∑
n≥0

(−αaKaa)
∗n

(t),

where −αaKaa : t 7→ e−αatKaa(t). And let
(
H

(1)
a H

(2)
a

)
be a Stone decomposition

of the renewal measure:

(6.15) Ha = H(1)
a +H(2)

a in M(R+).

where H
(2)
a is a matrix whose entries are finite measures on R+ and H

(1)
a is a matrix

of absolutely continuous measures with bounded continuous densities H
(1)
a := (ha)ij

such that there exists a positive matrix H∞ (see Theorem 5.10) verifying

(6.16) lim
t→+∞

H(1)
a (t) = H∞ ≡

(
h

(∞)
ij

)
1≤i,j≤Card Ca

.

We have

(6.17) νa(t) = eαat (Ha ∗−αa ha) (t) + eαat
∑
b>a

(Ha ∗−αa Kab ∗−αa νb) (t).

We recall — see the cases discussed above — that, since Proposition holds 6.2 holds
for (νb)b>a , for each (i, j) ∈ Ca ×

(⋃
b>a Cb

)
,∫ t

0

kij(t− s)µj(s)ds ∼ cj
(∫ ∞

0

kij(s)ds

)
tnjeξjt as t→ +∞,

or equivalently

e−αat
∫ t

0

kij(t− s)µj(s)ds ∼ cj
(∫ ∞

0

kij(s)ds

)
tnje(ξj−αa)t as t→ +∞.

We denote

Ja := {j ∈ Ia |ξj = αa } .
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If j /∈ Ja, the function t 7→ e−αat
∫ t

0
kij(t − s)µj(s)ds ∈ L1 (R+), so that by domi-

nated convergence, for each l ∈ Ca,∫ t

0

h
(1)
lj (t− τ)e−αaτ

∫ t

0

kij(τ − s)µj(s)dsdτ

→ h
(∞)
lj

∫ ∞
0

e−αaskij(s)ds

∫ ∞
0

e−αasµj(s)ds

as t→ +∞, and∫ t−dτ

0

e−αa(t−τ)

∫ t

0

kij(t− τ − s)µj(s)h(2)
lj (ds)→ 0

as t→ +∞. If j ∈ Ja,

e−αat
∫ t

0

kij(t− s)µj(s)ds ∼ cj
(∫ ∞

0

kij(s)ds

)
tnj as t→ +∞

and we recall that
hlj(t)→ h

(∞)
lj > 0 as t→ +∞,

so that, by Lemma 6.3,∫ t

0

h
(1)
lj (t− τ)e−αaτ

∫ t

0

kij(τ − s)µj(s)dsdτ ∼
h

(∞)
lj cj

nj + 1

(∫ ∞
0

e−αaskij(s)ds

)
tnj+1

while∫ t

0

h
(2)
lj (dτ)e−αa(τ−t)

∫ τ−t

0

kij(τ − t− s)µj(s)ds = O (tnj )

= o
(
tnj+1

)
as t→ +∞,

since h
(2)
ij is a finite measure on R+. Consequently, denoting

na := max
j∈Ja

nj

there exists a vector c with positive entries such that∑
b>a

(Ha ∗−αa Kab ∗−αa νb) ∼ ctna+1 as t→ +∞.

With a similar argument, we show that

(Ha ∗−αa ha) (t) = o
(
tna+1

)
as t→ +∞.

In view of (6.17) that implies

νa(t) ∼ ctna+1eαat as t→ +∞.
And we conclude by observing that since (nj)j∈Na ∈ [|0, k − (a+ 1)|], one has

na + 1 ∈ [|0, k − a|].
Thus Proposition 6.2 holds for νa.

7. Proof of statement (2) and (3) of Theorem 2.4

We conclude the proof of Theorem 2.4.

Proof. We recall that the function t, v 7→ m(t, v) verifies the equality

(7.1) m(t, v) = m(0, v)p(|v|t)e−σt + σ

n∑
i=1

∫ t

0

µi(t− s)p(|v|s)e−σsψi(v)ds.

