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Illud in his quoque te rebus cognoscere auemus,
corpora cum deorsum rectum per inane feruntur
ponderibus propriis, incerto tempore ferme
incertisque locis spatio depellere paulum,
tantum quod momen mutatum dicere possis.

LUCRECE, De rerum natura, 11, 216-220

INTRODUCTION

1. CADRE GENERAL : L’EQUATION DE BOLTZMANN LINEAIRE AVEC
UNE DISTRIBUTION PERIODIQUE DE TROUS

1.1. L’équation de Boltzmann linéaire. Le travail présenté ici est
essentiellement consacré au probleme de I’homogénéisation de I’équation
de Boltzmann linéaire dans un domaine perforé. On commence par
rappeler succinctement le modele mathématique. L’équation de Boltz-
mann linéaire s’utilise dans divers contextes, par exemple le transport
des neutrons dans un matériau fissile, ou bien la diffusion d’un gaz léger
dans un gaz lourd — voir le paragraphe 11 dans [18]. Le gaz léger est
vu comme une population de particules — des masses ponctuelles —
décrite par sa fonction de distribution f = f(t, z,v), densité des partic-
ules se trouvant a la position z € ), a 'instant ¢t € R, , et se déplacant
a la vitesse v € V. On néglige les collisions entre les molécules du gaz
léger, le parcours du point matériel ne dépend donc que du milieu ou
il se déplace. Le changement de vitesse de la masse ponctuelle est régi
par deux fonctions positives o = o(z,v) et k = k(v,w) avec

k(v,w) = k(w,v) et / E(v,w)dv = 1.
veV

La quantité o(z,v) représente la fréquence de collision & la position x
et a la vitesse v tandis que k est la probabilité pour une molécule de
gaz léger d’avoir la vitesse v apres collision sachant que sa vitesse avant
collision est w.

L’équation de Boltzmann linéaire régissant 1’évolution du gaz est
donc

(O +v-Vo)f(t,x,v)+o(z,0)f(t,z,v) =o(z,0)K f(t,z,v),

Kf(t,z,v):= /k(v,w)f(t,x,w)dw.

L’ensemble V' des vitesses admissibles peut étre soit R”, soit une sphere

(par invariance galiléenne et apres un choix convenable des unités, on
3
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peut toujours se ramener au cas ot V = SV ~1) pour un gaz de particules
monocinétiques, soit une partie finie de R™ (modele cinétique a vitesses
discretes).

1.2. Domaine spatial avec distribution périodique de trous.
Le milieu dans lequel les particules évoluent est ’espace RY perforé
périodiquement.

12r

1

Le terme de < trou » désigne une boule completement absorbante,
au sens ou toute particule la rencontrant disparait a jamais. Le milieu
Zq, est alors décrit par :

Zay = {x € RY [dist (z,dZ") > r},

ou r est le rayon des trous et d la distance entre noeuds voisins du
réseau périodique formé par les centres des trous. Le fait que les trous
< absorbent > les particules est exprimé par la condition au bord pour
la fonction de distribution :

t,r,v) =0, (t,x,v) R} x0Zy, xV, deésquen,- -v>0,
f(t,z,v) t ,

ou n, est le vecteur normal entrant dans Zg, en x € 0Z,,.

Enfin on supposera qu’a linstant ¢ = 0, on connait la distribution
initiale de la population particulaire f*. Nous avons donc le probléme
de Cauchy avec condition au bord suivant :
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atf+vvxf+a(f_[(f):07 (LC,'U)GZd,TX‘/, t>07
flt,z,v) =0, siv-n, >0, (x,v) € 0Z4, xV, t>0,

f(0,z,v) = f"(x,v), (x,v) € Zg, x V.

1.3. Le probleme. Le probleme d’homogénéisation consiste a décrire
I’évolution de la population de particules de distribution f lorsque le
nombre de trous par unité de volume est grand (d > 1) et que la
taille des trous est en méme temps petite (r < 1); et de trouver si
possible une équation < équivalente > posée sur I'espace euclidien RY
sans les trous régissant cette évolution.

Considérons d’abord le cas sans collision, ¢ = 0, déja étudié par E.
Caglioti et F. Golse dans [8], c’est-a-dire le cas ou les particules ne se
déplacent qu’en ligne droite. Posons dorénavant d = ¢ et r. = €7 le
rayon des trous. Alors le milieu extérieur est

Z. = {x e RY ‘dist (m,eZN) > 67} ,
et on considere le probleme de Cauchy :
Ofe+v-V,f. =0, (v,v) € Z. x SN~ t>0,

(T.){ f-(t,z,0) =0, siv-n, >0, (z,v)€dZ.xS" >0,

f(0,z,0) = f™(x,v), (v,v) € Z. x SNL,

Il existe un exposant critique . = <~ — voir [6, 12] — au sens ot :

N-1
— Si 7y < 7, alors
f- — 0 dans L?

loc

(Ry x RY x SN_I) pour tout p € [1, 400l
— Si 7y > 7, alors
fe = f dans L (RyR" x S"7') * —faiblement
ou f est solution de I’équation du transport libre

O f +v-Vuf =0, (r,v) € RN x S¥=1 ¢ >0,

(T2) ‘
f(0,z,v) = fin(x,v), (z,v) € RYN xSVN-1L

Autrement dit, dans le premier cas, la fonction de distribution tend
vers zéro : les particules sont absorbées instantanément, les trous étant
trop gros par rapport a leur espacement. Et dans le deuxieme cas, la
fonction de distribution tend vers la solution de la méme équation de
transport libre mais dans l'espace tout entier : les trous n’ont aucun
effet, leur taille étant trop petite par rapport a leur espacement.
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Enfin dans le cas critique v = ., la solution f. converge *-faiblement
dans L (]RJr x RN x SV _1) vers la solution f de I’équation non au-
tonome

p(t
of +0-Vos =204
p(t)
ol p est une fonction strictement décroissante se comportant comme
2/m%t pour t — +oo — voir [8] pour la preuve du comportement

asymptotique. On a donc ici I'apparition d’'un < terme étrange venu
d’ailleurs >.

L’expression que nous venons d’employer est le titre d'un article de
Cioranescu et de Murat [7] qui traite un probleme similaire pour une
équation de la diffusion. Rappelons un des principaux résultats de [7].

Soit € un ouvert de R" perforé périodiquement :
Q. = {z € Q|dist(z,eZ") > r. },

olt . est le rayon des trous. On consideére alors u. solution dans Hy (€2.)
du probleme de Dirichlet

—Au(z) = f(z), =z € Q.
(H.)
Uepn. = 0.

Nous notons de méme {u.} le prolongement de u. par zéro dans les
trous. Comme dans le cas du transport, il existe une taille critique ¢
avec

e, siN=2

N
eN=2, si N >3,
telle que
~ Sir. > r¢alors {u.} — 0 dans H} (Q) faible. Autrement dit, les
trous sont trop gros et absorbent tout a la limite ;
~ Sir. < r¢alors {u.} — u dans H} (Q) fort out u est solution du
probleme de Dirichlet

—Au(z) = f(z), z€Q,

u‘ag =0.

Autrement dit, les trous sont trop petits, et ont un effet négligeable
sur u. pour € < 1.
Enfin, dans le cas critique, 7. = r< nous avons

{u.} — u dans Hj (Q) — faible,
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ou u est solution du probleme de Dirichlet
—Au(z) + pu(z) = f(z), =€,

upe =0,
avec

s

-, siN =2,

2

ILL:

-y

, siN >3,

9N
On obtient ainsi une équation avec un terme d’absorption supplémen-
taire. Le résultat est similaire pour d’autres équations de diffusion
comme 1’équation de Stokes ou de Navier-Stokes — voir par exem-
ple [1, 2, 3]. Notons & ce propos que dans ce dernier cas, le terme
supplémentaire dans la limite d’homogénéisation s’interprete comme
un terme de friction de Brinkman — voir notamment [3].

Cela étant dit, il y a une différence significative entre le cas du
transport libre et le cas de la diffusion. Pour les équations de la dif-
fusion, l'effet des trous de taille critique se traduit par un coefficient
d’amortissement constant tandis que dans le cas du transport libre avec
distribution périodique de trous, le coefficient d’amortissment est une

fonction t

g—;(t)’ qui n’est pas constante puisque p décroit comme
Const./t pour t — +00.

Si on remplace ’hypothese de trous répartis périodiquement par des
trous de méme taille mais dont les centres suivent une distribution de
Poisson, la fonction p est une fonction exponentielle, de sorte que le
coefficient i—; est constant.

Il y a donc une difficulté spécifique propre a la fois au cas périodique
et au transport libre, due au fait que des particules dont les directions
sont tres proches de vecteurs a coordonnées rationnelles peuvent mettre
treés longtemps a rencontrer un obstacle. Nous renvoyons a article [6]
pour une discussion approfondie de ce phénomene.

C’est la raison pour laquelle on étudie dans cette these le probleme
de I'homogénéisation de I’équation de Boltzmann linéaire (avec o > 0)
dans une distribution périodique de trous ayant la taille critique.

En effet, cette équation est en quelque sorte intermédiaire entre
I’équation de diffusion — considérée par Cioranescu-Murat — et I’équa-
tion de transport libre — étudiée par Caglioti-Golse.

Comme on va le voir, la taille critique des trous pour ’équation de
Boltzmann est la méme que pour I’équation de transport libre; mais
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contrairement au cas ’équation de transport libre, le nombre total de
particules décroit exponentiellement lorsque le temps ¢ — +o00, car
les collisions avec le milieu ambiant détruisent les longues trajectoires
responsables de la décroissante lente.

Nous allons maintenant décrire plus en détail le contenu de cette
these.

2. CHAPITRE 1 : MAJORATION DE LA MASSE, CAS MONOCINETIQUE

Dans le premier chapitre, nous considérons pour ¢ € (0,2!7Y) fixé,
la masse totale

M, (t) := // fe(t, z,v)dxdv,
=N[0,1]V xSN~-1

ou f. est solution du probleme de Cauchy avec condition d’absorption
au bord

Orfe+v -Vofito(fe —Kf.)=0, (z,v)€ Z.xSN"1t>0,
fe(t,z,v) =0, siv-n, >0, (z,v) € 0Z. x SN-1,

1:(0,z,0) = f(z,v), (z,v) € Z. x SN-L.

Nous supposons pour simplifier que " € L*> (]RN x SN *1) et est 1-
périodique en sa variable spatiale. Nous obtenons alors une majoration
de la masse indépendante du rayon des trous et de la taille du réseau.

Théoreme 2.1. Soit 0 > 0 alors il existe Cy > 0 et n, € (—0,0) tel
que pour tout € > 0 et pour toutt > 0

Moolt) € Coe® [ ooy

De plus,
Ny ~ —0 lorsque o — 0T,

Ce résultat nous dit que, contrairement au cas du transport libre
ou elle est a décroissance algébrique, la masse totale du systeme de
particules décroit a vitesse au moins exponentielle des que o > 0.

2.1. Esquisse de la démonstration. L’idée de la démonstration est
de s’appuyer sur l'interprétation probabiliste de I'équation de Boltz-
mann linéaire afin d’obtenir une formule explicite pour la solution en
fonction de o, de k et du temps 7.(z,v) de sortie du domaine Z. d'une
particule libre partant de x dans la direction v. On obtient ainsi une
majoration de la masse par une fonction indépendante de € grace a un
théoreme d’estimation du temps de sortie di a J. Bourgain, F. Golse
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et B. Wennberg [6]. Ensuite, on remarque que cette fonction majorante
vérifie une équation intégrale de type renouvellement sur R, :

£(t) = g(t) + / Tt — s)g(s)ds

ou f est 'inconnue et g une fonction intégrable. Ce type d’équation a
été intensivement étudié en théorie des probabilités — voir par exem-
ple le chapitre correspondant dans [13]. On dispose en particulier de
théoremes sur le comportement asymptotique de la solution qui nous
permettent de conclure.

3. CHAPITRE 2 : HOMOGENEISATION, CAS MONOCINETIQUE

3.1. Le probleme. On étudie dans ce chapitre le probleme de 1’ho-
mogénéisation proprement dit pour I'équation de Boltzmann dans le
cas monocinétique et bidimensionnel. Les particules évoluent donc dans
I'espace R? perforé périodiquement,

Z.:={z € R? |dist (z,eZ%) > 52} ,

et on suppose de plus que la fréquence de collision ¢ est une constante
strictement positive. Enfin, la condition initiale f™ vérifie

f™ >0 dans R? x S*,

et // f™(x,v)dzdv+ sup  f"(x,v) < +oo.
R2xS! (CC,U

JERZxS!
On considere donc le probleme de Cauchy avec condition au bord :
atfs‘i‘v'vzfe—l_o-(fe_Kfa):O’ ($,U)€Z€X81,t>0,
(Z) R fe(t,z,0) =0, siv-n, >0, (v,v) € 0Z. x S, t >0,

fE(O,I',U):fin(l',U), (Z‘,’U) GZE x St

3.2. Les résultats. On note F' = F(t, s, x,v) la solution du probléme
de Cauchy
/ .
p(t A s)
0, Ve+0s)F+0oF =
(O +v +05) F+o o s)

(=) F(t,0,z,v) =0 fooo KF(t,t,z,v)dr,

F

| F(0,5,2,v) = g f"(x,v),
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pour (¢, s, 7,v) € Ry xR, x R?xS!. Et pour chaque fonction ¢ = ¢(z)
définie presque partout dans Z., on pose

(6} (z) = { o(x), size Z,

0, sinon.

Nous ne démontrons pas que f. ne converge pas vers une solution d’une
équation fermée, mais vers 'intégrale sur un temps < supplémentaire > de
la fonction F' qui est solution d’un probleme dans un espace des phases
plus grand.

Théoreme 3.1. Soit (f.).., la famille de solutions de Z., alors

(b= [ Fas

dans L (Ry x R? x SY) *faiblement lorsque € — 0T, et ot F est
Punique solution de (Z).

Signalons immédiatement que le théoreme est valide en toutes di-
mensions, la seule différence étant que nous ne disposons pas d’une
formule explicite pour p en dehors du cas bidimensionnel — voir [4]
pour une telle formule — meéme si son existence est connue grace a
[19]. Nous étudions ensuite le comportement asymptotique en temps
long de la masse totale de la population particulaire dans la limite
homogénéisée. Le théoreme suivant nous dit que c’est la masse totale
du systéme particulaire lorsque ¢ — 0% et nous donne un équivalent
asymptotique en temps long.

Théoreme 3.2. Avec les mémes hypothéses et notations que pour le
théoréme précédent,

(1) 1l existe une fonction M € L* (R,) telle que

1
p // fe(t,x,v)dxdv — M(1),
™ Ze xSt
dans L}

Le (By) lorsque e — 0%, et p.p. ent > 0 a extraction
d’une sous-suite pres;

(2) la masse totale limite a une représentation explicite

M(t) = (% //RS fm(:c,v)d:z:dv) SR, >0,

n>1
avec

K?(t) = Ueio.tp(t)]_tzo, KV = gk e % K,
n facteurs

ou x désigne le produit de convolution usuel sur R;



INTRODUCTION 11
(3) pour tout o > 0, il eziste {, € (—0,0) tel que
M(t) ~ Cyest lorsque t — +00;
(4) enfin
& ~ —0o lorsque o — 01, et & — —2 lorsque o — +o0.
3.3. Idée des démonstrations.

3.3.1. L’homogénéisation. Tout d’abord, on note F. = F.(t, s, x,v) la
solution pour tout € > 0 de

(( (O +v-V,+0s)F.+0F. =0, (r,v) € Z. xS, t,s>0,
F.(t,s,z,v) =0, siv-n, >0, (z,v) € 0Z. xS, t,5>0,

F.(t,0,z,v) =0 [ KF(t,7,z,v)dr, (x,v)€ Z. xS t>0,

L FL(0,8,2,v) = ge 75 f"(z,v), (r,v) € Z. xSY, s>0,
et on montre que la solution f. de I’équation de Boltzmann linéaire
vérifie
oo
felt,x,v) = / F.(t,s,x,v)ds.
0

Il faut noter ici que la variable supplémentaire s € R, peut étre in-
terprétée de la fagon suivante. A toute particule, on associe sa vitesse
v. Lorsqu’elle change de vitesse, on peut dire qu’elle disparait pour
donner naissance a une nouvelle particule de vitesse w. De ce point de
vue, la variable s est le temps de vie de la particule de vitesse v. En
ce sens, I’équation étendue est une description plus microscopique de
I’évolution du systeme décrit par ’équation de Boltzmann linéaire. Par
la méthode des caractéristiques, on écrit une formulation explicite de
F. et grace a un lemme de moyenne, on montre que par passage a la
limite fort-faible
F. — F dans L™ — faible *.

Enfin, on montre que f. converge elle-méme vers fooo Fds lorsque ¢ tend
vers zéro. On peut résumer cet argument par le diagramme

., — F

) \
fe - JJ Fds

ou la fleche horizontale supérieure est 'homogénéisation dans ’espace
des phases étendu. L’idée d’utiliser la variable supplémentaire s pour
décrire la limite des f. lorsque € — 0 provient de I’étude de la limite
de Boltzmann-Grad pour le gaz de Lorentz périodique : voir [9, 20].
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3.3.2. Le comportement asymptotique de la masse totale. L’étude du
comportement asymptotique de la masse totale % | fR2X§1 fedxdv passe
donc par I’étude de

1
m(t,s) = — // F(t,s,z,v)dzdv,
2 R2 xSt

dont le comportement est déterminé par la

Proposition 3.3. Soit

B(t,s) =0 — %(t As),

alors UEDP de renouvellement
Ou(t, s) + Ospu(t, s) + B(t,s)p =0, t,s>0,

u(t,0) = o [77 p(t, s)ds, t >0,

ags

w(0,s) = oe 7,
a une unique solution u € L™ ([0,T]; L* (Ry)) pour tout T > 0.
Et de plus
t .
m(t,s) = ult,s) // f"(x,v)dzdv p.p. dans Ry x Ry
21 R2xS!

On considere alors

et on montre que

3/l
— fedxdv — M(t),
2 R2xS? ( )

dans L. (R, ). Ensuite, grace a la méthode des caractéristiques, on a

une formulation explicite de p de laquelle on déduit par intégration en
s € Ry, une équation intégrale satisfaite par

1
1 in M7
L [ fro e f7(@, v)dady
a savoir I’équation intégrale du renouvellement

m(t) = k(t) + /0 K(t — s)m(s)ds.

C’est une équation bien connue en théorie des probabilités — voir
[13] — et pour laquelle on dispose de théoremes sur le comportement




INTRODUCTION 13

asymptotique de la solution m en temps long, fournissant notamment
I'équivalent (3) du théoreme 3.2.

4. CHAPITRE 3 : APPROXIMATION PAR LA DIFFUSION DE
L’EQUATION HOMOGENEISEE

Nous étudions ici 'approximation par la diffusion de I’équation ho-
mogénéisée (=) obtenue dans le chapitre précédent. C’est-a-dire qu’on
s'intéresse a une situation fortement collisionnelle o — 7% avec 1 < 1,
et sur une échelle de temps longue, ce qui équivaut a supposer que la
vitesse des particules est tres grande avec la méme échelle de temps.
Le scaling de la diffusion correspond au cas ou la vitesse des particules
est d’ordre % Autrement dit, on considere F,, = F,(t, s, x,v) solution

du probleme de Cauchy

p

&ﬂ+%Vﬂ%+&ﬂ+%F:§@AQﬂ,

(£) F,(t,0,z,v) = %/ / F,(t, 1, z,w)dwdr,
n=Jo Jst

\ Fn(@&%“) = %einﬁspm(x)a

pour (t,s,z,v) € Ry x Ry x R? x St avec p € C!' (Ry; Ry) et stricte-
ment décroissante. On suppose de plus que

J" e L' (R?) N 12 (R?)
et qu’il existe C' > 0 tel que

sup !pm’ < C.
z€R2

Nous avons alors le théoreme suivant d’approximation par la diffusion :

Théoréme 4.1. Soit F,, solution de (P,) alors

/ F,ds — p dans L? (R+; L? (]R2 X Sl)) — faible lorsque n — 07,
0

loc
ot p est la solution du probléme de Cauchy
Op— 3=2p=p(0)p, t>0, zeR?
p(0,x) = p™(z). r € R
De plus, pour tout T > 0 et pour tout compact K de R?

/ / F,ds — p dans L3 <[O, T}, L (K)) — fort lorsque n — 07,
0o Jst
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4.1. Esquisse de la démonstration. Il convient de relever que
Eyl,_g = p"™0s—0 dans M (Ry x Ry x R? x S') — faible
lorsque  — 0". On doit donc s’attendre & une convergence du type
F, — fd,—0 dans M (R; x Ry x R* x S') — faible

lorsque  — 0. Nous sommes ainsi obligés d’écarter les méthodes clas-
siques utilisées en théorie de 'approximation par la diffusion comme le
développement de Hilbert (qui utilise la régularité de la solution limite)
ou la compacité dans L? de la famille F,. L’idée est d’écrire d’abord
la formulation duale du probleme, puis d’appliquer la transformée de
Fourier. On obtient alors la formulation duale de I’équation désirée en
passant a la limite.

Pour la convergence forte, on utilise un lemme de moyenne qui garan-
tit la régularité uniforme de la moyenne en vitesse de (f;).., dans I'es-
pace LP ([0, T]; Wise(z)~"P) puis on montre ensuite ’appartenance a un
< bon > espace du type L ([0, T]; Wi(z)*?) de la famille (8; [, f-)
On conclut enfin avec le lemme d’Aubin.

e>0"

5. CHAPITRE 4 : ETUDE DU CAS NON MONOCINETIQUE

5.1. Le modele. Nous reprenons le probleme traité dans le deuxieme
chapitre dans le cas non monocinétique; i.e. 'espace des vitesses est
la boule unité B? au lieu de S!. Plus précisément, on considere f. =
fe(t, x,v) solution du probleme de Cauchy

atfa_’_v'vxfa—l—o-(fa_Kf&‘):Oa (ZE,U)GZEXB2,t>0,
(Z) < fe(t,z,0) =0, siv-n, >0, (z,v) € 0Z. x B?,
1:(0,2,0) = f*(z,v), (z,v) € Z. x B,
avec
Kt = [ Kow) o w)do, Kow) = ko) 20, K1=1
et
f™ >0 dans R? x B2,

et // f™(x,v)dedv+  sup  f"(x,v) < +oo.
R2xB2 (z,v

YER2x B2
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5.2. Les résultats. On note F' = F(t, s, x,v) solution du probleme de
Cauchy suivant

O a0 o8 — bl

(2) F(t,0,z,0)=0 fooo KF(t,T,z,v)dr,

F(0,s,z,v) = ce 7% fi"(x,v),
pour (t,s,z,v) € Ry x Ry x R? x B2 Et on rappelle la notation
employée ci-dessus :

W ={ g0 G

sinon.

Théoréme 5.1. Soit (f.).., la famille de solutions de (Z.), alors a
extraction pres,

(= [ pas

dans L™ (Ry x R? x B?) *-faiblement lorsque € — 07, ou F est l'u-
nique solution de (Z).

Nous étudions ensuite le comportement asymptotique en temps long
de la masse totale de la population particulaire dans la limite ho-
mogénéisée.

Théoreme 5.2. Avec les méme hypotheses et notations que pour le
théoreme précédent

(1) 11 existe une fonction M € L' (R,) telle que

%//EXW fe(t,x,v)dxdv — M(t)

dans L} . (Ry) lorsque ¢ — 0T, et de plus p.p. en t > 0 a

loc
extraction pres;
(2) Si K est de plus de rang fini, pour tout o > 0, il existe un réel
& € (—0,0), un entier n € N indépendant de o, et C, une
constante strictement positive tels que

M(t) ~ Cyt"e*" lorsque t — +oo0.

5.3. Esquisse de démonstration. La démonstration du premier é-
noncé est essentiellement identique a celle pour le cas monocinétique.
Pour le comportement asymptotique de la masse en temps long, 'idée
est d’abord de montrer qu’il est déterminé par celui d’une famille
de fonction (f4;);<;<, - Ensuite, on montre que cette famille vérifie
un systéme d’équations intégrales de type renouvellement pour lequel
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nous disposons de théoremes portant sur le comportement asympto-
tique. Enfin, nous nous appuyons sur ces théoremes et sur la struc-
ture algébrique du systeme d’équations pour calculer le comportement
asymptotique de (11;),-..,, , et de la, en déduire celui de M.

6. CHAPITRE 5 : HOMOGENEISATION ET SEMI-GROUPES

6.1. Le probleme. Ce chapitre traite en particulier de <« 'homogénéi-
sation des opacités en transfert radiatif > pour reprendre le titre d’un
papier de R. Sentis [21], et de 'utilisation de I'idée employée dans le
chapitre 2 d'un espace des phases étendu pour étudier ce probleme.
En effet, la solution d’une équation de transport linéaire dans un mi-
lieu dont le coefficient d’absoption a de fortes oscillations converge,
lorsque la fréquence d’oscillations tend vers l'infini, vers la solution
d’une équation de type intégro-différentiel — voir par exemple [23, 24,
17, 21] — qui traduit un effet de mémoire. Autrement dit la propriété
de semi-groupe, qui traduit la markovianité, ou ’absence de mémoire,
de la solution de I’équation de départ disparait a la limite.

On retrouve ce phéomene d’effet de mémoire dans le probleme traité
dans le second chapitre. Mais pour passer a la limite dans ce cas, nous
avions étendu 'espace des phases par ’ajout d’une variable temporelle
supplémentaire. Ceci suggere donc de revisiter ’homogénéisation des
opacités en transfert radiatif en utilisant cette nouvelle technique afin
d’obtenir une équation équivalente dans un espace des phases étendu.

6.2. Les principaux résultats. Le premier théoreme revisite une re-
marque importante de L. Tartar [22] qui est le cas canonique de la perte
de la propriété de semi-groupe en partant d’une équation différentielle
simple. Soit a. = a.(z) une famille bornée de L>° (IRN ) aveca. > a >0
p.p. sur RY. On suppose que lorsque € — 0%, a. converge au sens des
mesures de Young vers (i), g~ famille de mesures de probabilité sur
R. On note u. = u.(t,2) la solution pour tout ¢ > 0 de I’équation
différentielle

d
£u5+ag(z)u5 =0, t>0, zeR"Y,

u:(0,2) = u™(2), ze RN,
avec u™ € L' (RY) N L*> (RY) . On a alors
Théoréme 6.1. Lorsque € — 0"

Us — / Uds dans L™ (R4 x ]RN) *_faiblement,
0
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ouwU=U(t,s,z) est la solution de
o,U —90,U =0, t,s >0, € RV,

U(0,s,2) = —um(z)i (/ e‘”‘duz()\)) , z€RN.
ds \ Jo

Le deuxieme résultat applique la technique développée plus haut a
une équation du transfert radiatif qui modélise le comportement d’une
population de photons dans un milieu gazeux dont l'opacité oscille
tres fortement. On suppose que la température donnée 7' = T'(¢, ) du
milieu est bornée, i.e. T' € [, 0] avec 0 < § < O < +00. On rappelle les
notations physiques : h la constante de Planck, ¢ la célérité de la lumiere
dans le vide et k la constante de Boltzmann. On définit B, = B, (T')
comme étant 'intensité radiative émise a la fréquence v par un corps
noir a la température 7' :

2w 1

- :
et —1

B,(T)

On pose 0 = o(v,T') la section efficace d’absorption du milieu extérieur
a la température T pour un rayonnement incident de fréquence v et on
suppose que

0<m<o.(v,T) <M, pourtoutv>0etT €[00

Enfin la fonction I = I(t, z,w, v) désigne chv fois la densité des photons
de fréquence v a la position z dans la direction w et au temps t. Elle
vérifie I’équation du transfert radiatif :

10 +w-V,I =o(v,T)B,(T) — (v, T)I,

10, z,w,v) = I (z,w, V),

pour (t,z,w,v) € R% x R* x §* x R% — rappelons que T' = T'(t, x) est
une fonction donnée.
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L’une des difficultés pour I'étude de cette équation est que la sec-
tion efficace d’absorption admet de fortes oscillations comme le montre
I’exemple du graphique ci-dessous :

10° 1 T
B — Gaussian

10 01 | I Lorentzian

10% ¢

Boron
T=40eV
p =0.005 g/cc

Photon absorption [cm?/g]
2,
T

1 l 1
0 100 200 300 400

Photon energy [eV]

L’idée est de modéliser les oscillations par une suite o, vérifiant
T
(1) Oc ( 7T) — (H’u)l,>o

au sens des mesures de Young, ou (”Z)Do est une famille de prob-
abilités ; et de trouver une équation équivalente décrivant l'intensité
radiative a la limite. Autrement dit, on considere 'intensité radiative
I. = I.(t,z,w, v) vérifiant I’équation

0. +w-V,I. = 0.(v,T)B,(T) — 0.(v, T)L,

L(0,2,w,v) = I" (z,w,v).

pour (¢, z,w,v) € R% x R?* x §? x R%, et ou o, vérifie (1). Lorsque 4
est une mesure, on note /i sa transformée de Laplace. Ceci posé, nous
avons alors

Théoreme 6.2. Sous les hypotheses et avec les notations ci-dessus
I — / Jds dans L™ (R} x R® x §* x R%) *-faiblement,
0

lorsque e — 07, ou J = J(t,s,x,w,v) est solution de
2

~T

My

20T 4w Vol =0, = — BT,
dji,

J(0,s,z,w,v) = —I"(z,w,v) To
s
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pour (t,s,z,w,v) € RL x R x R* x §? x R,

6.3.

Idée des démonstrations. Les démonstrations sont essentielle-

ment identiques a celle du deuxieme chapitre. C’est-a-dire que 1’on
définit une équation avec une variable supplémentaire dont la solution
peut-étre écrite explicitement, et on passe a la limite.

(1]

2]
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CHAPTER 1
THE LINEAR BOLTZMANN EQUATION IN A PERIODIC
DISTRIBUTION OF HOLES:
DECAY OF THE MASS

INTRODUCTION

Recent results on the Lorentz gas suggest that the asymptotic behavior of trans-
port equations in the homogenization limit is of a completely different nature ac-
cording to whether the underlying distribution of obstacles — scatterers or holes
— is random or periodic: see [9, 3, 12, 10, 5, 14].

More specifically, for each e € (0,2'~%), define

Z. = {z e RY| dist(z,eZ%) > 5ﬁ} =R?4\ U B(sk,sﬁ) .
kezd
For each fi" = f"(x,v) > 0 satisfying (for instance) f* € C(R? xS%~!) and being
7 —periodic, define f. to be the solution of the initial boundary value problem for
the free transport equation:

atfs‘i’v'vzfs:()a T € Ze, |U|:lat>0a
(0.1) fg(t,ek—l—e%w,v)zo, keZ?, lw=v=1,w-v>0,
f8|t:0:fm(m,v), x€Z, [v|=1.

In this problem, f. can be thought of as the number density of an ideal gas of point
particles that do not see each other. The boundary condition (second equality in
the system above) means that no particle can leave the surface of any one of the

balls B(ek, E%). In other words, the particles with distribution function f. travel

freely at unit speed in the domain Z, until they fall into the holes B(ek, STL), in
which case they disappear forever.

A natural question is therefore to estimate the total mass — or equivalently,
particle number — of the amount of gas remaining in Z. at each time ¢t > 0.
Integrating the transport equation above along characteristics, we see that the
solution f. is given for each ¢ > 0 by the formula

(02) fe (taxa ”U) = fm(m —tv, U)]]-t<75(9c,v) ’ T € Ze ) |U| =1,
where 7. (z,v) is the free path length for a particle leaving position x € Z. in the
direction v € S
Te(z,v) =inf{t > 0|z +tv e Z.}.
Obviously, for each (z,v) € RY x S4~1
7o(z,v) = 7. (x + ¢k, v) for each k € Z%,

in other words, 7.(-,v) is eZ?—periodic for each v € S?~!. Therefore, 7. can be
viewed equivalently as a function on Z. x S4~1, where Z. is the quotient space

Z. = 2. /1.
For each r > 0, we introduce the following punctured torus

Y, := (R*/Z%) \ B(0,r)



24 CHAPTER I

and the associated free path length for a particle leaving position x € Y, in the
direction v € S
Tr(y,v) :=1inf {t > Oly — tv € IY;.}.

Define p, to be the uniform probability measure on Y, x S¥~1, and p, the distribu-
tion of 7, under pu,,i.e.

(0.3) pr(t) = pr ({(z,0) € YV x STHT(2,0) > t}).
As mentioned above, the distribution of free path length has been studied in [3, 5,

12, 1]. In particular, we have the following estimate (see [3, 12]).

Proposition 0.1. (Bourgain-Golse-Wennberg) For d > 2 there exist C[d], C'[d] > 0
such that for each r > 0,

Cld]
a1y SPr(t) <
The lower bound in the case d = 2 and the upper bound for all d > 2 were

proved in [3]; the lower bound was later extended to the case of any d > 2 by Golse
and Wennberg see [12]. Notice that

C'[d) " o1
STy whenever t > a1

Z.=¢eY 1, for each e > 0,
e d—T
which implies that for each e > 0 and for each (z,v) € 2. x S41
Te(z,v) = €T _1

x
Ed—l g,'U .

Consequently, the distribution of 7. for (x,v) uniformly distributed in Z. x S¥~! is

1
Punif (e > 1) = |Z|Sd_1// i Li<r. (a0 dxdv

« dxd
|EY 1 ||Sd 1|//y 4 xSd-1 t<€7’£ﬁ(?’v) rav

cd—1

|EY 1 ||Sd 1|// S 11t<8T 1 (yv)dydv
1

|Y . HSd 1// Si— 1]]'t<€7_ 1 (yv)dydv
=T 1 X

da-1
_ t
_padil g .

By Proposition 0.1, for each £ > 0 we have

Cld] t C'ld] t 1
— ) <p 1 |- | —F whenever — > —,
(Eﬁ)d71£ gd—1 £ (Edil)dflt € (Eﬁ)d71
or equivalently
!
(0.4) cld S Pif (Te(z,v) > 1) < ¢ld whenever ¢ > 1.

Notice that we have just obtained for P, i¢ (7. > t) two bounds (0.4) which are
independent of . That being done, as f™ is Z%—periodic we define the total mass
of the particle system at time ¢ by

M. (t) := // fe (t,z,v) dxdv, for each t > 0.
.N[0,1]4 xS4—1
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In view of equality (0.2)

M.(t) = // iz —to,v) e (z,0)dzdv.
Z.N[0,1]d xSd—1 o

Since f" € L™ (IRd X Sdil) , and we assume without loss of generality that ¢ is of
the form € = 1/n with n € N*. Then

d
; 1
ML) < (17 e s (8) [ tentedaae
e X4

|Z|

Ed ‘Sd71|ﬂp

Te > t).

< ||meL°°(]Rd><Sd—1) unif (

In the same way, if there exists ¢ > 0 such that for each (x,v) € R? x S~
fi(x,v) > ¢, we have

|Ze || qa—
Me(t) 2 ch|Sd 1|]P)unif (TE > t) .

Since |Z.| = & (1 - 5ﬁ|B(O, 1)|) ~ ¢4 as e — 07 that means that by the esti-
mates on the distribution of 7. due to Bourgain-Golse-Wennberg [3, 12] as computed
above, the two bounds of the total mass M, have a algebraic decay rate that is in-

dependent of ¢.

Now, suppose that, instead of being periodically distributed, the holes are ran-
domly distributed. Specifically, replace Z. with

V.[{c}] = {z € R | dist(x, {c}) > e} = R\ U B(e,¢€)

ce{c}

where {c} is a countable subset of R¢, distributed under Poisson’s law with param-
eter B, := % with 8 > 0. This means that, for each measurable A C R¢ with finite
measure |A| and each n > 0 one has

Prob(#(A N {c}) = n) = %e—mm .

Solving the same Cauchy problem for the free transport equation as above, but
with Z. replaced with Y:[{c}] leads to a particle number density that depends on
the countable set {c} of hole centers, denoted by f. = f-(¢,z,v,{c}). Defining the
total particle number M, = M.(¢,{c}) as above, a straightforward computation
(see for instance section 2 of the survey [11]) leads to the estimate

EM.(t) < Ce P!

where E designates the mathematical expectation, i.e. averaging over the hole con-
figuration {c}.

We thus note a considerable difference in the decay rate for the total particle
number according to whether the distribution of holes is periodic or random. The
reason for the slower decay in the periodic case is the presence of sufficiently many
“channels” (infinite open strips included in Z.): see [3, 12, 11].

However, if the free transport equation above is replaced with a linear Boltzmann
equation for monokinetic particles, the influence of channels is destroyed by the
collisions of the particles with the background medium — more precisely, by the
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scattering part of these collisions. Specifically, consider the initial boundary value
problem

atfa+v'vmfs+a(f6_Kfs):07 mEZe7|U‘:17t>07
fs(t,ekJreﬁw,v):O, keZ?, lw=v=1, w-v>0,

fs|t:0:fin(zvv)7 xEZg, |’U‘:1,

where o0 > 0 and K is an integral operator acting on the only variable v in f., of
the form
Kf.(t,x,v) = /sd 1 k(v,w)fe(t,z,w)dw.

The integral kernel k = k(v,w) is the scattering kernel (i.e. the probability of
a transition in particle velocity from direction w to direction v): see below the
properties satisfied by k.

Because of the term o K f. in the linear Boltzmann equation above, the direction
of a typical particle path is piecewise constant. This suggests that, whenever o > 0,
the total number of particles that remain in Z. at time ¢ should decay faster than
O(1/t), i.e. asin the case where o = 0. Whether this faster decay rate is exponential
in spite of the periodic distribution of holes is the subject of the present paper.

1. THE MODEL

Let d > 2 and consider the monokinetic linear Boltzmann equation which is a
classical model for instance in the context of Radiative Transfer:

(1.1) Oif- +v.Vufe +o(f- — Kf.)=0.

The unknown function f(t,z,v) is the density at time ¢ € R4 of particles with
velocity v € S 1, located at « € R?. It has the following probabilistic interpre-
tation: the probability that the particle be located in an infinitesimal volume dx
around the location x with direction in an infinitesimal element of solide angle dv
around the direction v at time t > 0 is f(t, z,v)dxdv. For each ¢ € L'(R? x S¢-1),
we denote:
1
Ko(v) = ————

o) [S4=1 Ja—r
where dw is the uniform measure on the unit sphere S*~'. We henceforth assume
that

k(v, w)¢(w)dw,

ke LS4 ! x 8% Y and k(v,w) = k(w,v) >0 ae. inv,we S,

1.2
(12) with ﬁ/ k(v,w)dw =1 a.e. in v € S41,
Sd—l

The constant o > 0 is the collision frequency, or in other words the average time
between two successive collisions in the medium. The linear Boltzmann equation
is set on the domain Z, x S¢~1.

We assume an absorption boundary condition on 07,

. =0 for each (¢t,z,v) € R% x 8Z. x S*"!, whenever v - n, > 0,
+

where n, denotes the inward unit normal vector to 0Z, at x € 0Z.. As in the
case of problem (0.1), this condition means that particles falling into a hole remain
there forever.

To sum-up, for each ¢ € (0, 21_d) and each o > 0, we consider f., the solution
of the initial boundary value problem
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Oife +oVofeto(fe —Kf.)=0, (z,v)€ Z. xS t>0,
(Be)q fe=0,ifn, - -v>0, (z,v) € 0Z. x ST,
f-(0,2,v) = fin(z,v), (z,v) € Z. x S
with fi" € L>(R? x S?1) and is Z?—periodic in its first variable.

Contrary to the initial boundary value problem for the free transport equation
(0.1), the function f. cannot be explicitely computed as in formula (0.2). However,
it has the following probabilistic interpretation :

Let (T;);>1 be independent and identically distributed random variables with
distribution

P (T; > t) = e " for each t > 0.

Let (W;);>1 be independent and identically distributed random unit vector fields
on S% 1 with the following distribution : for each I C Se-1.

P (Wi(v) € I) = ‘ST{”/Ik(v,w)dw,

where dw designates the surface element on S?~!. Moreover the random variables
(T3)i>1 and (W;);>1 are chosen so that (W;,T}); j>1 are mutually independant.
Given x € Z. and v € S%~!, we define by induction

XO =z,

Vo =,

X, =X,_1—T,V,_1 for each n € N*,
Vi i= Wy, (V1) for each n € N*.