We denote

h(t) := e−σt
∫
R2

m(0, v)p(|v|t)dv, t ≥ 0,
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and, for each 1 ≤ i ≤ n,

pi(t) := σe−σs
∫
R2

p(|v|s)ψi(v)dv.

Notice that for each α ∈ (−σ, 0) and for each i ∈ [|1, n|] the function t 7→ eαtpi(t) ∈
L1 (R+) . That being said, integrating equality (7.1) in v ∈ B2 gives

(7.2) m(t) = h(t) +

n∑
i=1

(µi ∗ pi) (t), t ≥ 0.

We have seen that for each i ∈ [|1, n|], there exists ci > 0, ni ∈ N and ξi ∈ (−σ, 0)
such that

µi(t) ∼ citnieξit as t→ +∞.
Denote

β := max
i∈[|1,n|]

ξi,

and
I := {i ∈ [|1, n|] |ξi = β } ,

while
γ := max

i∈I
ni,

and
J := {i ∈ I |ni = γ } .

By Lemma 6.3 for each i ∈ [|1, n|]

(µi ∗ pi) (t) ∼ ci
(∫ ∞

0

e−ξispi(s)ds

)
tnieξit as t→ +∞.

Obviously
h(t) = o

(
tγeβt

)
as t→ +∞,

Therefore, (7.2) implies that

m(t) ∼ ctγeβt as t→ +∞
with

c :=
∑
i∈J

ci

∫ ∞
0

e−βspi(s)ds.

We finish with a discussion of the asymptotic behavior of ξσ in the collisionless
regime σ → 0+. Denote λσ := ξσ + σ. Establishing that ξσ ∼ −σ as σ → 0+

amounts to proving that λσ = o (σ) . Observe that, since ξσ ∈ (−σ, 0),

0 < λσ < σ

so λσ → 0+ as σ → 0+. Keeping this in mind, we have by definition of ξσ

ρ

(∫ ∞
0

σe−λσsP (s)ds

)
= 1,

where P is defined in (5.4). Substituting z = λσs in the integral above, we deduce
from the equality above

(7.3)
λσ
σ

= ρ

(∫ ∞
0

e−zP

(
z

λσ

)
dz

)
.

Since λσ → 0+ as σ → 0+ and pij(t) → 0+ as t → +∞ for each i, j ∈ [|1, n|], one
has pij (z/λσ)→ 0+ as σ → 0+ for each i, j ∈ [|1, n|]. Besides, 0 ≤ e−zpij (z/λσ) ≤
e−z

∫
B2 φi(v)ψj(v)dv so that by dominated convergence∫ ∞

0

e−zP

(
z

λσ

)
dz → 0 as σ → 0+.
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Therefore (7.3) implies by continuity of the spectral radius that

λσ
σ
→ 0+ as σ → 0+.

�

8. Annexe

We here establish Lemma 6.3.

Lemma 8.1. Let f, g be two nonnegative functions on R+. We assume that there
exits c > 0 and n ∈ N such that

f(t) ∼ ctn as t→ +∞.

(1) If g ∈ L1(R+) then

(f ∗ g)(t) ∼ c
(∫ ∞

0

g(s)ds

)
tn as t→ +∞;

(2) If f ∈ L∞loc (R+) and there exists d > 0 such that

lim
t→+∞

g(t) = d

then

(f ∗ g)(t) ∼ cd

n+ 1
tn+1 as t→ +∞.

Proof. (1) We recall that

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds, ∀t ≥ 0.

By assumption, one has for each s ≥ 0

1

tn
f(t− s)→ c as t→ +∞

and (
1

tn
f(t− s)g(s)

)
≤ Cg(s) ∈ L1 (R+)

so that one obtains by dominated convergence

lim
t→+∞

1

tn

∫ t

0

f(t− s)g(s)ds =

(∫ ∞
0

g(s)ds

)
c.