Notice that (V5,),,5, is a Markov chain. We denote
So:=0, S,:=Ty+---+T, for every n > 1.

Finally, we set

(X0, Vo) = (z,v) € Z. x S¢1
(X, V) = (Xpy = (t = Sn)Vi,, Vi) if Sy, <t < Sy + Thpga-

The transport process (X¢, V;)ier., (#,v) describes the motion of a particle starting
from 2 € Z. in the direction v € S~! at time ¢ = 0, changing direction according
to the law k at exponentially distributed times. Then the solution f. of the initial
boundary value problem (Z;) for the linear Boltzmann equation is represented as
follows:

(1.3) fe(t,z,0) =Eqg, [fm(Xtavt)]lt<95(o:,v)] a.e. in (¢, 2,v) € Ry X R x §771

where E, , is the expectation for the transport process starting from (x,v) (see [6]
pp. 225-226), and 0.(z,v) is the exit time for the process (X¢, V;)(y,). In other
words,

O (z,v) :=inf {t > 0| X;(z,v) € 0Z.}.

We shall see that this probabilistic interpretation leads to an upper bound for the
total mass of the particle system.
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2. MAIN RESULT

We may assume without loss of generality that f" € L* (R% x S%7!) and is
7% —periodic in the space variable x while ¢ is of the form & = 1/n with n € N*,
so that the solution f. of =. is also Z%—periodic in the z variable and belongs to
L*> (IRJr X Ze X Sd’l) . We define the total mass of the system in any spatial period

to be
My (t) == // fe(t,z,v)dxdv.
M[0,1]d xSd—1

Notice that in the non-collisional case (o = 0), the mass is controlled by the distri-
bution of free path lengths in Z., as explained in the introduction. Our main result
is

Theorem 2.1. Under the assumptions and with the notations abouve,
(1) for each o > 0, there ezists n, € (—0,0) such that

My (t) < ||f™|| oo (maxsa-1yCoe™? for each e € (0,2'7%).

Moreover, one has
(2) N ~—0c aso — 0T,

Statement 1 above means that for each e € (0,2'79) and ¢ > 0, M, . decays
exponentially fast as t — 400 and at exponential speed that is independent of ¢.
Statement 2 gives the behavior of the characteristic exponent 7, as ¢ — 07 (non
collisional regime). In section 3, we give a functional inequality crucial for Theorem
2.1 while the exponential order estimate of the M, . is discussed in section 4.

3. A FUNCTIONAL INEQUALITY

First, we recall the free path length, or forward exit time, for a particle starting
from z in the direction v without changing direction :

(3.1) Te(z,v) :=1inf {t > 0|z — tv € 0Z.},
We next introduce the function
(3.2) T.(v) := sup 7c(x,v)
x€Z.
and

1
P.(t) := ] /vESd1 Li<r, (v)dv for each t > 0.
3]

We recall next Theorem B in

Proposition 3.1. For each d > 1, there exists C' [d] > 0 such that, for each
r €(0,1/2) and each t >0
{v € S4-1 SUp, ey, T (y,v) > t}] - c” [d]
Sa-T] = pd—1g°

Since 7. (z,v) = stﬁ(f,v), one has T, = ESUWDyey Zﬁ (y,v) so that,

according to the proposition above

1
Ps(t) = W \/vESd1 ]]-gsulpyeysd%1 Cﬁ (y,v)>td'l)

1" "

¢ ld ¢ ld

= N4,
)
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for each t > 0 and € € (0,2'~%). Besides, since P.(t) is a probability, one also has
P. <1 foreach t >0 and ¢ € (0,2'7%), so that

1"

P. (t) < inf (1, CtW]> for each t > 0 and ¢ € (0,2'9).

We also denote
Go.e(t) == 0e 7"P.(t) 1450 and each t € R
and

1

Cld
go(t) := oe 7" inf <1, %
Notice that for each ¢ > 0 and each ¢ € (0,2'79)

(3.3) 9o,e(t) < g, (t), for each o > 0.

We establish in the present section the following

) 14~0, for each t > 0.

Proposition 3.2. Let 0 > 0 and ¢ € (0,21_d), under the assumptions and with
the notations above, we have

in | Ze][S? ] ot
MU@(t) SHf ||L°°(]Rd><Sd—1)T]Pumf (Ta > t) €

in |Zf| |Sd_1| ‘ —o(t—s) *n
1P e iy P [ et 5 g ().
0

n>1

for each t > 0, where f** := fx---x f, and x designates the convolution product
—_—

n factors
on R.

In view of (3.3), this proposition obviously entails

Corollary 3.3. For each o and for each e € (0,2'~%), under the assumptions and
with the notations above, we have

z d—1

Moo (8) <[ ™[I poe (Rt xsi— -

in |Z€‘|Sd_1‘ ! —o(t—s) *1
+11f ||L°°(]Rd><8d*1)7gd e Zgo’ (s)ds
0

n>1

unif (Te > t) e It

for each t > 0.

The first inequality is based on the representation of the solution in terms of the
transport process. Notice that the series in the right-side of the second inequality
is independent of €. It will imply a bound on M, . that depends only on o > 0.

3.1. A first inequality. First, recall that (7}),., denote independent and identi-
cally distributed random variables with distribution

P (T; > t) = e 7" for each t > 0,
and (Sp),,>, designate the sum of the random variables T;:
0ifn=0,
Sn = {T1 + ...+ T, otherwise.

The stochastic process (X, Vn)n20 is the one defined in Section 1. We denote for
the sake of simplicity

IO(t) = // Ez,v[]]-t<T1 ]]-t<7'5(;c,'u)]dxdv’
A[0,1]4 xS 1
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and more generally for every n > 1,

I,(t) := // Em,v[]lsn<t<5n+Tn+l
.M[0,1]4 xSd—1

H L, <r (Xi_1,vi_y))dxdv.

1<i<n

(3.4)

Lemma 3.4. Under the assumptions and with the notations above,

(3.5) Mo () < 1f" | poe (Raxsi-1) Z I,,(t) for each t > 0.
n>0

Proof. We recall equality (1.3)
fs(t,ZL',"U) = Em,v [fzn(Xta ‘/t)]]-t<95(a:,v)] a.e. in (t,fﬂ, U) € R+ X ]Rd X Sdila

where (X3, V;) (x,v) is the transport process defined starting from = € Z. N[0, 1]¢
in the direction v € S4~1. We have

Je(t,z,v) = E;, [fm(Xt, Vt)]lt<05(x,v)]

- Ez,v fin(Xta ‘/t)lt<95(:r,v) Z ]]-Sngt<Sn+1

n>0

= ZECEﬂ) [f7™ (X, Vi) Lico, (wy0) LS <t< S |
n>0

= Ea:;u [fzn (Xta Vvt)]lt<05(x,'u)]lt<T1]
+ ) Bu [F™(X0, Vi) Lo, (z) LS, <t <80y ] -

n>1
Therefore we have for each € € (0,2'79) and for each t > 0, x € Z.N[0,1]¢ v € S¢-1

fe(t,z,v) < ||fm||L°°(Rd><Sd—1)E:c,v []lt<95(w,v)]lt<T1]

+ 1| oo (maxsa-1) Z Eoo [Lico. (2,0) 180 <t<Snii] -
n>1

(3.6)

As 1;.7, implies that the particle has moved from x € Z. N[0, 1]¢ in the direction
v € S! for t € R, without changing direction meanwhile, we have

(37) Ew,v [1t<05(1,v) ]lt<T1] = Em,v []lt<'rs(m,v)]1t<TJ .
Besides
(3.8) Lico, (z0) Ls,<t<Sn1 < Ls, <o (z0) Ls,<t<Snia

and 1g, <g_(z,v) Mmeans that the particle starting from z in the direction v has
changed direction n times, for each ¢ € [|0,n — 1|] from X; in the direction V;
without changing direction during T;,1 and without falling into any hole. Therefore
for each n > 1

Eow [Lico. @ ls,<t<Snii] < Eoo [Ls,<0o(z,0) L8, <t<Spii]

(3.9) n
Eoo |Ls,<t<sup | [ Iner v -
=1

IN
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In view of inequalities (3.7), (3.8) and (3.9), inequality (3.6) entails
f€<t7xav) < HmeLOO(IRded*l)Em,v []lt<95(m,v)]lt<T1]
1 | poe (R xsa-1) Z Eopo [Lico. (o,0) 180 <t<Snii] »

n>1
< ”fm”LW(IRdXSd*l)EI,v [1t<7'5(x,v)]]-t<T1]
. n
+ ”fzn”LQC(]RdXS‘i—l) Z Eﬂfﬂf ]]'Snﬁt<5n+1 H ]]'Ti<Ts(Xi717Vi71) :
n>1 =1

We integrate both sides of the inequality above in # € Z. N [0,1]% and in v €
Sé-1, O

3.2. An estimate for I,,. We first give an estimate for I,,.

Lemma 3.5. Under the assumptions and with the notations above,

Z||si!
I EA ] P

Io(t) : -

unif (TE > t) and each t > 0,

and for everyn > 1,
A n
I,(t) < %/ e 79 (g, )™ (s)ds and each t > 0.
0

Proof. We begin with case n = 0. Since T3 has distribution pr, (ds) := oge=?%ds,
one has

IO(t) = // Ex,v[1t<T1 ]1t<‘r€(:v,v)]dxdv
Z.N[0,1]d xSd—1

= // /Ue_"s]le]1t<T€(M)dxdvds
Z.N[0,1]¢ xSd—1

= (/ ae_asds) // Lycr (w0 dxdv
t Z.N[0,1]4xSd~1

_ .1
—e Ut?d //desd—l Licr (o) dxdv

d—1
= &ib—aﬂp
€
Consider next the case n > 0. Since for each (z,v) € Z. N [0,1]% x S¥~1 and for
each t > 0,

(310) I]-t<'rs(m,v) < ]]-t<TE('U)7

we have in view of (3.4)

unif (TE > t) .

Lo(t) = / / Bo |15, cicsimns [[ Vrienixo iy | dodo
M[0,1]d xSd—1

1<i<n

S// E:o | 1s,<t<Sn+Tnis H L7, <1 (v,_,) | dzdv.
Z.N[0,1]9 xSd—1

1<i<n

And thus

In(t) S// /1t1+~~+tn<t<t1+~~+tn+1 H L <t (via)
Z.N[0,1]d xSd—1

1<i<n

d:EdU,LLTl (dtl) B L A (dtn-‘rl) vy (Uv dvl) RV, (Un—27 dvn—l) :
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In view of our assumptions on the random variables (7;),,<, 1 and (Vi) <<,
the distribution of Tj is pur, (dt;) = oe~ 7% dt; while the one of V; is uy, (vi—1, dv;) =
7k(|v§(?f{7|)i)dvi for each 1 <4 < n. Since k < 1, replace k£ with 1 in the integrand in

the right-hand side of the inequality above and integrate in v, (v;)1<i<pn OR S41 to
obtain with inequality (3.10)

L(t) <[s*Y di’?/]1t1+»--+tn<t<t1+---+tn+1 [17- )
Z.n[0,1]¢

=1
ATy (dtl) o UT, (dtn-i‘l)'

1 Z,
/ dx = —d/ dx = | 5',
Z.N[0,1)4 e Jz 3

I < ‘ZE||Sd71| IL s P .
n(t) S5 [ Tutetacttitotton [[P- )
i=1

Since

one has

Ky (dtl) M, (dthrl)'

Now integrate in ¢,41 on [t — (t1 + - - + t,,), +00] to obtain

|Z||S4 ! —o(t—(t1++tn)) ,
L(t) < [ Iatesace HPE (t:)
pry (dty) -+ - pr, (dty)

or equivalently

‘ZE||Sd_1| —g‘(t_(t 4ot )) - —ot
I < T Lty gt <te ! " Hoe PP (t;) dty - - diy,
=1

2181 ottt ta) T
< — Lty oot , <t€ ! " Hga,s (t;) dty - -~ dty,

i=1

Z.||s1 ot .
= % / =77 (g, )™ (s)ds.
0

3.3. Proof of Proposition 3.2.

Proof. Lemma 3.4 states that

ngs(t) < HmeLOO(]Rdedfl) an(t)'

n>0
That implies, by Lemma 3.5
in |Ze]IS?] o
Mo (t) <If™ Mo maxst—1) = g Punis (T > ) ™7
in |Z ||Sd_1| ! —o(t—s *N
+[If ||L°°(IRd><Sd*1)ET e ot ‘)nga(SW&
0

n>1

which is precisely the conclusion of Proposition 3.2. O
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4. THE LONG-TIME BEHAVIOR OF THE TOTAL MASS

4.1. Introduction. By Corollary 3.3, for each t > 0

|28
d

t
M (0) < £ 1w ¢ By (> 0+ [ 703 g (syas )
0

n>1
or

in |Z€‘|Sd71‘ —ot ! —o(t—s)
M,T,E(t) < ||f ||L00(Rd><sd—l)7€d e Pumﬁf (TE > t) + e Fg(s)ds s
0

with
F,(t) := Z (95)™ (t) for each t > 0.

n>1
We establish in the present section the following

Proposition 4.1. Let 0 > 0, under the assumptions, and with the notations above,
there exists n, € (—s,0) and C > 0 such that for each t > 0

F,(t) < Cem,
with Cy, € L™ (R4) and C,(t) — 0 as t — +o00. Moreover 1, ~ —o as o — 0.

We first show how this proposition entails Theorem 2.1.

Proof. Recall that for each o > 0 and for each ¢ € (0,2!~%),

in |Z€‘|Sd_1‘ —ot ! —o(t—s)
My (t) < || f ||L°°(]Rd><sd*1)67d e "Punig (e > 1)+ [ e Fy(s)ds |,
0

or since
d
2. =& (1-e77|B(0,1)]) < 7,

and for each ¢ > 0 Pypif (12 > t) <1,

Maa®) < 1 s 81 (770 [ oI E(s)as)
By Proposition 4.1, "

My (t) < Hfin||L°°(Rd><Sdf1)|Sd_l| (e_"t + /Ot e_”se””(t_s)0d5> )

S ™ o maxsan |87 G (e,
with t
G(t) = e~ 4 C / (13 g,
0

_ el _C (1 _ e—(am)t) _
0+ Ns
Since 7, € (—0,0), we have o + 1, > 0 so that we have

Gt) <1+ for each ¢ > 0.

o+ 1Ns

Hence for each o > 0
Mo o(t) < | f" || oo (Raxsi—1)Ce™" for each e € (0, 21-4)

with o
C =" (1 + )
0+ N
which is precisely the conclusion of Theorem 2.1. O

4.2. A geometric series.
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4.2.1. The Lapace Transform. First, for each £ € R and each locally bounded
measurable function f: R4 — IR, define its Laplace transform

Li©= [ T e,

0
Recall that for each f,g: R4 — R, we have

LIf g1 (&) = LITE)LIg] (€)

where * denote the convolution product on the half-line, defined by

t
fro)= [ 5l s)gs)ds.
0
4.2.2. The function F,. Recall that

"Id
go(t) = oe” 7 inf <1, Cﬂ“) for each t > 0

c'ld]
t+d

We denote henceforth g : ¢t — inf (1, ) so that for each ¢t > 0

9o (t) = oe7g(t).

Obviously, g is nonincreasing, positive and nonintegrable.Since g, is a locally bounded
measurable function vanishing identically on R* , we have for each £ > —o

R () =3 ()" (1) = Yo" (7 ) " (o)

x . - . . W .
As F, is a series of nonnegative functions, by monotone convergence we can inte
grate in ¢ on R term by term so that

(4.1) LIE)E) = 0" (Llg)(E+o)".

n>1
The right-hand side of the equation above is a geometric series of ratio

oL gl (£ + o),

so that £ [F,] (§) < oo if and only if 0L [g] (4 o) < 1. Before going further in the
study of the Laplace Transform of F,, we establish some properties of this function.

Proposition 4.2. Under the assumptions and with the notations above, the func-
tion F, is continue, integrable and its derivative is piecewise continue.

Proof. First, we show that the sequence

N
Fon(t):= ) ¢3"(1)
n=1

converges pointwise to F,,. On the first hand, as g, is nonnegative, for each ¢ > 0,
the sequence (Fy (), ~, is nondecreasing. On the second hand, we have for each
t>0 -

9o (t) < ge” 7"

thus one obtains by a straightforward computation for each n > 1 each t > 0

*(n—&-l)(t) < O_Lntne—at
9o — nl
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so that for each t > 0

Fo(t)=go(t)+ Y gi"(t

n>2
t o"
—0 n
< go(t) +oe™ > it
n>1
< go(t) +0e 7 (7" = 1)
<gs(t)+o (1 — e_"t) .
In other words, for each ¢ > 0 the sequence (Fy (%)), is bounded. Therefore, for

each t > 0, the series converges pointwise to F,. B
Now we notice that it verifies for each t > 0

Fazga+ga*Fa

which implies, since g, is continue, that F, is continue.
We show that F, € L' (R, ). We notice that g is differentiable a.e. with, since,
g being nonincreasing
g(t) <0Vt e R,.
So that

90l 1, = / oo g(s)ds

(oo}
=1—/ e”7%g(s)ds < 1,
0
moreover, Young inequality entails for each n > 1

95" vy < N9ollZrm,y) -

Therefore, the series converges normally in L! (Ry) and thus F, € L' (R4).
Before establishing the piecewise differentiability of F,, we prove the

Lemma 4.3. For f,g € L' (Ry) such that f is bounded, continue att = 0 and
differentiable almost everywhere, we have

+(f e S)9(s)ds) (1) = £0)a(t) + [ t (57) @ stsras

Proof. We have for each h # 0

t+h +h
/0 ft+h—2s)g ds—/ft—s ds-/ ft+h—29)g(s)ds
(4.2)

/ (F((t— )+ B) — J(t - 5)) g(s)ds.

0
As f is differentiable a.e., we have a.e. in s € (0, t]

f((t—s)-l—Z)—f(t_s) %%f(t—S) as h — 0,

besides, f is bounded, which implies that there exists C' > 0 such that
[(f((t=s)+ D)= f(t=5)g(s)] < Clg(s)| € L (Ry)-
Thus, one obtains by dominated convergence

F [ = em=se-snaas = [ (7)€ s1g(s)is as h—o.

We notice that for each s € [t,t 4 h], we have t + h — s € [0, h] so that we have
Li<s<t+nf(t+h—3s)— f(0) > 0ash—0
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and we have
Li<s<esnf(t+h—s) = f(0)||g(s)] < Cg(s) € L' (Ry)
so that by dominated convergence

1

t+h
E/t (f(t+h—s)—f(0))g(s)ds —0ash—0

and one has obviousely

t+h
%f(())/t g(s)ds — f(0)g(t) as h — 0.

Therefore

1 t+h

7 /t ft+h—s)g(s)ds — f(0)g(t) as h — 0.
Consequently, equality (4.2) entails

th f(tJrhfs)g(s)ds—ft ft—s)g(s)ds trd
0 22 Jo 1000+ [ (57) €= oa(s)as

as h — 0. O

That being established, we recall that F, verifies
F, = Jo + Go * F,

The function g, is differentiable a.e. with ¢, piecwise continue. It is continue
at t = 0, bounded and F, is integrable, so that, by Lemma above, g, x F, is
differentiable and continue. So that F, is differentiable a.e. and F, is piecewise
continue. [l

4.3. The characteristic exponent 7,.
4.3.1. The abscissa of convergence of L|Fy].

Lemma 4.4. For each o > 0, the equation

> 1
/ e~ OOty (tYdt = =
0 ag
with unknown £ has a unique real root n.. This root n, satisfies
—0 <1y <0.

Therefore L [F] (§) < 400 if and only if £ > 1.

Proof. Consider the function
Y(x) ::/ e “tg(t)dt, x> 0.
0
AsO<g<Tlandgé¢ L' (Ry), Y is of class C*! on ]0, 4+o0o[ and

T(z) = —t/ooo e "g(t)dt <0

since g(t) > 0 for each ¢ > 0. The function Y is therefore decreasing. For each
t >0, e g(t) = 0T as t = +oo and e"“g(t) < e~ ! for each x > 1, so that by
dominated convergence,

Y(z) = 0" as 2 — +o0.
For each t > 0, e **g(t) converges increasly to g as z — 0F. Moreover, g is not
integrable so that by monotone convergence,

Y(z) = +ocasz — 0.
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Therefore, by the intermediate value theorem, there exists a unique x, > 0 such
that

1
4.3 YT(z,)=—.
(43) (20) =~

Y(o) = /000 e “tg(t)dt = % <0 /000 e”tg(t)dt)

L [T etatnan) < 2= 1)

as ¢ is nonincreasing, thus 0 < z, < o since T is decreasing. We conclude by
defining:

Notice that

Ny ' = Ty — O.

4.3.2. The long-time behavior of F,.
Lemma 4.5. Under the assumptions and with the notations above, we have
F,(t) ~ Ce"" ast — +oo

with
1
fooo 505 (s)e"Mosds

Proof. Notice that for each A\ € R, and for each f,g € L' (Ry), we have
M(fxg)(t) = (frx ) (1)

where for each locally bounded measurable function f) denotes
fa(t) := e f(t) for each t € R, .

Hence, as F,, verifies
F(r:ga""go*Fav

the function 1 : t — e~ F,(t) satisfies, with k. (t) := goe ",
V(t) = ko + Ko *

which is a renewal integral equation in the sense of [8]. Besides, by definition of 7,
we have

/ e 17%g,(s)ds =1
0

so that k. is a decreasing probability density on R4 and in particular, it is directly
Riemann integrable (see [8] pp. 348-349). Thus, by Theorem 2 on p. 349 in [§],

one has
1

i) = 157 s90(s)enesds

One obtains therefore the asymptotic behavior of F,. O

as t — +o00.

4.3.3. Proof of the first statement of Proposition 4.1.

Proof. By Lemma 4.5, there exists a measurable h such that
h(t) > 0as t — +o0
and for each t > 0
F,(t) = Ce" + h(t)e".
By Proposition 4.2, F,, is continue and thus h is continue. Hence there exists C' > 0

such that
F,(t) < Ce"" for each t > 0,

which is the conclusion of Proposition 4.1. O
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4.4. Asymptotic behavior of 7,. We conclude here our proof of Proposition 4.1
with a discussion of the asymptotic behavior of 7, (statement 2 of Theorem 2.1) in
collisionless regime (o — 0%).

Proof. Recall that x, = o + 1., where z, is defined in (4.3). Establishing that
Ny ~ —o as o0 — 07 amounts to proving that 5 0as o — 0F. First, remark
that since —o < 7.,
O<zs <o
so o — 07 as 0 — 0F. Recall that
1

—xst _
/0 g(t)e *otdt = -

or after substituting z = z,t in the integral above, we obtain:

L / g <Z> e *dz.
g 0 Loy

Since z, — 07 as ¢ — 07 and g(t) — 0" as t — +o00, one has g(z/z,) — 0T as
o — 07. Besides 0 < e *p,.(2/2,) < €77 so that, by dominated convergence

/ g (Z> e *dz— 0" aso — 0",
0 Lo

T
22 50aso—0t.
o

consequently

5. CONCLUSION

We have proved that the total mass of a monokinetic system of point particles
governed by a linear Boltzmann equation in a periodic distribution of spherical
absorbers at the critical size decays exponentially fast in the long time limit. This
behavior is at variance with the non collisional case, where the total mass decays
like C/t as t — 4o0.

As explained above, the alegraic decay in the noncollisional case is due to the
presence of sufficiently many “channels”, corresponding with arbitrary free particle
trajectories. The collision operator in the linear Boltzmann equation destroys the
purely geometric effect of these channels, even for very low collision frequencies.

It could be interesting to consider the analogous problem for a granular gas with
inelastic collisions, as such collisions have a cooling effect that might destroy the
exponential decay. For instance, if f = f(¢,v) is a space homogeneous solution of
the inelastic Boltzmann equation, then it is known that

f(t,v) = dy=p as t — 400

in M (R™) (see for instance [15, 16].) The slowing down of gas particles obviously
downgrades the absorption effect of the holes.
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CHAPTER II
HOMOGENIZATION OF
THE LINEAR BOLTZMANN EQUATION
IN A DOMAIN WITH A PERIODIC DISTRIBUTION OF HOLES

1. INTRODUCTION

The homogenization of a transport process describing the motion of particles in
a system of fixed obstacles — such as scatterers, or holes — leads to very different
results according to whether the distribution of obstacles is periodic or random.
Before describing the specific problem analyzed in the present work, we recall a few
results recently obtained on a more complicated, and yet related problem.

An important example of the phenomenon mentioned above is the Boltzmann-
Grad limit of the Lorentz gas. The Lorentz gas is the dynamical system corre-
sponding to the free motion of a single point particle in a system of fixed spherical
obstacles, assuming that each collision of the particle with any one of the obstacles
is purely elastic. Since the particle is not subject to any external force, we assume
without loss of generality that its speed is 1. The Boltzmann-Grad limit is the
scaling limit where the obstacle radius and the reciprocal number of obstacles per
unit volume vanish in such a way that the average free path length of the particle
between two consecutive collisions with the obstacles is of the order of unity.

Call f(t,z,v) the particle distribution function in phase space in that scaling
limit — in other words, the probability that the particle be located in an infinites-
imal volume dz around the position = with direction in an infinitesimal element of
solid angle dv around the direction v at time ¢ > 0 is f(¢, x,v)dzdv.

In the case of a random system of obstacles — more precisely, assuming that the
obstacles centers are independent and distributed in the 3-dimensional Euclidian
space under Poisson’s law — Gallavotti proved in [15, 16] (see also [17] on pp.
48-55) that the average of f over obstacle configurations (i.e. the mathematical
expectation of f) is a solution of the linear Boltzmann equation

(O +v-Ve+o)f(t,z,v) = %/M>O flt,z,0v—2(w-v)ww - vdw .

lw|=1

If, on the contrary, the obstacles are periodically distributed — specifically, if
they are centered at the vertices of a cubic lattice — the limiting particle distri-
bution function f cannot be the solution of any linear Boltzmann equation of the
form

Ot vVt ftan =0 [ pef) st e v
w|=
where p is a continuous, symmetric transition probability density on the unit sphere:
see [18] for a complete proof of this negative result, based on earlier estimates on
the distribution of free path lengths for the periodic Lorentz gas [6, 19].

The correct limiting equation for the Boltzmann-Grad limit of the periodic
Lorentz gas was found only very recently: see [8, 25]. In the 2-dimensional case,
the most striking feature of the theory presented in these references, is that the
limiting equation is set on an extended phase space involving not only the particle
position z and direction v, as in all classical kinetic models, but also the (rescaled)
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distance 7 to the next collision point with the obstacles and the impact parameter
h at this next collision point.

The particle motion is described in terms of its distribution function in this
extended phase space, F' = F(t,z,v, 7, h), which is governed by an equation of the
form

(O +v- -V, —0;)F(t,x,v,7,h)

1 1
M = / P(r,h|W)F(t,x, R[r — 2arcsin(h’)]v, 0, h")dh’
-1

where R[f] designates the rotation of an angle 6, and P(r,h|h') is a nonnegative
integral kernel whose explicit expression is given in [8] but is of little interest for the
present discussion. The particle distribution function in the classical phase space
of kinetic theory is recovered in terms of F' by the following formula:

“+o00 1
flt,x,v) = / / F(t,z,v,7,h)dhdr .
0 -1

However, the particle distribution function f itself does not satisfy a linear Boltz-
mann equation in closed form.

Loosely speaking, in the case of a periodic distribution of obstacles, the parti-
cle “feels” the correlations between the obstacles, since its trajectory consists of
segments of maximal length avoiding the obstacles. This explains the need for an
extended phase space in order to describe the Boltzmann-Grad limit of the Lorentz
gas, in the periodic case. In the random case studied by Gallavotti, the obstacles
centers are assumed to be independent, which reduces the complexity of the limiting
dynamics.

In the present work, we shall study a much simpler homogenization problem,
which can be formulated as follows:

Problem. Consider a system of point particles whose distribution function is
governed by a linear Boltzmann equation. The particles are assumed to move in
a periodic system of holes. Describe the asymptotic behavior of the total mass of
the particle system in the long time limit, assuming that the radius of the holes
and their reciprocal number per unit volume vanish so that the average distance
between holes is of the order of 1.

This problem is the analogue in kinetic theory of the one studied in [23] and [11]
for the diffusion equation, and in [2] for the Stokes equation.

Although the underlying dynamics in this problem is a lot simpler than that of
the Lorentz gas, the homogenized equation is also set on an extended phase space,
analogous to the one described above.

A we shall see, the mathematical derivation of the homogenized equation in
the extended phase space for the problem above involves only very elementary
arguments from functional analysis — at variance with the case of the Boltzmann-
Grad limit of the Lorentz gas, which requires a fairly detailed knowledge of particle
trajectories.

2. THE MODEL

We consider the monokinetic, linear Boltzmann equation
(2) atfe"‘”'vmfs'i_o—(fs_Kfs):O

in space dimension 2.
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The unknown function f(¢,z,v) is the density at time ¢ € R of particles with
velocity v € S!, located at € R2. For each ¢ € L%(S'), we denote

1
_27T st

Ko(v): k(v, w)p(w)dw,
where dw is the uniform measure (arc length) on the unit circle S'. We henceforth
assume that

ke L*(S' xSY, k(v,w) =k(w,v) >0 ae. inv,w € S*

3
®) and i/ k(v,w)dw =1 a.e. in v € S*.
St

The case of isotropic scattering, where k is a constant, is a classical model in
the context of Radiative Transfer. Likewise, the case of Thomson scattering in
Radiative Transfer involves the integral kernel

k(v,w) = 1—36(1 + (v-w)?)

— see for instance chapter I, §16 of [10]. Finally, the collision frequency is a constant
o> 0.

The linear Boltzmann equation (2) is set on the spatial domain Z,, i.e. the space
R? with a periodic system of holes removed:

Z. = {z € R?|dist(z,eZ?) > &°} .
We assume an absorption boundary condition on 0Z.:
fe =0 for (t,z,v) € R} x 0Z. x S', whenever v-n, >0,

where n, denotes the inward unit normal vector to Z. at the point x € 9Z.. This
condition means that a particle falling into any one of the holes remain there forever.

The same problem could of course be considered in any space dimension. Notice
however that, in space dimension N > 2, the appropriate scaling, analogous to
the one considered here, would be to consider holes of radius e™/V—1) centered
at the points of the cubic lattice eZ”" — see for instance [6, 19]. Most of the
arguments considered in the present paper can be adapted without change to the
higher dimensional case, except that the expression of one particular coefficient
appearing in the homogenized equation is not yet known explicitly at the time of
this writing.

The most natural question related to the dynamics of the system above is the
asymptotic behavior of the total mass of the particle system in the small obstacle
radius € < 1 and long time limit.

Emanuele Caglioti and Francois Golse have considered in [7] the non-collisional
case (¢ = 0) and proved that, in the limit as ¢ — 07, the solution f. converges
in L*(R4 x R? x S') weak-* to a solution f of the following non-autonomous
equation:

p(t)
4 o +v-V.r =20y,
where p is a positive decreasing function defined below. In that case, the total mass
of the particle system decays like Const./t as t — +o0.

Observe that, starting from the free transport equation, we obtain a non-autono-
mous (in time) equation in the small € limit. In particular, the solution of equation
(4) cannot be given by a semigroup in a function space such as LP(R2 x S!). As
we shall see, the homogenization of the linear Boltzmann equation in the collisional
case (o > 0) leads to an even more spectacular change of structure in the equivalent
equation obtained in the limit.
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The work of the last two authors [7] relies upon an explicit computation of the
solution of the free transport equation, where the effect of the system of holes is
handled with continued fraction techniques. In the present paper, we investigate the
analogous homogenization problem in the collisional case (o > 0). As we shall see,
there is no explicit representation formula for the solution of the linear Boltzmann
equation, other than the one based on the transport process, a particular stochastic
process, defined for example in [26].

This representation formula was used in the previous chapter, who established a
uniform in € upper bound for the total mass of the particle system by a quantity of
the form Const.e~%* for some a, > 0. This exponential decay is quite remarkable:
indeed, there is a “phase transition” between the collisionless case in which the
total mass decays algebraically as ¢t — 400, and the collisional case in which the
total mass decays at least exponentially fast in that same limit.

In the present paper, we further investigate this phenomenon and show that the
exponential decay estimate found in the previous chapter is sharp, by giving an
asymptotic equivalent of the total mass of the particle system in the small £ limit
as t — +oo0.

Instead of the semi-explicit representation formula by the transport process, our
argument is based on the very special structure of the homogenized problem. The
key observation in the present work is that this homogenized problem involves a
renewal equation, for which exponential decay is a classical result that can be found
in classical monographs such as [14].

3. THE MAIN RESULTS

First, we recall the definition of the free path length in the direction v for a
particle starting from x in Z.:
(5) Te(z,v) :=inf{t > 0|z —tv € 0Z.} .

The distribution of free path length has been studied in [6, 19, 7, 4]. In particular,
it is proved that, for each arc I C S' and each ¢ > 0, one has
(6) meas({(z,v) € (Z. N[0,1]?) x I |ere(z,v) > t}) — p(t)|I]
as € — 07, where |I| denotes the length of I and the measure considered in the
statement above is the uniform measure on [0,1]% x S!.

The following estimate for p can be found in [6]: there exist C, C’ > 0 such that,
for all t > 1:

(7)

uniformly as e — 07, so that

| Q

< meas({(z,v) € (Z.N[0,1]%) x I |eTe(z,v) > t}) < CTI

0 Csmn<S

In [4] F. Boca and A. Zaharescu have obtained an explicit formula for p:

+oo
(9) p(t) = / (r — )Y (r)dr,

where the function T is expressed as follows:
(10)

: 1
Bk it t€(0,3],

72

T(t)

L4201 -4)2m1-4) - 3@ -1)2mp -1 if ted +o0).
This is precisely at this point that the case of space dimension 2 differs from the

higher dimensional case. Indeed, in space dimension higher than 2, the existence
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FIGURE 1. The graphs of T (left) and of p (right)

of the limit (6) has been proved in [24], while the uniform estimate analogous to
(7) is to be found in [19]. However, no explicit formula analogous to (9) is known
in that case, at least at the time of this writing. We have chosen to treat in the
present paper only the case of the square lattice in space dimension 2 as it is the
only case where the limit (6-9) is known completely.

Throughout this paper, we assume that the initial data of (Z.) satisfies the
assumption
(11) f™ >0on R? xS and // f™(x,v)dedv+  sup  f7(x,v) < +oo.

R2 xSt (z,0)ER2 xS!

For each 0 < € <« 1, let f. be the (mild) solution of the initial boundary value
problem

Of-+v-Vofe+o(fe—Kf)=0, (x,v)€ Z. xS t>0,
(EE) fE =0, ifv-ng >0, (QT,U) €07, x 817

fE(O,x,v):fi"(x,v), (l’,’l]) GZE XSl.

The classical theory of the linear Boltzmann equation guarantees the existence and
uniqueness of a mild solution f. of the problem (=.) satisfying

0< fe(t,z,v) < sup  f"(x,v) ae on Ry x Z. xS,
(z,v)€R2x ST

// . fo(t, 2, v)drdv < //RXS £ (2, v)dzdo .

Consider next F := F(t, s, z,v) the solution of the Cauchy problem
OF +v-V,F+0,F =—0F + L(tNs)F, t,s>0,(x,0) e R xS!,

(12)

“+oo
(X)) F(t,0,z,0v) =0 KF(t, s, x,v)ds, t>0,(x,v) e R? xS,
0

F(0,s,2,v) = oe~ 7% fin(z,v), s> 0,(z,v) € R x St,

with the notation ¢ A s := min(¢,s). Notice that F' is a density defined on the
extended phase space:

s,x,v)|s >0,z € R* v eS!
|

involving the extra variable s, whose physical meaning is explained as follows.
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Recall that the solution f. of the linear Boltzmann equation can be expressed
in terms of the transport process (see [26]), a stochastic process involving a jump
process in the v variable, perturbed by a drift in the x variable. The variable s is
the “age” of the current velocity v in that process, i.e. the time since the last jump
in the v variable.

Therefore, between jumps in the v variable, s increases with ¢, and this accounts
for the sign of the additional term 40, F in the system (X).

On the contrary, in equation (1), the extra variable 7 (the rescaled distance to
the next collision point with one of the scatterers) decreases as t increases between
collisions with the scatterers, which accounts for the minus sign in the additional
term —0, F in that equation.

Henceforth, we shall frequently need to extend functions defined a.e. on Z. by
0 inside the holes (that is, in the complement of Z.). We therefore introduce the
following piece of notation.
Definition: For each function ¢ = ¢(x) defined a.e. on Z., we denote

Ww={ 5 ez

We use the same notation {f.} or {F.} to designate the same extension by 0 inside
the holes for functions defined on cartesian products involving Z. as one of their
factors, such as Ry x Z. x S! in the case of f., and R x R, x Z. x S! in the case
of F..

Our first main main result is

Theorem 1. Under the assumptions above,

- | " s

in L (R4 x R? x SY) weak-+ as e — 0%, where F is the unique (mild) solution of

(%)

Notice that the limit of the (extended) distribution function of the particle
system is indeed defined in terms of the solution F' of the homogenized integro-
differential equation (X). However, it does not seem that the limit of {f.} itself
satisfies any natural equation.

Next we discuss the asymptotic decay as t — 400 of the total mass of the
particle system in the homogenization limit € < 1. Obviously, the particle system
loses mass due to particles falling into the holes.

In order to do so, we introduce the quantity:

m(t,s) == 5 //]R2XSl F(t,s,z,v)dzdv .

A key observation in our work is that m is the solution of a renewal type PDE, as
explained in the next proposition.

Proposition 1. Denote

B(t,s):a—g(t/\s),

and assume that f" satisfies the condition (11).



CHAPTER II 49

Then the renewal PDE
Owp(t, s) + Osp(t, s) + B(t, s)u(t,s) =0, £,s>0,

+oo
w(t,0) = O’/ w(t, s)ds, t>0,
0

w(0,8) = ce 7, >0,
has a unique mild solution p € L>([0,T); L*(Ry)) for all T > 0.

Moreover, one has
t 4
m(t,s) = ult, ) // 7 (z,v)dzdv
2 R2 xSt

T
a.e. in (t,s) € Ry x Ry.

Renewal equations are frequently met in many different contexts. For instance
they are used as a mathematical model in biology to study the dynamics of struc-
tured populations. The interested reader can consult [22] or [27] for more informa-
tion on this subject.

Consider next the quantity:

+oo +oo
(13) M(t) = %/ // F(t,s,z,v)dxdvds :/ m(t,s)ds.
0 R2 xSt 0

As explained in the theorem below, M(t) is the total mass at time ¢ of the particle
system in the limit as e — 0T; besides, the asymptotic behavior of M as t — +oo
is a consequence of the renewal PDE satisfied by the function (¢, s) — m(t, s).
Theorem 2. Under the same assumptions as in theorem 1,

(1) the total mass

o7 // fe(t,x,v)dxdv — M(t)
Ze xSt

m L}OC(R+) ase — 0T, and a.e. int > 0 after extracting a subsequence of
e—0F;
(2) the limiting total mass is given by the representation formula
M(t) = 7= // i (x, v)dadv Z K*(t), t>0
R2xS?t n>1
with
k() == oe T'p(t) >0, KT i=gExxK
n factors
and x denoting as usual the convolution product on the real line;
(3) for each o > 0, there exists & € (—0,0) such that

M(t) ~ Cye®t ast — +oo

// (e, v)dzdv
R2xS?! .
/ tp(t)e= (0 +ea)tqy

0

(4) finally, the exponential mass loss rate &, satisfies

with

1
CU T 270

éo~—0aso—0", and &, — —2 as 0 — 400.



50 CHAPTER II

Statement (1) above means that M is the limiting mass of the particle system
at time t as ¢ — 0. Statement (3) gives a precise asymptotic equivalent of M (t)
as t — +400.