(2) One first recalls that if f, g are two nonnegative functions on R+ such that

f(t) ∼ g(t) as t→ +∞

and their integrals diverge at infinity then∫ t

0

f(s)ds ∼
∫ t

0

g(s)ds as t→ +∞.

Therefore one has for f verifying the hypothesis∫ t

0

f(s)ds ∼ c

n+ 1
tn+1 as t→ +∞.

To obtain the desired conclusion, it remains to show that for each nonneg-
ative function g such that g(t)→ a 6= 0 as t→ +∞,

(f ∗ g)(t) ∼ a
∫ t

0

f(s)ds as t→ +∞.
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By assumption, for each ε > 0, there exists A > 0 such that t ≥ A implies
|g(t)− a| ≤ ε. Thus∣∣∣∣∫ t

0

g(t− s)f(s)ds− a
∫ t

0

f(s)ds

∣∣∣∣ ≤ ∫ t

0

|g(s)− a|f(t− s)ds

≤
∫ A

0

|g(s)− a|f(t− s)ds

+

∫ t

A

|g(s)− a|f(t− s)ds

≤
∫ A

0

|g(s)− a|f(t− s)ds+ ε

∫ t

A

f(t− s)ds

≤ M

∫ A

0

|g(s)− a|ds+
ε

a
a

∫ t

0

f(s)ds,

where M verifies
f(t) ≤M a.e. in [0, A].

So that

(8.1)
|
∫ t

0
g(t− s)f(s)ds− a

∫ t
0
f(s)ds|

a
∫ t

0
f(s)ds

≤ ε

a
+
M
∫ A

0
|g(s)− a|ds

a
∫ t

0
f(s)ds

.

As
∫ t

0
f(s)ds diverges, for each ε > 0 there exists B > 0 such that t ≥ B

implies ∫ t

0

f(s)ds ≥
M
∫ A

0
|g(s)− a|ds
aε

or
M
∫ A

0
|g(s)− a|ds

a
∫ t

0
f(s)ds

≤ ε.

So that t ≥ max(A,B) implies that

|
∫ t

0
g(t− s)f(s)ds− a

∫ t
0
f(s)ds|

a
∫ t

0
f(s)ds

≤ a+ 1

a
ε.

That is the wanted result.
�

And we conclude by noticing that Lemma 8.1 obviously entails Lemma 6.3.
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CHAPTER V

HOMOGENIZATION OF TRANSPORT PROBLEMS AND

SEMIGROUPS

1. Introduction

The mathematical modeling of the response of composite materials to exter-
nal fields usually involves partial differential equations with oscillating coefficients.
Specifically, the wavelengths of these oscillations correspond with the spatial scales
defined by the microscopic structure of the composite, i.e. the scale at which the
elementary constituents of the composite are assembled. When investigating the
macroscopic properties of such a composite material, a first step is to average out
the oscillations of the coefficients at microscopic scale, and to filter the high fre-
quency oscillations they induce in the response fields one is interested in. This
mathematical process is called homogenization, since it may be viewed as the re-
placement of a composite material by an equivalent homogeneous material. In the
most favorable cases, this would be done by simply replacing the response coeffi-
cients oscillating at microscopic scale in the field equation with coefficients for the
equivalent homogeneous material where the oscillations at microscopic scale have
been eliminated.

Unfortunately, this picture is outrageously optimistic. In many cases, a single
response coefficient oscillating at microscopic scale will be replaced with several ho-
mogenized equivalent coefficients, for instance due to the persistence of anisotropy
effects in the microscopic structure of the composite material. Worse, the structure
of the partial differential equation itself can be modified after taking the homog-
enization limit, and this is precisely our concern in the present work. A striking
example of such a change in the structure of the homogenized equation was given
by Tartar [10], who observed that the homogenization limit of the simplest imag-
inable ordinary differential equation would lead to an integro-differential equation
(i.e. involving memory terms). In other words, the group property of the original
evolution equation can be destroyed by the homogenization limit.

Some time later, Vanderhaegen [11, 12], Levermore-Pomraning-Sanzo-Wong [5],
and Sentis [8] studied in detail the homogenization problem for the absorption
coefficient in transport theory (for either neutrons or photons). Their work also
leads to integro-differential equations as in the simple example considered by Tartar
— and for the same basic reason.

The phenomena observed by Tartar in his simple example — i.e. the fact that the
group property satisfied by the solutions of an evolution equation can be destroyed
by the homogenization limit — also occurs in very different contexts. It has been
very recently identified in a classical problem in nonequilibrium statistical mechan-
ics, namely the Boltzmann-Grad limit of the periodic Lorentz gas, by E. Caglioti
and the second author, and by J. Marklof and Strömbergsson in [3, 2, 6], as well as
in a homogenization problem for the linear Boltzmann equation in a periodically
perforated domain, by the two first authors and E. Caglioti [1]. In all these works,
the solution of the equation at microscopic scale is given by a semigroup, and, in
order to keep the semigroup property after passing to the macroscopic limit, it is
necessary to consider an enlarged phase space involving additional variables. The
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present paper explains how the ideas in [2, 6, 1] can be applied in the context of
the homogenization of opacities considered in [11, 12, 5, 7, 8].

Semigroups and kinetic models have been among Aldo Belleni-Morante’s favorite
scientific subjects. His own ideas have had a great influence on the development
of this field of mathematical analysis. In view of his own particular interest in
photonics and, more generally, transport problems in astrophysics, we dedicate this
modest contribution to his memory.

2. Homogenization of an ODE

Our starting point is the following elementary, yet fairly instructive example,
due to L. Tartar [10].

Let a ∈ L∞(TN ), assume without loss of generality that a ≥ 0 a.e. on TN , and
consider, for each ε > 0, the ODE with unknown uε ≡ uε(t, z) ∈ R:

(2.1)


duε
dt

+ a
(z
ε

)
uε = 0 , t > 0 , z ∈ RN ,

uε(0, z) = uin(z) ,

where uin ∈ L2(RN ) ∩ L∞(RN ). Obviously, for each ε > 0, one has

uε(t, z) = uin(z)e−ta(z/ε) , t > 0 , z ∈ RN ,

so that, in the limit as ε→ 0+, one has

uε⇀u in L∞(R+ ×RN ) weak-*

where the limit u is explicitly given by the formula

(2.2) u(t, z) = uin(z)Φ(t) , t ≥ 0 , z ∈ RN ,

with

(2.3) Φ(t) =

∫
TN

e−ta(y)dy , t ≥ 0 .

This example shows that the homogenized solution u does not satisfy the equation

du

dt
+ au = 0

where a is the average of a on TN , i.e.

a =

∫
TN

a(y)dy ,

as someone unfamiliar with the intricacies of homogenization might (naively) ex-
pect. Worse, unless a is a.e. constant on TN , there does not exist any A ∈ R such
that

du

dt
+Au = 0 .

(Should such an A exist, it would be referred to as the “homogenized coefficient”
equivalent to the oscillating coefficient a(z/ε).) Equivalently, although for each
ε > 0 the solution uε is defined in terms of uin by the semigroup Sε(t) defined on
L2(RN ) by the formula

(2.4) Sε(t)φ = φ(z)e−ta(z/ε) ,

the homogenized solution u is not given in terms of uin by a semigroup acting on
L2(RN ), since (by convexity of the exponential)

Φ(t1 + t2) 6= Φ(t1)Φ(t2) , t1, t2 > 0 ,

unless a is a.e. constant on TN — meaning that there are no fast oscillations in
the original problem (2.1), so that there is no need for homogenization in this case.
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In fact, L. Tartar (see lecture 35 in [10]) proved that the homogenized solution
satisfies the following integro-differential equation

(2.5)


du

dt
(t, z) + au(t, z) =

∫ t

0

K(t− s)u(s, z)ds , t > 0 , z ∈ RN ,

u(0, z) = uin(z) ,

where the Laplace transform of K is given by the expression

K̃(p) :=

∫ ∞
0

e−ptK(t)dt =

∫
TN

(p+ a(y))dy −
(∫

TN

dy

p+ a(y)
dy

)−1
, p> 0 .