As recalled in the previous section, if ¢ = 0 in the linear Boltzmann equation
(Z¢), the total mass of the particle system in the vanishing € limit is asymptotically

equivalent to
%// i (x, v)dadv
R2xS!

w2t

as t — 400. The reason for this slow, algebraic decay is the existence of channels
— infinite open strips included in the spatial domain Z., i.e. avoiding all the
holes. Particles located in one such channel and moving in a direction close to
the channel’s direction will not fall into a hole before exiting the channel, and this
can take an arbitrarily long time as the particles’ direction approaches that of the
channel. This construction based on channels leads to a sufficiently large fraction
of the single-particle phase space and accounts for the algebraic lower bound in
(8). The asymptotic equivalent mentioned above in the collisionless case o = 0 is a
consequence of a more refined analysis based on continued fractions given in [7].

When o > 0, particles whose distribution function solves the linear Boltzmann
equation in (E.) travel on trajectories whose direction is discontinuous in time —
more specifically, time discontinuities are distributed under an exponential law of
parameter o. Obviously, this circumstance destroys the channel structure that
is responsible of the algebraic decay of the total mass of the particle system in
the collisionless case, so that one expects that the total mass decay is faster than
algebraic as t — +oco0. That this decay is indeed exponential whenever o > 0 is by
no means obvious: see the argument in the previous chapter, leading to an upper
bound for the total mass. Statement (3) above leads to an asymptotic equivalent
of the total mass, thereby refining the conclusions of the previous chapter.

In section 4, we give the proof of theorem 1; the evolution of the total mass in
the vanishing e limit (governing equation and asymptotic behavior as t — +00) is
discussed in section 5.

4. THE HOMOGENIZED KINETIC EQUATION

Our argument for the proof of Theorem 1 is split into several steps.

4.1. A new formulation of the transport equation. Perhaps the most surpris-
ing feature in Theorem 1 is the introduction of the extended phase space involving
the additional variable s.

As a matter of fact, this additional variable s can be used already at the level
of the original linear Boltzmann equation — i.e. in the formulation of the problem
().

Let us indeed return to the initial boundary value problem (Z.) for the linear
Boltzmann equation.

As recalled above, the last two authors have obtained the homogenized equation
corresponding to (Z.) in the noncollisional case (o = 0) by explicitly computing the
solution of the linear Boltzmann equation for each 0 < ¢ < 1. In the collisionnal
case (o > 0), as recalled above, there is no such explicit formula giving the solution
of the linear Boltzmann equation — except the semi-explicit formula involving the
transport process defined in [26].

However, not all the information in that semi-explicit formula is needed for the
proof of Theorem 1. The additional variable s is precisely the exact amount of
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information contained in that semi-explicit formula needed in the description of

the homogenized process in the limit as e — 0T.
Consider therefore the initial boundary value problem

OF, +v -V F. +0,F. +0cF. =0, t,s >0, (x,v) € Z. x S,

F.(t,s,z,v) =0, if v-ng >0, t,s>0,(z,v) € (0Z. x SY),

o0
F.(t,0,z,v) = a/ KF.(t,s,z,v)ds, t>0,(z,v)€ Z. xS,
0

FE(O757I7U):Ueiasfin(xvv)a S>0a (.T,U) € ZE xglv

with unknown F := F.(t,s,z,v).
The relation between these two initial boundary value problems, (Z.) and (X.),
is explained by the following proposition.

Proposition 2. Assume that f™ satisfies the assumption (11). Then
a) for each € > 0, the problem (X.) has a unique mild solution such that

+oo
(t,x,v) — / |F.(t,s,2,v)|ds belongs to L>°([0,T] x Z. x S*)
0

for each T > 0;
b) moreover

0 S Fg(t,s,iEJ)) S ||fin||Loo(]R2><S1)0'€_Us

ae int,s>0, €2 andv €S, and

+oo
/ FL(t,s,2,v)ds = f.(t,,v),
0

for a.e. t > 0,2 € Z.,v € St, where f. is the solution of (Z.).

Proof. Applying the method of characteristics, we see that, should a mild solution
F. of the problem (¥.) exist, it must satisfy

(14) FE(ta S, T, U) = Fl,a(t7 s,x,v) + FZ,E(t7 S,J?,U),
with

Fe(t,s,x,v) = ILS<ETE(§7U)]15<te*‘”F€(t — 5,0,z —vs,v)

(15) +o0
= ]ls<a-re(§7v)]ls<taeigs/ KF.(t—s,7,2 — sv,v)dr
0
and
16) Fy(t,s,x,v) = ]lt<€7.6(£’v)]l,g<se_"tF€(07 s —t,x —vt,v)
16 c

= ]]-t<67'5(%,v) ]]_t<so_€705fzn(l, —tw, ’U)
a.e. in (t,s,7,v) € Ry x Ry x R? x St.
First, define X1 to be, for each T' > 0, the set of measurable functions G defined
on Ry x Ry x Z. x S! such that
+oo
(t,x,v) — / |G(t, s, ,v)|ds belongs to L°>°([0,T] x Z. x S*),
0

which is a Banach space for the norm

+oo
1y = H |6t s

L ([0,T|x Z.xS') .
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Next, for each G € X, we define
—+oo
TG(t,s,2,v) = Licer, (2 vy Lscioe” 7" KG(t — s, 7,2 — sv,v)dr.
0

Obviously

+oo
/ |TnG(t,S,~,-)|d8
0

Lo (Z.xSt)

t —+o0

< o/ / [T G(ty, 7, -)|dr dtq
o IlJo Loo(Z. xSY)
t tn—1 +oo

Sa”/ / / |G(tn,s,-,-)|ds dt, ...dt1,

0 0 0 Lo (Z.xS1)

so that
n (cT)"
IT"Gllar < = =Gl -

Now Fy . = TF., so that (14) can be recast as
F.=F . +TF;.

This integral equation has a solution F, € X for each T > 0, given by the series

FazzTnF2,a

n>0

which is normally convergent in the Banach space X since

" o)™
ST Faclr < 3 T By < 450

n
n>0 n>0

Assuming that the integral equation above has another solution F! € Xp would
imply that

F.—-F. =T(F.-F)=...=T"(F. - F.),
so that

(cT)"

1 = Folloer = 17 (Fe = FD)lar <

IFe = Flllxr =0

as n — +oo: hence F, = F,. Thus we have proved statement a).

As for statement b), observe that 7G > 0 a.e. on Ry x Ry x Z. x Stif G >0
a.e. on Ry x Ry x Z. x St Hence, if " € L>®(R? x S') satisfies fi* > 0 a.e.
on R? x S!, one has Fh. > 0 a.e. on Ry x Ry x Z. x St, so that T"Fp. > 0
a.e. on Ry x Ry x Z. x S! and the series defining F. is a.e. nonnegative on
Ry xRy x Z. x St.

Next, integrating both sides of (14) with respect to s, and setting

+oo
ge(t, z,v) == / F.(t,s,z,v)ds,
0
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we arrive at
+o0 +oo
g:(t,x,v) = Fy(t,s,x,v)ds + Fi(t,s,x,v)ds
0 0

—+oo
= ]]-t<€‘rg(§,v)fln(m — tv, U) / licsoe™7%ds
0

—+oo —+oo
+ / Lscer.(2,0)Lscioe™ " ( KF.(t—s,1,x — sv, v)dT) ds
0 0

= ]]-t<£‘r'5(%,v).fin('r — tv, ’U)eigt

t
+ / e“’s]ls@ﬁ(%,v)al(gs(t —8,x — sv,v)ds
0

in which we recognize the Duhamel formula giving the unique mild solution f. of
(Z¢). Hence

—+oo
fe(t,z,v) = / F.(t,s,z,v)ds a.e. in (t,z,v) € Ry x Z. x S'.
0

Finally, since (E;) satisfies the maximum principle, one has
fe(t,z,v) < ||meLoo([RzX51) a.e. in (t,z,v) € Ry x Zo x St.
Going back to (14), we recast it in the form

Fo(t,5,2,v) = Lycer (2 ) Lsctoe” * K fo(t — 5,2 — sv,v)

€

+ ]1t<s‘r€(§,v)1t<506_osfm(x —tv,v)

= ]lS<fTa(%,v)13<t06708HmeLOO(]szSl)

—O'SH

+ Licer.(2,0) Licsoe 7| f7 || Lo (m2xst)

< oe || f"M | e (m2xst)
a.e. in (t,s,7,v) € Ry x Ry x Z. x St, which concludes the proof. O

Observe that if

F.(0,s,x,v) = oe 7% fi"(z,v)
is replaced with

F.(0,s,2,v) = TI(s) f"(x, v)
where II is any probability density on IRy vanishing at oo, the conclusion of the
lemma above remains valid. In other words, the dependence of the solution F; of
the problem (X) upon the choice of the initial probability density IT disappears after
integration in s, so that the particle distribution function f. is indeed independent
of the choice of II.

The choice II(s) = ge~* corresponds with the situation where the gas molecules
have been evolving under the linear Boltzmann equation for ¢ < 0 and the holes
are suddenly opened at t = 0.

Before giving the proof of Theorem 1, we need to establish a few technical lem-
mas.

4.2. The distribution of free path lengths. A straightforward consequence of
the limit in (6) is the following lemma, which accounts eventually for the coefficient
p(t A s)/p(t A s) in the limiting equation (X).

Lemma 1. Let 7. be the free path length defined in (5). Then for each t > 0
{]lt<€'rg(§,v)} - p(t)

in L®(R? x S') weak-x as e — 0F.
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(See the definition before Theorem 1 for the notation {]lt<575(§’v)}.)

Proof. Since the linear span of functions ¢ = ¢(z,v) of the form
d(z,v) = x(2)17(v), x € C°(R?) and I an arc of S*

is dense in L!'(IR? x S'), and the family Ler (2 p)>¢ is bounded in L>®(R? x SY), it
is enough to prove that

// d(x,v) s (2 yysedadv — p(t) // ¢(z,v)dxdv as e = 0.
Ze xSt : R2xS!

J[ @ttt = [ @) ( / Jlmc,v)»dv) dz
Z. xSt Z. T

X
/ZE x ()T (g) dz

Te(y) ::/I]ls‘rs(y,v)>tdv-

Obviously T is 1-periodic in y; and yo and satisfies 0 < T, < |I|. Hence

ld(y,ZZ)sz(y) = Z Ts(k)emwk-y
keZ2

Write

with

in L?(R?/Z?) with

— —2itk-z
TE(k) o /“ax(\21\=\22\)<1/2 TE(Z) dz

|z|>e

for each k € Z2.
Then, by Parseval’s identity,

/Ze x(x)T: <§) do = /132 x(2) ( ‘ Ts(k)emﬂg) du

with

Applying again Parseval’s identity,

SO = [ TPy <

Llyah<1/2
keZ2 ly|>e
while
. 1
X(€)] < @HVQXHLM ,
so that
. g? 9
[X(=27mk/e)| < WHV Xl zes -
Hence, by the Cauchy-Schwarz inequality,

2

S hmscamke| < Y mwpr Y SV g
: = : 160 o]

keZ2\(0,0) k€Z2\(0,0) k€eZ2\(0,0)
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and therefore

x o
/ X ()T (7) dz = 3(0)T2(0) + O(e?)

Z. €

as e — 071,
By (6)
T.(0) = / To(y)dy — p(t)|I] ase— 07T,

mﬂX(\yL\/,‘\gz\)<l/2

so that

WL = o0l [ xa@de=p(t) [[ | ofo.opdsdo

as € — 0T, and hence

/ZE x ()T (g) dx = p(t) //]R2xsl é(z,v)dxdv + o(1) + O(?)

which entails the announced result. O

4.3. Extending f. by 0 in the holes. We begin with the equation satisfied by
the (extension by 0 inside the holes of the) distribution function {f.}.

Lemma 2. For each € > 0, the function {f.} satisfies
@ +v- Vo) {f3 +o({fe} = K{f}) = (v-na)fe| 1002

in D' (R xR2xSY), where 85z, is the surface measure concentrated on the boundary
of Z., and n, is the unit normal vector at x € 0Z. pointing towards the interior of
Ze.
Proof. One has

O {f} ={0ufc}

and

Ve {fs} = {vasfa} + fs |8ZE><S1 682577135
in D'(R% x R? x S*). Hence
0 = {8tf5+v'vacfa+a(f6_Kfa)}
= O {fe} +v- Ve {fs} + (U ’ n:r)f6|aza><§15325 +J({f6} - K{fe})
in D'(R% x R? x S*). O

A straightforward consequence of the scaling considered here is that the family
of Radon measures

(”'nl)ff‘azsxslaaze

is controlled uniformly as ¢ — 0T, in the following manner.

Lemma 3. For each R > 0, the family of Radon measures

(v- ”w)fflazsxsl(sazz [— R,R)2xS!

is bounded in' M(|—R, R]* x S).
IFor each compact subset K of RV, we denote by M(K) the space of signed Radon measures

on K, ie. the set of all real-valued continuous linear functionals on C(K) endowed with the
topology of uniform convergence on K.
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Proof. The total mass of the measure

(v- nw)ff’azgxgl(sazs [=R,R]2 xSt
is less than or equal to

27| fell Lo (my x 2. xs1) 102, - r,R)2 | M(1-R,R]2)
which is itself less than or equal to

27| f ™" | oo (maxs) |0z |1—r,mi2 | (- g p2y -

Since a2z, |[~r,r)> is the union of O ((%)2> circles of radius €2,

2R\ >
602, It Il aa(r %) = O (() ) 2n” = O(1)R?

as € — 0T, whence the announced result. O

4.4. The velocity averaging lemmas. As is the case of all homogenization re-
sults, the proof of Theorem 1 is based on the strong LlloC convergence of certain
quantities defined in terms of F.. In the case of kinetic models, strong L}, . com-
pactness is usually obtained by velocity averaging — see for instance [1, 21, 20]
for the first results in this direction. Below, we recall a classical result in velocity
averaging that is a special case of theorem 1.8 in [5].

Proposition 3. Let p > 1 and assume that f. = fe(t,x,v) is a bounded family in
LY (RS x R4 x S4=1) such that

loc
T
sup/ // |0 fe + v+ Vi feldzdvdt < +00
e Jo B(0,R)xSd—1

for each T >0 and R > 0. Then, for each ¢ € C(ST™1 x S4=1), the family py|f-],
defined by

pylfel(t, z,v) = /SLF1 fe(t,z, w) (v, w)dw
is relatively compact in Li, (R x RZ x S4-1).

A straightforward consequence of Proposition 3 is the following compactness
result in LlloC strong, which is the key argument in the proof of Theorem 1.

Lemma 4. Let f. = f-(t,z,v) be the family of solutions of the initial boundary
value problem (Z¢). Then the families

K{fa} = {Kfa}

[ t3ar

are relatively compact in L}, (R4 x R? x S') strong.

and

Proof. We recall that, by the Maximum Principle for (Z;),

|fe(t, @, 0)] < (| F ™ | oe m2xst)

a.e. int>0,2 € Z. and v € S', so that
(17) sup || {fe} ||L°°(]R+><]R2><S1) < HmeL‘”(szSl)-
€

By Lemma 2, {f.} satisfies the equation
O {fet +v Vo {fel =a(K{f} = {[fe}) = boz. (v-na) fe loz. xs1
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in D'(R% x R? x S'). Because of (17) and the fact that the scattering kernel k is
a.e. nonnegative (see (3)), one has

lo(K {fe} = {fe Dl @y xm2xsr) < oL+ [ KL Lo ) [[ {fe} Lo (ry xm2x81)
= 20| {fe} ||L°°(IR+><]R2><S1)
since K1 =1 (see again (3).) Besides the family of Radon measures
pe = fe loz.xst (v-ng)doz.

satisfies

sup/ |pe| < 400
e J[0,T1xB(0,R) xSt

for each T" > 0 and R > 0 according to lemma 3.
Applying the Velocity Averaging result recalled above implies that the family

/ gedv
Sl

is relatively compact in L}, (R4 x R? x S').

By density of C'(S* x St) in L%(S* x S'), replacing the integral kernel k& with a
continuous approximant and applying the Velocity Averaging Proposition 3 in the
same way as above, we conclude that the family Kg. is also relatively compact in
L} (Ry x R? x S). a

4.5. Uniqueness for the homogenized equation. Consider the Cauchy prob-
lem with unknown G = G(¢, s, z,v)

Ot v Vot 0)G = —0G+ PN ey S0 e R vest,
p(tAs)

G(t,0,z,v) = S(t, z,v), t>0,(x,v) € R? x St,

G(0,s,2,v) = G"(s,2,0), s> 0,(z,v) € R? x St

If, for a.e. (t,s,2,v) € Ry xRy xR? xS!, the function 7+ G(t+7,s+7,2+7v,v)
is C' in 7 > 0, then, since the function p € C'(R.) and p > 0 on R, one has
< d A s+T)

— G(t
dT—|—a p(t/\s—l—T)) (t+7,8s+7,2+7TV,0)

d [(e’TG(t

et A s 1)L e TGt + 1,8+ T, + TU,V) _o.
dr p(tAs+T)

Hence

e TGt + 1,84+ T, + TV, V)

I': 77—
p(t/\8+7)

is a constant. Therefore

| T'(-) if t <s,
r(0) = { I'(—s) if s < t,

so that
G(t,s,1,0) = Tice  ip(t) G (s — t, 2 — tv,v) + Locie”7%p(s)S(t — 8,2 — sv,v) .
Proposition 4. Assume that f™ € L>°(R? x S'). Then the problem (X) has a

unique mild solution F such that

“+oo
(t,xz,v) — / |F(t,s,2,v)|ds belongs to L=([0,T] x R? x S*)
0
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for each T > 0. This solution satisfies

F(t,s,2,0) = Licsoe 7' p(t) f" (x — tv, v)
+oo
~7%p(s) KF(t—s,7,x — sv,v)dr
0
for a.e. (t,s,z,v) € Ry x Ry x R? x St.
Besides, F >0 a.e. on Ry x Ry x R? x S! if f" >0 a.e. on R? x S

+ ls<i0€

Proof. That a mild solution of the problem (), should it exist, satisfies the integral
equation above follows from the computation presented before the proposition.

As above, let Yr be, for each T > 0, the set of measurable functions G defined
a.e. on Ry x Ry x R? x S! and such that

+o00
(t,x,v) — / |G(t, s, z,v)|ds belongs to L>=([0,T] x R? x S'),
0
which is a Banach space for the norm

+oo
1Gllyn = H |6t las

Next, for each G € Yr, we define

L ([0,T|x Z.xS') -

—+o0
QG (t,s,x,v) := Lsroe7°p(s) KG(t— s, 7,2 — sv,v)dr.
0
Since 0 < e77%p(s) < 1, the integral kernel k > 0 on S! x S! and K1 = 1 by (3),
one has
+oo t +o0o
/ |QG(t,s,x,u)\dsga/ / Gt — 5,7, )|dr ds
0 o IlJo Lo (R2 xS1)
a.e. in (t,x,v) € [0,T] x R? x S, meaning that
+o00
/ Q" Gt 5, )|ds
0 Loo(R2xS1)
—+oo
< a |Qn71G(t17 S, 7')|d$ dtl
Loo(R2xS1)
tn—1 +oo
<o / / / Gt s, )ds dt, ... dt,
Lo (R2 xS1)
In particular
n (aT)"
1Q"Cly, <7
The integral equation in the statement of the proposition is
F=F+ QOF

where
Fy(t,s,2,v) = Licsoe” 7t p(t) f7 (z — tv,v).
Therefore, arguing as in the proof of Proposition 2, one obtains a mild solution of
(X) as the sum of the series
F=) Q"F,

n>0
which is normally convergent in the Banach space Yr for each T > 0.
Should there exist another mild solution, say F’, it would satisfy

(F—F)=Q(F —F)=...= Q"(F — F)
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for all n > 0, so that

IF = F'l|y, — 0

" o™
I~ Flly, = 1Q"(F - F)ly, < 1)

n

as n — 400, which implies that F' = F” a.e. on Ry x Ry x R? x S!.