Concerning the appearance of an integro-differential equation such as (2.5) as the
homogenization limit of an ODE, it is instructive to compare the situation above
with the problem

(2.6)


dvε
dt

+ b

(
t

ε

)
vε = 0 , t > 0 ,

vε(0) = vin ,

with unknown vε ≡ vε(t) ∈ R, where b ∈ L∞(T1). In this case

vε(t) = vin exp

(
−
∫ t

0

b(s/ε)ds

)
→ vine−Bt = v(t)

for each t ≥ 0 as ε→ 0+, where

B :=

∫ 1

0

b(σ)dσ .

Indeed,

1

t

∫ t

0

b(s/ε)ds =
ε

t

∫ t/ε

0

b(σ)dσ → lim
t→+∞

1

t

∫ t

0

b(σ)dσ = B

as ε→ 0+. Hence, the homogenized equation obtained from (2.6) is
dv

dt
+Bv = 0 , t > 0 ,

v(0) = vin ,

and in this case, B is the equivalent absorption coefficient obtained from the oscil-
lating absorption coefficient b(t/ε) by homogenization.

The difference between the homogenization of problems (2.1) and (2.6) is that
in the latter case, the oscillating variable in the coefficient b is the time variable,
and the equation (2.6) provides a bound on the time derivative of the solution vε,
thereby excluding the possibility of fast oscillations in t in the solution vε.

At variance with this case, in Tartar’s example (2.1), the oscillating variable is
z, and the equation (2.1) does not involve derivatives in z to prevent the buildup
of fast oscillations in z in the solution uε. In that example, the fast oscillations in z
in both a(z/ε) and uε combine to produce the integral term on the right-hand side
of (2.5).

Obviously, the example (2.1) can be generalized to the case where the quasi-
periodic oscillating coefficient a(z/ε) is replaced with a bounded family aε ≡ aε(z)
of functions in L∞(RN ) converging in the sense of Young measures as ε→ 0+.
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3. A semigroup in extended phase space

As a warm-up, we shall in this section consider again Tartar’s example above,
and express the homogenization limit of (2.1) in terms of a semigroup defined on
an extended phase space — i.e. acting on functions with additional variables.

Let aε ≡ aε(z) be a bounded family of functions in L∞(RN ) converging in the
sense of Young measures to (µz)z∈RN (see [9] for a lucid presentation of the notion
of Young measures.) In other words, (µz)z∈RN is a family of probability measures
on R that measurably depends on z, and satisfies, for each f ∈ Cb(R)

f(aε)⇀Fa in L∞(RN ) weak-* , with Fa(z) =

∫
R

f(λ)dµz(λ) =: 〈µz, f〉

in the limit as ε → 0+. Without loss of generality, we henceforth assume that
aε ≥ α > 0 a.e. on RN .

For each ε > 0, let uε ≡ uε(t, z) be the solution of

(3.1)


duε
dt

+ aε(z)uε = 0 , t > 0 , z ∈ RN ,

uε(0, z) = uin(z) ,

where uin ∈ L1 ∩ L∞(RN ).

Proposition 3.1. In the limit as ε→ 0+, one has

uε⇀u =

∫ +∞

0

Uds in L∞(R+ ×RN ) weak-* ,

where U ≡ U(t, s, z) is the solution of

(3.2)


∂tU − ∂sU = 0 , t, s > 0 , z ∈ RN ,

U(0, s, z) = −uin(z)
dµ̃z
ds

(s) .