Finally, QF >0 a.e. on Ry x Ry x R? xSt if F > 0 a.e. on Ry x Ry x R? xS!.
Since F is given by the series above, one has F > 0 a.e. on Ry x Ry x R? x St
whenever " >0 a.e. on R? x S*. O

4.6. Proof of the homogenization theorem. Start from the decomposition (14)
of F.. Passing to the limit as e — 0T in the term F5 . is easy. Indeed, by Lemma 1

(18) {]]-t<£‘rs(%,v)} - p(t)
in L (R2 x S}) weak-x for each t > 0, as ¢ — 0. Hence
{FQ,E}(tv S, T, 'U) :I]-t<seiosfin(x —tv, v){]]-t<e*rg(f,v)}
— Tpege 751 (2 — tv,v)p(t) =: Fy(t, s,z,)
in L2 (R} x Rf x R2 x S!) weak-+ as ¢ — 0.
Next, we analyze the term F.; this is obviously more difficult as this term

depends on the (unknown) solution F; itself.
We recall the uniform bound

(19)

sup || {f=} lpoe (my xm2xst) < I1f7 | Lo m2xst)
£

— see Proposition 2 b), so that, by the Banach-Alaoglu theorem
(20) {f-} — fin L™(Ry x R? x S') weak-*

for some f € L (R x R? x S!), possibly after extracting a subsequence of ¢ — 0.
Thus, applying the strong compactness Lemma 4 shows that

K{f.} - Kfin L}, .(R; x R?* x S') strong

ase — 0%,
This and the weak-* convergence in Lemma 1 imply that

{Fie} =lscioe” K {f} (t — 5,2 — sv,0) Lscer, (2 0)
= Lycroe” PP K f(t — s,x — sv,v)p(s)
(Ry x Ry x R? x St) weak as € — 0F. Therefore
(22) {F:} (L, s,2,v) 4]15<ti76_”Kf(t —s,x — sv,v)p(s) + Fo(t,s, z,v)
=: F(t,s,x,v)

in L}, (R4 x Ry x R? x S') weak as ¢ — 0.
Fix T > 0; then, for ¢t € [0,T], one has

(21)

: 1
in L,

0o T
/ F.(t,s,x,v)ds = / Fi(t,s,z,v)ds +e 7 f™(x — tv,v)]lKETE(%,U)
0 0
since F . is supported in s <t < T', so that
00 T
/ {F.} (t,8,z,0v)ds 4/ Le< K f(t — s, —vs,v)oe”7°p(s)ds
0 0
(23) + M@ = to,v)e” 7 p(t)
oo ~
= / F(t,s,z,v)ds
0
(Ry x R? x S') weakly as ¢ — 01, where F is defined in (22).

: 1
in L,
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On the other hand
/ (F.} (¢, 5,2, 0)ds = {£.} (t2,0) — f(t,2,0)
0

in L>®°(Ry4 x R? x S!) weak-+ as £ — 0 — and therefore also in L}, (R4 x R? x S!)
weak as ¢ — 0%. By uniqueness of the limit, we conclude that

(24) flt,z,v) = / F(t,s,x,v)ds a.e. in (t,z,v) € Ry x R? x §*
0

so that F satisfies

F(t,s,x,0) = lycoe K (/ F(t —s,u,z — sv, )du) (v)p(s)
0
+ Licsoe” 7 f7 (2 — tv, 0)p(t)

a.e. in (t,s,2,v) € Ry x Ry x R? x S'. By Proposition 4, this means that F is a
solution of the Cauchy problem ().
By uniqueness of the solution of (X), we conclude that F = F, and that the
whole family
F. = Fin L}, ,(Ry x Ry x R? x S%)

weakly as ¢ — 0.
Finally, (20) and (24) imply that

{ﬂ}AwaFﬁ

in L (R4 x R? x S!) weak-* as ¢ — 0%, which concludes the proof of Theorem 1.
U

5. ASYMPTOTIC BEHAVIOR OF THE TOTAL MASS IN THE LONG TIME LIMIT

The formulation of the homogenized equation (problem (X)) as an integro-
differential equation set on the extended phase space involving the additional vari-
able s is of considerable importance in understanding the asymptotic behavior of
the total mass of the particle system as the time variable ¢ — +o00. Indeed, this
formulation implies that the total mass of the particle system satisfies a renewal
equation, i.e. a class of integral equations for which a lot is known on the asymp-
totic behavior of the solutions in the long time limit — see for instance in [14] the
basic results on renewal type integral equations.

5.1. The renewal PDE governing the mass. We begin with a proof of Propo-
sition 1.

Proof. That p is a mild solution of the renewal PDE means that, for a.e. (¢,s) €
]R+ X IR,+,

+oo
pu(t,s) = Licsoe G e=p(t) + lls<te*”p(8)/ p(t — s, 7)dr
0

—+00
= ge~p(t A 5) (]lKS + ]ls<t/ wu(t — s, T)dT) .
0

Let T > 0, and define

+oo
Ruus>=nxﬂm*“p@y/ u(t — s, 7)dr
0



CHAPTER II 61

a.e. in (t,s) € Ry x Ry. Obviously, for each ¢ € L°([0,7T]; L'(R4)) and a.e.
t>0,

t
IR, )Lt (ms) S/O o7 p(t — 5|6 (s, )L (e yds

t
<o [ 1ot Muds.
0

so that, for each n > 0, one has

t tl tnfl
IR 6(t, Y| (m, < / / / 16t Yt syl - - diy
_ (ot

o 18l e (0,711 (R 1))

ae. inteRy.
Arguing as in the proof of Proposition 2, we see that the renewal PDE has a
unique mild solution p € L>([0,7]; L*(R4)) for all T > 0, which is given by the

series
p= SR (")
n>0
where
pin(s) == oe "

Obviously R¢ > 0 a.e. on Ry x Ry if ¢ > 0 a.e. on Ry x Ry, so that p > 0
a.e. on Ry x R4. Besides, for each T > 0,
(UT)n n o
liall oe o, 71520 1)) < Y ) = e
n>0

which implies in turn that
0 < u(t,s) <oe ?°p(tAs) (]lt<5 + ]ls<te”T) < ge?Te o8

a.e. in (¢,s) € [0,T] x Ry.

Finally, let F' be the mild solution of the problem (X) obtained in Proposition 2.
Since F > 0 a.e. on Ry x R, x R? x S' is measurable, one can apply the Fubini
theorem to show that

m(t,s) = &~ //]R . F(t,s,z,v)dxdv
2§l

= 1t<sU€_0tP(t)ﬁ // f(x — tv, v)dzdv
R2xS?t
+ ]lt<scre*"tp(s)/ i // KF(t—s, 7,2 — sv,v)dzdvdr
0 R2xS?t
= 1t<sU€_otP(t)% // fi”(y,v)dydv
R2xS?t
+ ]lt<saeigtp(3)/ i // KF(t—s,7,y,v)dydvdr
0 R2xS?t
— Lo p% ([ Fr oy
R2xS?t
+ ]1t<sU€70tp($)/ L // F(t—s,7,y, w)dydwdr
0 R2xS?t
= ]lt<s<7€_otp(f)ﬁ // f(x — tv, v)dzdv
R2xS?t

+ ]lt<saef"tp(s)/ m(t — s, 7)dT,
0
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where the second equality follows from the substitution y = x — tv that leaves the
Lebesgue measure invariant, while the third equality follows from the identity

-+ | k(v,w)dv=1,

2m
Sl
which implies that

KF(t—s,7,y,v)dv= 5= | F(t—s,7,yw)dw.
st st

271'

In other words,
. . . § N(t7 5) in
m(t, s) satisfies the same integral equation as ——= " (y,v)dydv.
2 R2 xS
Now the solution f. of (Z.) satisfies

f->0ae on Ry xR*xS! and // (t,y,v dydv<// i (y,v)dydv
IE{2><S1 R2xS?t

which implies by Theorem 1 that

“+oo
/ fs(ty,v)dvdyé/ / /F(t,s,y,v)dvdyds.
|y‘§R St 0 IyISR St

Hence, by Fatou’s lemma

+oo
/ / / F(t,s,y,v)dvdyds < lim // fe(t, x,v)dzdv
0 ly|[<R JSt e—0+ R2 xSt
< // f(y, v)dydv,
R2xS?t
a.e. int > 0.

Letting R — +oo in the inequality above, we see that m € L>®(Ry;L'(Ry))
and we have proved that the difference

A(t,s) =m(t,s) — %7,1-3) //]RZxSl 7 (y,v)dydv

A€ L®(Ry; L' (Ry)) and A =TRA.
By the same uniqueness argument as in the proof of Proposition 4, we conclude
that A =0 a.e. on Ry X Ry O

satisfies

5.2. The total mass in the vanishing ¢ limit. By Theorem 1, the solution f.
of (E.) satisfies

—+00
fol— Fds in L®(Ry x R? x S') weak-x;
+
0

therefore, checking that

+oo
// {feYdxdv — / // Fdxdvds =: 2w M (t)
R2xS?t 0 R2xS1

reduces to proving that there is no mass loss at infinity in the x variable.

Lemma 5. Under the same assumptions as in Theorem 1

//szl ””dwdv—*//ﬂ“sl{fs (t, 2, v)dwdv — M(t)

strongly in L}, .(R4) ase — 0T,
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Proof. Going back to the proof of Proposition 2 (whose notations are kept in the
present discussion), we have seen that

F.=) T'"F. onRy xRy x Z xS,
n>0
with the notation
Foe(t,s,z,v) = ]lt<575(§7v)ILKSae_”fi"(w —tv,v).

Since T® > 0 a.e. whenever ® > 0 a.e., the formula above implies that

F.<G:= ZT"GQ a.e. in (t,s,7,v) € Ry x Ry x Z. x S,
n>0
where
Ga(t,s,z,v) = Lycsoe 7 f"(x — tv,v).

Thus, G satisfies the integral equation

G=G,+TG
meaning that G is the mild solution of
(O +v -V, 4+ 05)G =—0G, t,s>0, x€R?, |v|=1,
+oo
G(t,0,z,v) =0 ; KG(t,s,z,v)ds, t>0, z€R?, v|=1,
G(0,s,z,v) = fn(z,v)oe %, s>0, r€R?, jv|=1,

Reasoning as in Proposition 2 shows that

+oo
g(t,x,v) = G(t,s,z,v)ds
0

is the solution of the linear Boltzmann equation

(Or+v-Vy)g+o(g—Kg)=0, t>0, zeR?, v =1,
g(0,2,v) = fin(x,v), r€R?, |v|=1.
In view of the assumption (11) bearing on ™, we know that

G>0ae on R, x Ry x R x §!

“+oo
/ // G(t,s,z,v)dxdvds = // g(t, z,v)dxdv
0 R2xS?t R2xS?t
= // (2, v)dzdv
R2 xSt

0<{F}<G

/// G(t,s,z,v)dsdzdv = // f™(z,v)dzdv < +o0.
R4 xR2xSt R2 xSt

and

for each t > 0.
Summarizing, we have

and
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Then we conclude as follows: for each R > 0, one has

+o0
// fe(t,z,v)dxdv —/ // F(t,s,z,v)dxdvds
Z. xSt 0 R2xS?t
+oo
= / / {F:}(t,s,x,v)dvdzds
0 |z|>R J St

+/O+°o /|x<R/SI ({F.} — F) (£, 5, 2, v)dvdads

+oo
_ / /I | (FY(t, s, 2,v)dvdeds = In.(t) + Ip(t) + IITn(t).
z|>R JS!

First, for a.e. ¢t > 0, the term IR,s(t) — 0 as R — 400 uniformly in € > 0 since
0<{F.} <Gand G € L®(R4; L' (R; x R? x S1)).

Next, the term ITg .(t) — 0 strongly in L}, (R4) as € — 0T for each R > 0 by
Lemma 4.

Finally, since {F.} — F in L} (R4 x Ry x R? x S') weak as ¢ — 0T, one
has 0 < {F} < G, so that FF € L®(Ry;L'(Ry x R? x S')). Hence the term
IITR(t) - 0 as R — +oo for a.e. t > 0.

Thus we have proved that

+oo
// fe(t,z,v)dxdv — / // F(t,s,z,v)dxdvds
Ze xSt 0 R2xS?t

in L}, .(R;) and therefore for a.e. t > 0, possibly after extraction of a subsequence
of e = 07, O

5.3. An integral equation for M. Given a function ¢ defined (a.e.) on the
half-line R, we abuse the notation ¢1r, to designate its extension by 0 on R* .
Henceforth we also denote

K(t) = p(t)oe” " Lixo.
Lemma 6. The function M defined in (13) satisfies the integral equation

M(t) =k x (Mg, )(t) + 5=k(t) // ™ (z,v)dzdv, t >0
R2xS?t
where x denotes the convolution on the real line.

Proof. We apply the same method as for deriving the explicit representation formula
for F' starting from the equation in Corollary 1, in order to find an exact formula
for m. Indeed, by the method of characteristics,

m(t,s) = Lecp(s)e” 7 m(t —s,0) + Licsp(t)e”7'm(0,s — t)
= Lsp(s)o *"s/ m(t — s,u)du

+ Licsp(t)oe™7° 1 // i (x,v)dxdv .
R2 xSt

The function m satisfies therefore
m(t,s) = Ls<ip(s)oe” 7 M(t — s)

(25)
+ Li<sp(2) // fi(x,v)dzdv .
R2xS?!

We next integrate both sides of (25) in s € R4. By the definition (13) of M, we
obtain

t
M(t) :/ op(s)e " M (t — s)ds + p(t)e " 1 // i (x, v)dadv
0 R2 xSt
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a.e. in t > 0, which is precisely the desired integral equation for M:

(26) M) = /Ot w(s)M(t — s)ds + 51 r(t //RXS £ (2, v)dado

5.4. An explicit representation formula for M.

Lemma 7. Let M be the function defined in (13). Then
= 5= f(x,v)dzdv K"
o //]R?xSl 7;1

with the notation

K" =k*- %K.
—_——

n factors

+oo +oo
/ k(t)dt = 0'/ e Tip(t)dt
0 0

+oo
=1 +/ p(t)e tdt < 1,
0

where the second equality results from integrating by parts the integral defining k,
and the final inequality is implied by the fact that p is a C' decreasing function.

By Lemma 5, M € L}, (Ry) and M > 0 a.e. on Ry since f- > 0 a.e. on
R, x Z. x S! because f > 0 a.e. on R? x S! — see the positivity assumption in
(1 ) Applying the Fubini theorem shows that

dt—/+oo/ (t — s)M(s)dsdt+ 5 //WxSlfm x v)da:dv/0+oo K(t)dt
- M (s )(/ (t—s)dt) ds + ﬁ//ﬁxS Fin(a, v)dxdv/0+oo (1)t

In other words

1M1 gy < 1M pgey Il ) + 5 / / (@, v)dad,

R2xS?t

Proof. Observe that

(27)

so that M € L'(R4) since ||k| 11w, ) < 1, and

1 )
Ml 71 < // ™ (x,v)dxdv .
IMlimn < ST o) Lo | oY)

In particular, if
// f(z,v)dzdv = 0
R2ZxS!

then M = 0 a.e. on R4, so that the representation formula to be established
obviously holds in this case.

Otherwise
// f(x,v)dzdv > 0;
R2xS!

1

1) = 2m0 (//RS fi"(x,v)dxdv>_ M), t>0.

According to Lemma 6, the function v verifies the integral equation

(28) Y(t) = (k* (PIr,))(t) + K(t), ae int>0.

define then
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Applying the Fubini theorem as above shows that the linear operator
A: LNRy) D frx(flr,) € L'(Ry)

satisfies
—+o0
[Afllzr gy < IAN 2Ry WﬁhILM|=LA K(t)dt < 1.

Therefore (1 — A) is invertible in the class of bounded operators on L'(IR) with

inverse
(1 _A)—l — ZAn.
n>0
In particular

,(/}: (I—A)_IFC: Zﬁ*n

n>1
is the unique solution of the integral equation (28) in L'(R.), which establishes
the representation formula in the lemma. O

5.5. Asymptotic behavior of M in the long time limit.
5.5.1. The characteristic exponent &, .

Lemma 8. For each o > 0, the equation

/ oe @O () dt = 1
0

with unknown & has a unique real solution £,. This solution &, satisfies
—0 <& <0.
Proof. Consider the Laplace transform of the function s defined above:

ﬁ@@%:/mafw%WWﬂt

0
As 0 < p <1, L[x] is of class C! on | — 7, +00[, and

L[K)(€) = — /000 oe” ) pt)dt < 0

as p(t) > 0 for each t > 0. The function L[x] is therefore decreasing on | — o, +00].

For each ¢t > 0,

k(t)e s =07 as & — +oo,
while
K(t)e s < oe™"  for each t >0,
since 0 < p < 1. By dominated convergence, one concludes that
L[K](€) = 0T as &€ — +o0.
Besides, for each ¢t > 0,
op(t)e” " Y op(t), as&] o

By monotone convergence,
L[x](&) — J/+Oop(t)dt =400, asé— —ol.
0
(Notice that the equality
/+0° p(t)dt = +00
0

follows from the lower bound in (8).)
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By the intermediate value theorem, there exists an unique &, > —o such that

L[r)(&r) = 1.

Besides &, < 0 as L[x] is decreasing and

[e's) +oo
L[x](0) = / K(t)dt < / oe %t =1 = L[x](&,),
0 0
which concludes the proof. O
In particular
t > K(t)e st
is a decreasing probability density on R .
5.5.2. The Renewal Equation. It remains to prove statement (3) in Theorem 2.

First, for each A € R and each locally bounded measurable function f: R — R
supported in R4, denote

fat) == e M f(t) for each t € R.
Notice that for each such f, g, we have
M (f % g)(t) = (fr x gx)(t) for each t € R.

Hence, if 9 is a solution of the integral equation (28), the function i_, _ satisfies

(29) VYog, (t) = (g, g, )(t) + K¢, ,

which is a renewal integral equation, in the sense of [14].

Moreover, as noticed above, k_¢_ is a decreasing probability density on R, so
that in particular k_¢_ is directly Riemann integrable (see [14] pp. 348-349). Thus,
applying Theorem 2 on p. 349 in Feller’s Introduction to Probability Theory [14]
shows that

1
/ tr(t)e S tdt
0

By definition of 4, this is precisely the asymptotic behavior of M in Theorem 2 (3).

(30) Y(t)e St — as t — -+oo.

5.6. Two important limiting cases for £,. We conclude our proof of Theorem
2 with a discussion of the asymptotic behavior of £, (statement (4) of Theorem 2)
in the two following regimes:

(1) the collisionless regime o — 0T, and
(2) the highly collisional regime o — +o0.

End of the proof of Theorem 2. Denote for the sake of simplicity A\, (= o + &,
Establishing that £, ~ —o as ¢ — 0T amounts to proving that A\, = o(c). First,
notice that, since —o < &,,

O< A <o
s0 Ay — 07 as ¢ — 07. Keeping this in mind, we have
+oo 1
(31) / e Alp(t)dt = =
0 g

by definition of &,. Substituting z = At in the integral above, we obtain:

A Foo
0< 2= / e *p(z/ s )dz.
0

g
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Since Ay — 07 as ¢ — 0T and p(t) — 0T as t — +o00, one has p(z/A\,) — 0T as
o — 0%, Besides 0 < e *p(z/\,) < e * so that, by dominated convergence

Ao
2 30aso—0".
o

This establishes the asymptotic behavior of £, in the collisionless regime.
As for the highly collisional regime, we return to the equation (31) defining &,
(written in terms of A\, ):

—+00
1= O’/ e Atp(t)dt
0
=\ T et t)dt — T et t)dt
o e "'p(t) o e 'p(t)
0 0

= 1+/ e*Aatp(t)dtfg,,/ e M lp(t)dt
0 0

where the last equality follows from integrating by parts the first integral on the
left hand side. Therefore -
/ e M tp(t)dt
0

/ e Atp(t)dt
0

/OOO e 'p(t/ A\, )dt
/00 eftp(t/)\g)dt.
0

Equation (31) shows that A\, — 400 as 0 — +o0o. Passing to the limit in the
right-hand side of (32), we find, by dominated convergence

fa:

or, after substituting ¢’ = A\,t,

(32) ga =

(o > oc—— =p(0) as o — +o0.

Indeed p is decreasing and convex, as can be verified for instance on the Boca-
Zaharescu explicit formula? (10)-(9) for p, so that

0<—p(t) <—p(0), foreacht>0.

We conclude by observing that the same explicit formulas of Boca-Zaharescu [4]
imply that
p(0) = —=2.