(We recall that the notation µ̃z designates the Laplace transform of µz.)

Before giving the (elementary) proof of this result, a few remarks are in order.
First, the equation satisfied by U is a free transport equation, where s ∈ R+

is the space variable. Since the vector field −∂s is outgoing on the boundary of
the half-line R+, there is no need of a boundary condition for s = 0, so that the
problem (3.2) is well-posed — in L2(R+ ×RN ; e−sdsdz), for instance.

Next, although the homogenization limit u of uε as ε → 0+ is not of the form
u(t, ·) = S(t)uin with S(t) a semigroup on L2(RN ), the function U is defined by
a semigroup in terms of its initial data (since the equation satisfied by U is a free
transport equation.) Specifically

U(t, s, z) = Σ(t)U(0, s, z) with Σ(t)ψ(s, z) = ψ(t+ s, z) , t, s > 0, z ∈ RN .

In other words, while there does not exist any semigroup S(t) acting on L2(RN )
such that Sε(t) → S(t) in the weak operator topology for each t > 0 as ε → 0+,
one has

Sε(t)→
∫ +∞

0

Σ(t)ds

in that same topology.

Proof. For each ε > 0, define

Uε(t, s, z) := uε(t, z)aε(z)e
−saε(z) , t, s ≥ 0 , z ∈ RN .

Obviously

(∂t − ∂s)Uε(t, s, z) = aε(z)e
−saε(z)

(
duε
dt

(t, z) + aε(z)uε(t, z)

)
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so that Uε satisfies

(3.3)

{
∂tUε − ∂sUε = 0 , t, s > 0 , z ∈ RN ,

Uε(0, s, z) = uin(z)aε(z)e
−saε(z) .

Since aε > 0 a.e. on RN , one has ‖Uε(t, ·, ·)‖L∞(R+×RN ) ≤ ‖uin‖L∞(RN ). Hence
Uε is bounded and therefore (by the Banach-Alaoglu theorem) relatively weak-*
compact in L∞(R+ ×R+ ×RN )). If U is a weak-* limit point of Uε as ε → 0+,
by passing to the limit in the sense of distributions in the free transport equation
satisfied by Uε, we conclude that (∂t − ∂s)U = 0.

Since Uε is bounded in L∞(R+×R+×RN ), the free transport equation satisfied
by Uε implies that ∂tUε is bounded in L∞(R+ × RN ;W−1,∞(R+)). Therefore,
Uεn
∣∣
t=0

⇀U
∣∣
t=0

in L∞(RN ;W−1,∞(R+))) weak-* for each subsequence εn ↓ 0 such

that Uεn⇀U in L∞(R+ ×R+ ×RN ) weak-*. Since

Uε
∣∣
t=0

⇀uin(z)

∫ +∞

0

ae−sadµz(a) = −uin(z)
dµ̃z
ds

(s)

in L∞(R+ ×RN ) weak-*

and the problem (3.2) has a unique solution, Uε⇀U in L∞(R+×R+×RN ) weak-*
as ε→ 0+.

Since aε(z) ≥ α > 0 a.e. in z ∈ RN , one has∫ +∞

T

|Uε(t, s, z)|ds = e−Taε(z)|uε(t, z)| ≤ e−Tα‖uin‖L∞(RN )

so that, for each test function φ ∈ L1(R+ ×RN ),∫ +∞

0

∫
RN

(∫ +∞

T

|Uε(t, s, z)|ds
)
|φ(t, z)|dtdz → 0 uniformly in ε > 0

as T → +∞, by dominated convergence. Since on the other hand

uε(t, z) =

∫ +∞

0

Uε(t, s, z)ds

we conclude that

uε =

∫ +∞

0

Uεds⇀

∫ +∞

0

Uds

in L∞(R+ ×RN ) weak-*. �

4. Homogenization of opacities in radiative transfer

In this section, we shall apply the method described above to the equation of
radiative transfer.

Radiative transfer is a kinetic theory for a gas of photons exchanging energy with
a background material (such as a plasma, a stellar or a planetary atmosphere). This
energy exchange is the result of absorption, emission or scattering of photons by the
atoms in the background matter. The state at time t of the population of photons
is given by the specific radiative intensity denoted I(t, x, ω, ν) that is chν times the
number density of photons with frequency ν located at the position x with direction
ω. Here, c is the speed of light while h is Planck’s constant.

Neglecting scattering processes, the radiative intensity satisfies the radiative
transfer equation

(4.1)
1

c
∂tI + ω · ∇xI = σ(ν, T )Bν(T )− σ(ν, T )I .

Here Bν(T ) is the specific radiative intensity at frequency ν of a black body at
temperature T , while σ(ν, T ) > 0 is the opacity, or absorption cross-section per
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Figure 1. Opacity of a boron plasma (see [4] on p. 98)

unit volume, of the background material at temperature T for an incident radiation
with frequency ν. While Bν(T ) has the explicit expression

Bν(T ) = 2hν3

c2
1

ehν/kT − 1
,

the opacity σ(ν, T ) is in general not known explicitly but tabulated. What is
worse, the dependence of σ(ν, T ) in either ν or T is quite involved, and the function
ν 7→ σ(ν, T ) can be wildly oscillating, even for T fixed, as can be seen on the graph
given above.

We recognize in (4.1) the same type of difficulty that was handled in the two pre-
vious sections, since oscillations in the opacity σ(ν, T ) are due to the dependence of
that coefficient in the frequency ν, while the streaming (or free transport) operator
1
c∂t + ω · ∇x acts on the variables t and x only.

Henceforth, we assume for simplicity that the temperature T ≡ T (t, x) is given
in the background medium which occupies the Euclidian space R3. We consider
the following model problem:

(4.2)


1

c
∂tIε + ω · ∇xIε = σε(ν, T )Bν(T )− σε(ν, T )Iε ,

Iε
∣∣
t=0

= Iin(x, ω, ν) ,

posed for (t, x, ω, ν) ∈ R∗+ × R3 × S2 × R∗+. Here the oscillations of the opacity
are recorded by the small parameter ε that is the typical “oscillation wavelength”
in the variable ν.

We henceforth assume that the given temperature profile T is bounded away
from 0 and +∞, i.e. that T ∈ [θ,Θ] for some constants 0 < θ < Θ, and that the
family (σε(ν, T ))ε>0 satisfies the uniform bound

0 < m ≤ σε(ν, T ) ≤M , for each ε, ν > 0 and T ∈ [θ,Θ] .

Furthermore, we assume that, for each T > 0, the family σε(·, T ) converges in the
sense of Young measures to (µTν )ν>0 as ε → 0+. By the method introduced in
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the previous section, we can formulate a theorem on the homogenized limit of the
model problem (4.2) in the following manner.

Theorem 4.1. In the limit as ε→ 0+, one has

Iε⇀I =

∫ +∞

0

Jds in L∞(R+ ×R3 × S2 ×R+) weak-* ,

where J ≡ J(t, s, x, ω, ν) is the solution of

(4.3)


1

c
∂tJ + ω · ∇xJ − ∂sJ =

d2µ̃Tν
ds2

Bν(T ) ,

J
∣∣
t=0

= −Iin(x, ω, ν)
dµ̃Tν
ds

(s) ,

posed for (t, s, x, ω, ν) ∈ R∗+×R∗+×R3×S2×R∗+, where the notation µ̃Tν denotes

the Laplace transform of µTν .

The proof of this theorem is essentially the same as that of Proposition 3.1 —
except for the source term in (4.2) — and we do not repeat it.