6. FINAL REMARKS AND OPEN PROBLEMS

The present work provides a complete description of the homogenization of the
linear Boltzmann equation for monokinetic particles in the periodic system of holes
of radius €2 centered at the vertices of the square lattice €Z? (Theorem 1.) In
particular, we have given an asymptotic equivalent of exponential type of the total
mass of the particle system in the long time limit (Theorem 2.)

’In space dimension higher than 2, one can show that the analogue of p is also nonincreasing
and convex, by using a variant of a formula due to L.A. Santald established in [13], for want of an
explicit formula giving the limiting distribution of free path lengths.
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Since the discussion in the present paper is restricted to the two dimensional
setting, it would be useful to extend the results above to the case of higher space
dimensions, and to lattices other than the square or cubic lattice. Most of the
arguments considered here can be adapted to these more general cases; however,
the analogue of the distribution of free path lengths (the function p(t)) is not known
explicitly so far. See [3] for these more general cases.

Otherwise, it would also be interesting to investigate other scalings than the
Boltzmann-Grad type scaling considered here — holes of radius £ centered at the
vertices of a square lattice whose fundamental domain is a square of sise ¢ in the
case of space dimension 2. Typically, one would like to mix the homogenization
procedure considered in the present work with the assumption of a highly collisional
regime o > 1, so that the size of the holes and the distance between neighboring
holes are scaled in a way that differs from the one considered here. We hope to
return to this problem in a forthcoming publication.

Another problem of potential interest is the case where the periodically dis-
tributed holes considered in the present paper are replaced with scatterers, assum-
ing that particles are specularly reflected on the surface of each scatterer. In other
words, the problem (Z.) is replaced with

atf6+v'va:fa+g(f5_Kfa):0, ($7U)€Z5X81,t>0,
fE(t’x?U) = fE(t?xaU - 2(1} : nﬂf)nxvv)7 (,I,’U) 6 aZE X Slat > 07
fs(O,x,v):f”‘(m,vL (:c,v)eZexSl.

Assume for simplicity that f. is periodic with period 1 in z1, x2, while € designates
the sequence of 1/n, for each integer n > 1.

Most likely, the homogenized equation governing the vanishing e limit of f.
should involve an extended phase space, as in the case of the Boltzmann-Grad
limit of the periodic Lorentz gas [8, 25]. The structure of this homogenized equation
should be such that its solution converges to a constant state exponentially fast in
the long time limit for each ¢ > 0. However, while the limiting constant state is
fully determined by conservation of mass and is therefore independent of o > 0,
the exponential decay to that constant state is not expected to hold uniformly as
o — 0. Indeed, the case o = 0 is precisely the Boltzmann-Grad limit of the periodic
Lorentz gas governed by the equation (1), and according to Theorem 3.5 in [9], this
equation (1) does not have the spectral gap property.

Finally, the homogenization result considered in the present paper raises an
interesting question, of quite general bearing. Usually, homogenization is a limiting
process leading to a macroscopic description of some material that is known at the
microscopic scale. In the problem considered here, it has been necessary to use a
more detailed description of the particle system than that provided by the linear
Boltzmann equation (problem (Z.) set in the extended phase space that involves
the additional variable s.)

In other words, the formulation of the macroscopic homogenization limit for
the linear Boltzmann equation considered here involves remnants of an even more
microscopic description of the system than the linear Boltzmann equation itself —
namely the extended phase space and the additional variable s.

We do not know whether this phenomenon (i.e. the need for a more microscopic
description of a system to arrive at the formulation of a homogenized equation
for that system) can be observed in homogenization problems other than the one
considered here — for instance in the case of equations other than those found in
context of kinetic theory.
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CHAPTER III
THE DIFFUSION APPROXIMATION OF THE HOMOGENIZED
BOLTZMANN EQUATION

INTRODUCTION

A classical result in kinetic theory is that solutions of the linear Boltzmann
equation in the small mean free path limit are governed by a diffusion equation
-see [2, 8] for instance. However, the structure of the linear Boltzmann equation
can be deeply modified in the case of some homogenization limits involving perfo-
rated background media with a periodic distribution of holes : see [3]. Whether
a diffusion limit can be established in such cases is not entirely obvious, as the
homogenized equation may fail to have some of the crucial properties used in [2].
The purpose of the present work is to study this situation on an example.

We first recall more precisely the recent homogenization result evoked above and
proved in the previous chapter and published in [3]. Consider f, = f,(t,z,v) the
solution of the boundary-value problem

Opfn+v-Vaufy+o(fy—f,) =0, t>0,(z,v) € Z, x S,

fu(t,z,v) =0, t>0,(x,v) €02, xS v-n, >0,
1.(0,2,0) = fin(a) (5,0) € Zy x S0,
where
1
¢= = (v)dv
2 S

and where Z,, designates the space R? with a periodic system of holes removed

Z, =R\ |J B (nk,n?).
keZ?

The authors proved in that
fnéf::/ Fdsasn— 0"
0

in L™ (]R+ x R? x Sl) —weak-*, where F' = F(t,s,z,v) is the solution of the
Cauchy problem

p(tAs)
p(tAs)

(0.1) F(t,0,z,v) = o/ F(t,s,x)ds,
0

O F +v-V,F+0,F=—0cF + F, zeR? |v=1, s,t>0,

F(0,s,2,v) = f™(z)oe ",

Here, p is a positive decreasing function which definition is given here. Let 7,
designate the free path length in the direction v for a particle starting from x in Z,

Ty (z,v) == {t > 0z —tv € 0Z,} .
73
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The distribution of free path lengths has been studied in [4, 5, 6, 7]. In particular,
we have established in Lemma 1 in [3] that for each ¢t > 0

]lt<m(%7v) — p(t) in L™ (R* x S') — weak* as n — 0.

F. Boca and A. Zaharescu have given an explicit representation formula for p

)= [ (s =0t
where
() = 2 { !

T2

ift € (0,3],
1 12 1 1 1 ; 1
In particular, ¢ — % is not a constant. That remark will be crucial in the sequel.
In the present work, we shall study a diffusion approximation of (0.1) More
precisely, we scale o and « in (0.1) so that

0' =
and

mw‘ Q

with ¢ < 1, and define

2>
I
o |8

F. (t,s,%,v) := F(t,s,z,0).
Since F is a solution of (0.1), F. satisfies
AW - - G~  pltAs)
b+ L Vb 405 = -2 F
ta"l‘g e T 0sle 2 8+p(t/\8)
FL(t,0,,v) = %/ fg(t,s/,i“)ds/,
€ Jo
FL(0,5,2,0) = [ (ck)

LAy

F., 2eRY, ju|=1, s,t>0,

2

For the sake of simplicity, we henceforth drop the hat in &, Z and F..In other words,
we consider F. = F.(t, s,z,v) the solution of the Cauchy problem
(0.2)

o p(tAs)
_?Fe +

—2F
p(tAs) "
o [*—
:?/O Fa(t,sl,m)dsl,

Fs(07 37x7f0) = pzn(x)

atFe+§'vxFe+asFE:

€eR?, |v|=1, s,t>0,
F.(t,0,z,v)

ag _ag
The problem studied in this paper is to find the correct equation for F. in the
vanishing ¢ limit.

Observe that by integrating equation (0.2) in s € R4, one obtains

v o o— [T ptAs)
(03) (o 5o ) - 57= [

fe(0,z,v) = pm(x)

This is not a closed equation for f, := fooo F.ds, since (t,s) — ggﬁzg is not a
constant as mentioned above. That being said, we observe that

Feli_g — p"8e—p in M (]R+ x R? x Sl) ,ase— 0T,
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which suggests that
(0.4) F. = fés—o in M (Ry x Ry x R* x S§') ase — 0,

where f = f(t,z,v).
In this case, we expect that, in the limit as ¢ tends to 0, the solution f. of (0.3)
behaves like the solution g. of the Cauchy problem

(0
(8t + va + g) ge — ggs = &ged57
€ g2 g2 p(0)
(0.5)
96(0’ €, U) = pzn(x)

This a classical linear Boltzmann equation for which the diffusion approximation is
well-known, i.e.

g — pin L? (1R+ x R? x Sl) -strong as ¢ — 0

where p = p(t, x) is the solution of the Cauchy problem

1t _b 2
<8t 20AI> p= p(O)p(t,x), (t,z) € Ry x R?,

p(0,2) =p"(x),  weR™

(0.6)

We now give a argument in support of (0.4).
We define ¢(s) := s A1 for each s > 0, and

me(t) := /// F.(t,s,z,v)¢(s)dsdxdv for each t > 0.
R xR2 xS

Multiplying both sides of (0.2) by ¢ and integrating in (s,z,v) € Ry x R? x S,
one obtains

m¢+%m¢_m¢:///g(sAt)ngsdsda:dv

/// F.pdsdady = Hp
Lo (Ry) p
or equivalently

1 .
. a p
me + 2 —/0 // F.dzxdvds < Hp

m¢+/ F.dxdvds.
L (Ry) 0

<5
p

me
Lo (Ry)

¢.

m
L>(Ry)
Thus

R

me + —m -
[ 22 ¢ = »

By maximum principle, we have

/ F.dzdvds < / 0" (z)dx for each € > 0,
0 R?

so that

mot [ o)z,
R2

. o D
me + 5mg < || =
< Pllzee(ry)

or equivalently
mg + Cemg < C™

with the notation

b
PllLe(my)
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and

cm ::/ P (z)dx.
R2

That implies in particular

d .
% (GCEtm¢) § CzneC'Et
so that for each t > 0
Cin
0 < my(t) < e %tmy(0) + o= o(coh)
1>

Since C! - 0ase — 0"
F.—»50ase—0".

in D’ (]0,o0[) . We can therefore expect that
(0.7) F. = pde—gase — 0"
in M (R4 x Ry x R? x S') and where p is the solution of (0.6).

‘We have evoked above the diffusion approximation for some classical linear Boltz-
mann equation, that is established either by the Hilbert decomposition -see [2] for
instance, or compactness in L? see for instance [8]. Both methods do not fit to a
convergence such that (0.7) so that our argument is based on a dual formulation

and Fourier transform.

0.1. Main result. We give here the diffusion approximation for the homogenized

equation. Consider F. = F.(t, s, z,v) the solution of the Cauchy problem

OFe + LNV Fo + OF. = =G F. + L(tAs)F.,  t,5>0,(z,0) € R? x St

(Be) Q4 Fo(t,0,2,0) = % 0+°° F.(t,s,z)ds, t>0,(z,v) € R? x St
F.(0,s,z,v) = g%e_”/arzfm(x), s> 0,(x,v) € R? x St

where p € C*(R;Ry) and is decreasing. We assume besides that
[ e LNR?) N L*(R?)
and there exists C' > 0 such that

sup |f"‘(x)’ <C.
z€R?

The main result is then

Theorem 0.1. Under the assumptions and with the notations abowve,
/ F.(s)ds = u in L, (Ry; L* (R* x S)) — weak as ¢ — 0T
0

where u is a solution in the sense of distributions of the Cauchy problem

du— =Au=p0)u t>0,z€R?
uw(0,z) = fi"(z) r € R2.

Moreover, we have in fact a strong convergence

Theorem 0.2. Under the assumptions and with the notations above,

loc

e 2
/ F.dvds — u in L? ([O,T]; L. (R} )) — strong as € — 0.
0o Jst

Theorem 0.2 is established in section 4 while Theorem 0.1 is proved in the sections

preceding.
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1. A PRIORI BOUNDS

In the present section, we establish some a priori estimates.

We recall that by Proposition 4 in [2], we have
F.>0ae. on Ry x Ry x R? x St
so that
(1.1) f->0ae on R, x R? x S'.

That being said, we recall that f. verifies the equation

v o =\ OOB'
atfs‘i’gvxfb:‘i’? (fsffg) *\/0 p(t/\S)Fst

Since p > 0 and is C' and is nonicreasing, this implies that
v o -
6tf5 + ngfs + ? (fa - fs) <0.

Mutiplying both sides of the inequality above by f. and integrating in x,v € R? xS!
gives

78,5 // f2dmdv+ // fs dxd"u+— // fsdxdv <0
R2xS? ]R?><S1 R2xS1
// 2 dadv =0
]R?><S1

// fgdxdv = // ? dadv

R2 ><Sl € R2 ><S1
- // f dxdv,
5 IE{2><81

= — — f.)" dzdv,
82 /]R2><S1 (fE fE)
the inequality above is equivalent to

78,5 // fRdrdy 4 — // ? dxdv <0.
R2ZxS! szSl

Integrating both sides of this inequality further in ¢ € [0,T] gives

and

HfEHiz(]RZXSl)(T) + 872||f€ _?5”%2([0,T]XR2XS1) < HfinH%Z(]R2XS1).

We notice that by Jensen inequality, for each € > 0 and for each ¢ > 0

—9 2
fs(t,.’li‘)dl' = / ( fE(t7x; U)d’l)> dx
st

IRQ
< [ et 0))? dvde = 1 s 0

As a result, we obtain the following bounds.

R2

Proposition 1.1. Under the notations and assumptions above, we have
e (f).ao=0(1) in L™ (Ry; L* (R? x SY))
o (f.).oo=00) in L™ (Ry; L? (R?)) .
o foreach T >0, (£ (f- = f.)).o, =O) in L* ([0,T] x R* x S').

The proposition above immediately entails the following
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Corollary 1.2. Under the assumptions and notations above, the family (i), is
relatively compact in L™ (IR+; L? (]RQ)) weak-*.

In particular, there exists u € L™ (IE{+;L2 (1R2)) and g, — 07 as k — +oo such
that

e — 0 in L™ (Ry; L? (R?)) — weak-*,

Now we give an integral equation for wu..

2. INTEGRAL FORMULATION OF THE HOMOGENIZED EQUATION

2.1. An Integral Equation for u.. First we recall some notations. Henceforth,
we denote F. = F.(t, s, z,v) the solution of the Cauchy problem :

OF.+ LN, F. 4+ 0,F. = —%F. + ;g(t ANS)F., t,s>0,(z,v) € R xS!

(Ee)q Fo(t,0,2,0) = % O+O° Fe(t,s,z)ds, t>0,(x,v) € R? x St
F.(0,s,x,v) = g%ef”s/grzf""(x), s> 0,(x,v) € R? x St

where p € C*(R4; R4 ) and is decreasing. We assume besides that
f™ e LNR?) N L*(R?)
and there exists C' > 0 such that

sup |f"‘(w)’ <C.
z€R?

We denote also
fe(t,z,v) ::/ F.(t,s,x,v)ds, t >0, (z,v) € R? x S,
0

and
ue(t,z) = [ fe(t,z,v)dv
Sl
where dv is the uniform probability measure in the unit sphere S2. We now give
some a priori estimates on f. and u. that will give the compactness of (uc),. in
L> (R+; L? (IRQ)) —weak.

Let F. = F.(t,s,x,v) a generalized solution of (X.). For a.e. (t,s,z,v) € Ry x
R xR?x S!, the function 7 — F. (t + 7,5 + 7, + 72,v) is C' in 7 > 0 and since
p € C! (Rp) and does not vanish one has

g p

d ) v
— 4+ = —=(tAs+T1) Fg(t+7',5+7',x+7'7,11)
dr €2 p 5

d (ee%TFE(t—FT,s—l—T,x—FT“E’,U)) 0

= ETp(tA —
€ P S+T)d7' p(tAs+T)

Therefore the function
ee%TFE(t + 78+ T, 0+ TE,0)

Frire—
p(tAs+T)

is constant. In particular

I(—t) ift<s,
() = { I'(-s) ifs<t.
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We arrive therefore at the following expression for F :
F. (t,s,x,v) =1 o ) f @ _
e \by oy, — Lt<ls 526 p c
o 0 sV
+]ls<t%e_523p(s)/ F. (t—s,7,x——> dr.
& 0 15

The uniqueness of the solution of (X.) can be found in the proof of Proposition 4
n [3]. Integrating the equality above in s € R4 leads to

or equivalently
(2.1)

Integrating the equality above further in v € S' leads to the following integral
equation for wu, :

ue(t, ) :p(t)e_;%t/ fin <x — tv) dv
St £
t
g fed
o 28 _ _
—&-/81/0526 p(s)u (t $,x €)dsdv

We will apply the Fourier Transform to the equation above and give an integral
equation for the Fourier Transform of u..

(2.2)

2.2. An Integral Equation in Fourier Variables. Recall that
Gie (t, €) ::/ e STy (t, x)dx, (t,€) € Ry x R
RQ

Applying the Fourier transform to equality (2.2) leads to

: . , '
U (t, &) =/ efm'gp(t)e_?t/ Fe (a: - U) dvdx
R?2 st )
¢
—iz.£ g —E%s t— _ 2N dsdvd
+/}Rze /810526 (s)ue ( S, % )svx

:/ e_ivt.g/sp(t)e—ot/szfm(f)dv

St

(2.3) t o _o

+/ 672US~§/55767?SP(8)@5(1€_Svf)dev
0

_ ( e—ivt.f/edv) p(t)e—at/gfin(g)
Sl

t
—ivs.£/e g as/a _
+/0p(s) (/Sle dv) ¢ (t—s,8)ds
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Therefore, the function 4. verifies

A t —ot/e? fin
ie(t,€) =J(f) p(H)e= "= f7(€)
(2.4) t

% g 70'5/6 _ 2
+/p(s)J(€)€2e (t—s,8)ds (t,6) € Ry x R,

0
where
J(w) ::/ e vy,
St

2.3. A dual formulation. Let ¢ € C* (IR+ X ]RQ) be real-valued, so that

$(t,6)" = /R (1, a)da, (1,€) € Ry x R,

(denoting z* the complex conjugate of z.) Multiplying both sides of equation (2.4)
by ¢(t,€)* and integrating in (¢,£) € Ry x R? leads to

J[etodweraas=[[ (i) e mierin ¢ i

g 9 —os/e? _ - «
i //]I{+><R2 /0 J ( 9 )p($)€26 (t s g)d)(tyf) detdf

Rewriting this equatlity as

(2.5)
§ efa't/a2 rin n % . g " .
//Imij (t) P (©)o(t, €)"drde = / /}R e e E)6(1, )" dhde
_ ' ﬁ i 70'5/5 o A «

we put it in the form
S. =K., Ve >0

with the notation

so= [ L7 (1) e ennm@i o

- / / e (t, €)d(t, €)*dtde
R+><IR,2
t
L () e Gt - s it asanae
R4 xR2 Jo € €

We are going to compute the limits of both S, and K, as ¢ — 0F.

and

3. PASSING TO THE VANISHING £ LIMIT IN THE INTEGRAL EQUATION

3.1. The Source term. Consider the left-hand side of equality (2.5):

= § —ot/e? fin " %
% "//RMRQJ (%)6 p(&)f ™ (€)o(t, €)" dtde.

Substituting T = %

s.=< [T [ et imen (1) S (19 ST dear.
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or equivalently

/ /R joe™ " F™©p (3T) J (eT€) ¢(*T, €)* dedT.
Since J(0 ) p(0) =
(3.1) oe—”Tfi"@)p (°T) J (7€) $(°T, €)" — e T [ (€)6(0,€)"
as € — 0 a.e. in Ry x R%. Moreover, for each (T,¢) € Ry x R?, and each € € (0, 1)

(32)  |oe O (€T (T, 8) | < oe™ T | F(€)] sup (7. )°

T>0

since |J(¢)| < 1 and [p(t)| < 1 for each t > 0 and ¢ € C>* (R4 x R?). Besides, since
¢ € S (R4 x R?), we have

6(t,9)"| < (1,6) € Ry x R?,

_c
1+ ¢

and therefore

& s sup | (¢, €)* (R?).
t>0

Since fi* € L? (R?), we have fi* € L? (R?) so that
F(€)| sup|dit. &)
>0

£ e L' (R?);

Together with
toe e L' (Ry),

it implies that

Fm(€)|sup |o(t, )"
t>0

We conclude from (3.1) and (3.2) that
o e . .
Gseo [ oetar [ frod0.6de
3 0 R2

by dominated convergence, or equivalently that

5= [ Fr©0(0.6)ds
]PL2

(t,&) = oe " €L' (Ry xR?).

as e — 0.