Observe that the homogenized problem (4.3) is a transport equation where the
space variables are x and s, and therefore defines a semigroup acting on the extended
phase space R+ ×R3 × S2 ×R+ = {(s, x, ω, ν)}, instead of the usual phase space
R3×S2×R+ = {(x, ω, ν)} familiar in radiative transfer problems. More precisely,
the solution of (4.3) is given in terms of the Duhamel formula for the transport
semigroup in extended phase space defined by the left-hand side of that equation.
This is at variance with the homogenized radiative transfer equations obtained in
[5, 8] which are written in the usual phase space, but involve memory terms as in
Tartar’s example — and precisely for the same reason.

Notice that we have assumed that the initial data Iin does not have fast oscil-
lations in the ν variable — as is the case of Bν . In general, treating the case of
an oscillating initial data Iinε (in the ν variable, say) would require considering the
joint Young measure of Iinε and σε — i.e. the Young measure of the couple (Iinε , σε)
viewed as a function of ν with values in R2. The complexity of the resulting model
could be reduced in the case where the oscillations of Iinε and σε are independent
so that the joint Young measure is the tensor product of the Young measure of Iinε
by that of σε.

A few words about the meaning of the additional variable s appearing in the
homogenized equation (4.3) are in order. The original equation (4.2) can be viewed
as a balance equation for the number density of photons with frequency ν located
at the position x with direction ω at time t, that is 1

chν Iε(t, x, ω, ν). The loss
term −σε(ν, T )Iε(t, x, ω, ν) on the right-hand side of (4.2) models the absorption
of photons by the matter as follows. Assuming for simplicity that σε ≡ σε(ν)
is independent of temperature, the probability that a photon with frequency ν is
not absorbed in the time interval [0, t] is e−tσε(ν). In the homogenized equation
(4.3), the loss of photons due to absorption by the atoms of the surrounding matter
is described by the term −∂sJ on the left-hand side. Any characteristic line of
the streaming operator 1

c∂t + ω · ∇x − ∂s being of the form t 7→ (x + ctω, s − t),
the unknown quantity 1

chν J(t, s, x, ω, ν) in (4.3) should be viewed as the number
density at time t of photons with frequency ν at the position x in the direction ω
which will be absorbed precisely at time s+ t. In other words, in the homogenized
model (4.3), the additional variable s should be viewed as the “life expectancy” of
photons, and their number density is disintegrated with respect to — in probabilistic
terms, conditioned relatively to — this new variable. The absorption of photons is
described by characteristic lines of the streaming operator on the left-hand side of
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equation (4.3) leaving the phase space s > 0, and not by prescribing the probability
that a photon of frequency ν is absorbed in the infinitesimal interval of time [t, t+dt].

5. Conclusion

We have explained how the notion of a “kinetic theory in extended phase space”
introduced in [2] can be used in the homogenization problem for opacities in ra-
diative transfer (Theorem 4.1), and how it avoids considering integro-differential
equations whose solutions do not have the semigroup property, as in Tartar’s ele-
mentary example.

The formalism presented here could be applied to various problems of the same
nature. For instance, as mentioned above, opacities are strongly oscillating func-
tions of the frequency variable, which seriously complicates the discretization of the
radiative transfer equation. Usually, this is done by replacing the radiative intensity
I(ν) with the vector (Ij)1≤j≤n, where

Ij '
∫ νj+1

νj

I(ν)dν ,

and where the frequency groups — i.e. the intervals (νj , νj+1) — are chosen ap-
propriately. Of course the main difficulty is to understand what to do with the
absorption term ∫ νj+1

νj

σ(ν)I(ν)dν .

The projection of the radiative intensity on frequency groups as above is an instance
of homogenization process, and one could hope that the considerations outlined in
Theorem 4.1 might be helpful in this context.

Similar difficulties exist in the theory of neutron transport — with the neutron
kinetic energy being the analogue of the frequency in radiative transfer. One could
hope to apply the same method as above to this type of problem also; however,
scattering processes are more important and should be taken into consideration,
at variance with the discussion in the present paper. We hope to return to these
questions in a forthcoming publication.
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