3.2. The Diffusion term. We now consider the right-hand side of equality (2.5)

K, = / /R | o000, e

3.3 ¢ . ) *
Y //Rmm (S ) (s) 026 /(= 5,€)$(1, &) dsdtdg
= K(l) (2)

K = //RR ()L, € dtde

t
= 6N p(6) Lemos /e a (s — 5.6)0(t. €)"
T //RR/O 7 (25) 0l6) Gt~ 5,93 ddde,

with

and
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3.2.1. A reformulation of the Diffusion Term. Let

t
(2) . g g —05/52 R B R i}
KE o /A+XR2 /0 J ( I )p(s) 826 UE(t Sag)ﬁb(t,f) dsdtdg

Substituting 7' =t — s into the expression above,

K= [ o () o) e 5 €000, s

€
> s€ O _os/e? 4 n *
= Irsod | = | p(s) e U (T, ) (T + s,&)*dsdT'dE.
Ry xR2 Jo € €
Substituting S = % in the expression above, we find
(34) K@ — / / / T (eS€) p(e2S)oe=5 0 (T, ) (T + £28, £)* dSdTde.
IR,+ xR2 J0
Besides, for each € > 0

KO = [ ae.0)i.0) ae

_ /O " gemoS ( / /R | TN, s)*dm) ds

Consequently, from (3.3) and (3.4) and (3.5), we conclude that

(3.5)

(3.6)
K. - /O e ( / /R 9 (3, )" = T (e5€) ple2)(t + <5, €)") dtd&) ds

/ // fbg(tag) (\I](t, 8)076) — \I](ta S, € 76)) dtdéd87
0 R+X]RQ
Where

U:(ts,h,€) €RE xR s oe %] (\/Esg) p (hs) Bt + hs, £)*.

3.2.2. The Function V. Before going further, we consider first the function J :
R? — R* whose definition is recalled below :
1

= — eV dy, we R
2 St

J(w) :
Obviously, by the symmetry v — —wv,

J(w) = % /sl cos(v.w)dv.

Since
n

- (_1) 2n
cos(z) = nz:% @n)! z“", v e R.

one has
Jw)y=1- %|w\2 + o(|w]?) as |w| — 0.
and let the function C': Ry +— R4 be the analytic function defined by
J(z) = C(|2]*), = € R?,

where




CHAPTER III 83

Obviously C'(0) = 1 and C'(0) = —%. Thus
U(t,s,h,€) = oe 7°C (hs?|€|?) p(hs)p(t+hs, €)*, (t,s,h,€) € Ry x Ry x Ry x R?,
Since C,p, ¢* € C* (Ry), for each (¢,s,€) € Ry x Ry x R?

heRy — Ut s h &) eC (Ry),

with
O (t, 5,6, h) = 0e™ 70y (C (hs?€[*)) p(hs)(t + hs, €)"

+ae”7°C (hs®|€]?) p(hs)On é(t4—hs,g)*)

37) T 0e0C (hs[€[2) By (p(hs)) Bt + hs, )"

= 0e” 7S [¢[*C (hs®|*) p(hs)d(t + hs, &)
+o0e”75C (hs2|§|2) p(hs)s@té(t + hs, &)*
+ oe7*sp(hs)C (hs?|¢]?) b(t + hs, &)*.
In particular,
O (t,5,0,6) = o~ " s*E[*C (0) (1, €)"
+ e 7 s0i0(t,€)" + ae T sp(0)o(t, €)",
for each (t,5,&) € Ry x Ry x R2.

(3.8)

Lemma 3.1. Under the notations and assumptions above,
U(t,s,0,&) —U(t,s,h,¢)
h
in L} (lR_,_; L? (IR+ X ]RQ)) —strong.

— —OR¥(t,5,0,¢) as h — 0"

Proof. We easily check that

qj(t787o’£)_q}(t787h7£) N _ah\:[j(t78707£) as h_>0+

h

a.e. in Ry x Ry x R2. Since ¢ € S (R4 x R?) there exists C,C” such that
M@+h&@*go ! !
L+ (t+hs)? 1+ |¢*
gCliﬂljmwV@&mOGB+XR+xR%Jﬁ
and
‘m%+m@*gd ! !
L+ (t+hs)?2 14|
1 1

<C'—s—— V(ts,h &) € Ry x Ry x R? x R
Consequently by 3.7
1 1
L+t21 4 ¢
1 1
s 2 1
1+1¢ 1+ €]
1 1
ST T A
T+t 14 ¢

sup [0, U(t,5,&,h)| < Coe™7°s?[¢]?
h>0
+ C/O_efo's

+ Coe 7%
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so that
(t5,€) = sup O W (t, 5,6, h)| € L} (Ry: L2 (R x R)).
h>0

By the Mean Value Theorem, for each h € (0, 1)

‘W(t,s,o,f) — V(s h )| sup [0, (L, s,&, h)|
h h>0

and we conclude by Dominated Convergence. U

3.2.3. Passing to the limit in the Diffusion Term. We start from equality (3.6) in
the form

KE - /OO // ﬁa(tvf) (\I’(t,s,(),f) - \I’(t, 8,6275)) dtdﬁds
0 R4 xRR2

or equivalently

o . o N \I/(t,s,o,f) - \Ij(t75762’§)
K, = a/o //IR+XR2 U (t,€) = dtd&ds.

By Lemma (3.1), for each 7' > 0

\I’(tv S, 075) — \I/(ta 555276)

2

— —O0pV(t,5,0,6) ase — 0

in L' (Ry; L? (R4 x R?)) —strong while
. > tase = 0T

in L™ (IR+; L? (]R2))—W6ak—*, so that by weak-strong convergence,

;%KE - a//mmz at, ) (/O ahqf(t,s,o,g)ds> dtde

as € — 0T. As for each (¢,£) € Ry x R?, by (3.8)
/ on(t,s,0,8)ds
0

= [T (RO O 6009 0 00,6 e 000006 s

K _>//+><]Rz< Ot €)" + |€\ S 0(t8)" — (0)<13(t,€)*) alt, €)dtde
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3.3. Summary. Starting from equation (2.5) in the form

Ks = Ss
where K. is the Diffusion term and S. the Source term, we have
o o
?KE = gss

According to the result obtained in section 4.1 and 4.2, we pass to the limit as
€ — 07 in both sides of the equality

//IR+XR2 (_at“;(t’g)* + % h(t,€)" — 25(0)55(15,6)*) a(t, €)dtde

= [ F™©)e(0,8) de
R2

which means that u is the solution in the sense of distributions of the Cauchy
problem for the damped diffusion equation

{ Osu — %Au = p(0)u,
u(0,z) = f(x).

Notice that p(0) < 0 so that the right-hand side is a damping term indeed.

4. STRONG CONVERGENCE IN L}

loc

(R4 2% (R?))

In the present subsection, we show that the convergence u. — w holds in
LlloC (]R+; L? (IRz)) —strong, and not only in L™ (]R+; L? (IRz)) weak-*. The two
key arguments are

(1) a velocity averaging result (to gain regularity in x),
(2) and a Aubin type lemma, to handle the time dependence.

4.1. Gaining regularity in x. The first key point of the argument is a result in
Velocity Averaging that is a special case of Averaging Lemma 2.1 in [9]

Proposition 4.1. Let f = f(t,xz,v) € L? (Ry x R2 x S') and let g be a locally

loc

bounded measure, g € Mio.(Ry x R2 x St). Assume that

O f +v.Vuf =g

then for each s € (0,%) f:= [, fdv belongs to W2 (R, x R2) and

— 1 2
HfHWS’%(]Rtx]Ri) S ||g||/3{/lloc(Rt><Rixsl)||f||zl206(]R4t><R;25><Sl).

loc
With the help of Proposition 4.1, we obtain the following control on wu..
Lemma 4.2. Under the definitions and with the assumptions above, then for each

T>0ands € (0,3),

(te)eso 18 unformly bounded in L%([O,T]; WS’%(IRQ))

loc

Proof. We split the proof into several steps.
We recall that

ue(t,z) = / ) F.(t,s,z,v)dvds, (t,2) € Ry x R?
o Js
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where F is the solution of the Cauchy problem
OFc+ L.V Fe+ 0F. = —GF. + E(t As)F., t,5>0,(z,0) € R? x S

F.(t,0,2,v) = & 0+oo F.(t,s,)ds, t>0,(x,v) € R? x St
F.(0,s,x,v) = ;%e*(’s/szfm(ac)7 5> 0,(z,v) € R? x St

Therefore f. := [~ F.ds verifies
ehife +v.Vyfe=2 (f6 fa) +sf L‘/\s F.(t,s,z,v)ds, t>0,(z,v)€R?xS!

€

fE(vaav):fm(x)v (1’,U)€IR2X81.
For each € € (0,1), we define g. = g.(¢,z,v) and Ge = G¢(t, s,x,v) by

t
Je (6,m,v> = f(t,z,v), (t,z,v) € Ry x R* x S,

and
t
G. (6,5,33,11) = F.(t,s,x,v).
Denoting 7 := é, we easily check that the function g. is the solution of the Cauchy
problem
0-9: +v.Vag. = he, (z,0) € R2 xS, 7>0,
(4.1)
g:(0,2,v) = fi*(x), (x,v) € R? xS},
where
o _ “p
(4.2) he(er, z,v) :== = (g — G.) + E/ ;;(67' A 8)G.(T,s,z,v)ds.
0

Applying Proposition 4.1 to equation (4.1) gives the estimate

”gEH (]Rt ]R2) < || E||MlOL(Rf><IR42Xsl)l|g6||L2 (R¢xR2 xSt)"

loc

As
W2 (Ry x R?) s L2

loc loc

(R Wi (R?)),

loc

the inequality above leads to

(43) ||gs|| z (]R+ (]R2)) ~ || 6“/\/[100(]Rf><R2><g1 ||96HL2 (]RtX]RZXSl)

lor

Next, we easily verify that for each € € (0,1)

1|lo - <P
||h5||Mloc(R+XR2XSI) = —ll= (fs 7fs) +5/ *(t/\s)Fsds s
elle o P Mioe (R4 xR2xS1)
<207
Mloc(]R+><R2><Sl)

1 o
+ - 5/ f(t A s)Feds

€ o P Mioe(Ry xR2xS!)

gé”%(fsf?s)

‘MLDC(R+XR2xSl)

)

"

/ E(t/\s)FEds
o P

Mioe (R4 XR2XST)
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and thus
1/3

1/3 Lo g _
i xrvtssny < 273 | 2 0o =T o0 sy

o - 1/3
+’/ LA s)F.ds
o P

Mioe (R4 xR2xS)

and for each ¢ > 1
1
Hgs||L‘1(R+;B) = m”faHLq(]R:r;B)a
and
_ 1 =
Hga||L"(R+;B) = mnfeHLq(IR:r;B)'

Therefore inequality (4.3) implies that

2/3
DTN ;
€ L2 (RW, 2 (R2))

S o5 |20 7)

/ B(t A s)F.ds
o D
Consequently, the family (f).., verifies
(4.4)
7.1 5

loc

‘1/3

Mioec (R4 xXR2 XSt
1/3

Loed
) cl/3 ”fE”Lfoc(]Rt xR2 xS1)

1

2
+ ‘ 51/3||f6||zl2w(mxxagxsl)'

Mioe(R4+ xR2xXSt)

‘1/3
Mloc(]R+ xR2 xSt
1/3

s|2 -7

/ E(t/\s)Fsds
o P

2
. 3
(B W, 2 (B2) ) 17Nz, (. xmz xsn)

1 2
+e3 ”sz32 25 Q1)"
Moo (Rs xR2xS1) L7, (R xR2 xST)

is uniformly bounded in Lfic(R+;W8’%(R2)). Since

loc

Next we show that (?5)5>0
there exists C > 0 such that

‘ < C, for each t >0,

indeed, one has

/ 22(t A S)F.(t,s,z,v)ds
o P

Therefore by Proposition 1.1
0o -
(/ B(t A s)FEds> =0(1) in L* (IR+;L2 (]R2 X Sl)) ,
o D e>0
and in particular

- 22 S s = in 2 !
(4.5) (/0 p(t/\ VF.d > O(1) in Moc(R4 x R* x S%).

e>0

< Cfe(t,z,v) for each t,s > 0.

By Proposition 1.1
o - .
(20 =70) = 00) in L (Rys 22 (R < 5%))
so that
o - . 2 1
(4.6) (E (f- - fs))6>0 = O(1) in Mype(Ry x R? x SY).
Besides Proposition 1.1 also implies that

(4.7) (fo)eso =0(1) in L™ (Ry; L? (R* x S1)) .
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By (4.5) and (4.6) and (4.7), inequality (4.4) implies that (?E)s>0 is uniformly
3 3
bounded in L2 (R; W, 2 (R?)). O
4.2. Controlling time derivatives.
Lemma 4.3. Under the notations and with the definitions above, for each T > 0
the family (dyuz)._, is uniformly bounded in L*([0,T]; H *(IR?)).

Proof. We recall that

v o =\ OOB'
atfs‘i’gvxfb:‘i’? (fsffg) *\/0 p(t/\S)Fst.

Integrating the equation above in v € S! gives

1 9
(4.8) Oue = —=Vy. | vfedv+ / / B(t A s)Fdsdv.
€ st stJo P
Notice that for each ¢ > 0
1 1 —
-V,. vfedv = V. v— (fa—fg) dv.
g St st €
By Proposition 1.1

(1 (f fs)) =0(1) in L? ([0,T] x R* x S")
e>0

so that the family (1V,. [, vfsdfu)€>0 is uniformly bounded in L2([0, T]; H2(R?)).
Besides, since for each ¢t > 0

’p(t)’ < C < 400,

p

one has

(4.9) / / Pt A s)Eedsdu gc/ / Fdsdv < C | fodv <.
stJo P st Jo St

By Proposition 1.1
(te)ong = O(1) in L™ (Ry; L* (R® x SY))
so that by (4.9), for each T' > 0 :

(LS 5o 5>F6d8dv)5>0 = 0(1) in L2 ([0, H~* (B2)).

Therefore, by (4.8), the family (d;uc),; is uniformly bounded in L2 ([0, T]; H~2 (R?))
O

4.3. Compactness in L2 ([O,T]; Ll'%oC (IRz)) —strong. By Aubin’s lemma [1], we

, 2
conclude that (uc).. is relatively compact in L3 ([07T];Ll30c (IRQ)) strong. So
that we obtain the following lemma

Lemma 4.4. Under the assumptions and with the notations above, up to an ex-
traction

loc

ue — uin L3 ([O,T];L% (]RQ)) -strong as € — 0.

Hence Theorem 0.2 is established.
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5. CONCLUSION

We have established a diffusion approximation for a linear Boltzmann equation
in extended phase space of the type (0.1). Our method applies to the case of
isotropic scattering, since it is based on studying the integral equation satisfied
by the macroscopic density (2.1). If we consider the same problem for scattering
operators as

Kf:= /Sl k(v,w)f(w)dw, foreach f € L' (S"),

we would obtain, by a similar argument as in section 2,

o E2P tv
F. = 1icsp(t) e 25" - —
t<p()526 f (95 5)

+ ]ls<t%efa%sp(s)/ (KF,) (t — 8, T, T — ﬂ,v) dr.
5 0 €

Applying K to both sides of the equality above leads to

tw

KF. = 1t<5%67§sp(t)/ E(v,w)f" (a: - ) dw
9 S 9

1
+ ls<t%e_e%sp(s)/ / k(v,w) (KF.) (t — 8, T,T — &,w) drdw.
&€ st Jo €

If we apply the Fourier transform to both sides of the equation above, the second

term on the right-hand side becomes, after substituting y = z — £

Lot %p(s)/ / k(v, W)efig'(?ﬁ%)KFe (t —s,7,y,w)drdwdy.
€ stxr2 Jo

Notice that the velocity variable cannot be integrated out, as in the case studied in
the present paper, so that our method does not apply to general scattering kernels.
We hope to return to this question in a forthcoming publication.
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CHAPTER 1V
HOMOGENIZATION OF
THE NONMONOKINETIC LINEAR BOLTZMANN EQUATION
IN A DOMAIN WITH A PERIODIC DISTRIBUTION OF HOLES

INTRODUCTION

We pursue here our analysis, started in the second chapter [1], of the homog-
enization problem for the linear Boltzmann equation in a domain with a periodic
distribution of holes. Specifically, we remove here the monokinetic assumption.
Before describing the specific problem analyzed here, we recall the results obtained
in the monokinetic case. For each ¢ € (O7 %) we define

Z. = {z € RY|dist(x,eZ?) > 2} = R?\ U B(ek,e?).
keZ?

Consider next the linear Boltzmann equation for a monokinetic system of particles

(0.1) Oife +v-Vaofe+o(fe =Tk (f:)) =0

in Z.. The unknown function f = f(¢, z,v) is the density of particles located at the
position z € R? with velocity v € S', which amounts to assuming that the particles
moves with fixed speed, only direction can change, at time ¢ > 0. The frequency
collision is a constant o > 0 and the operator Ty, € L(L'(S!)) governing the change
of direction is defined by:

(0.2) T (f) (tw,0) = | k(v,w) f(t, 2, w)dw

st
where dw is the uniform probability measure on the unit sphere S!, while k& €
C(S' x S') is a scattering kernel satisfying
(0.3) kE(v,w) = k(w,v) >0, and k(v,w)dw = 1.

St

Henceforth we supplement the equation (0.1) with the absorption condition
(0.4)  f(t,ek +?w,v) =0, foreach k € Z*, w,v € S', whenever v-w > 0.
Finally, as initial data, we have:
(0.5) £(0,2,0) = f(,v),  (2,0) € Z2 xS

where 0 < fi" € C.(R? x S'). Henceforth, for each measurable function f on Z,
we denote its extension by 0 in the holes

{f}(x):{ fla)ifz e Z,

0 otherwise.
Consider next F' = F'(t,s,x,v) the solution of the Cauchy problem

p(tAs)
p(tAs)

F(t,0,z,v) = 0/ Ty (F) (t, 8", 2,v)ds’
0

OF +v-V,F+0,F =—0cF + F, zeRY, |v|=1, s,t>0,

F(0,s,z,v) = f"(z,v)oe 7*
93
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with the notation ¢ A s = min(¢, s) and where p is a decreasing function on R
whose definition will be recalled in the sequel.

Theorem 0.1. Under the assumptions and with the notations abouve,
{fe— / Fds in L™(Ry x R? x S*) weak-* as ¢ — 0.
0

Next, we recall the results about the total mass of the particle system in the
homogenization limit ¢ < 1. We introduce the quantity

1
M(t,s) = g//]R . F(t,s,z,v)dzdv
2§l

and we denote

B(t,s) =0 — 2(t ns).
p
The first result is that M is the solution of a Renewal Equation :

Proposition 0.2. Under the notations above, and with the notations above, the
Renewal equation
O+ Ospp+ B(t,s)p=0  s,¢t>0,
o0
w(t,0) = 0/ w(t, 7)dr
0

gs

1(0,8) =oe”

has a unique mild solution p € L> ([0, T]; L* (Ry)) for all T > 0. Moreover one
has

M(t,s) = G // f(z,v)dxdv
2w R2 xS!
a.e. in (t,s) € Ry x Ry.

Consider next the quantity

m(t) := /000 M(t,s)ds

it is the total mass of the particle system in the homogenization limit ¢ < 1 and
the asymptotic behavior of M as t — 400 is a consequence of the renewal equation
above.

Theorem 0.3. Under the assumptions, and with the notations above,
(1) The total mass

1
%//Z . fe(t,z,v)dxdv — m(t)
e xSt
in L}

Le(Ry) ase — 0T, and a.e. int 0 after extracting a subsequence of
e—0F;
(2) there ezists & € (—0,0) such that:
m(t) ~ Cpetot ast — +oo,
with A
1 ffR2X§1 fm(x,v)d:rdv.
T 2w [Fip(t)e-(otet

(3) finally the exponential mass loss rate &, satisfies

éo~—0caso— 0" and &, — —2 as 0 — +oo.
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In other words, statement (1) claims that m is the total mass in the e-vanishing
limit and statement (2) claims that the mass has a exponential decay rate whenever
o > 0. Retrieving these results without the monokinetic assumption is the present
question.

1. THE MODEL

1.1. The nonmonokinetic problem. In the present paper, we remove the monoki-
netic assumption treated in [1], which means that the speed is no longer fixed. More
precisely, we consider the linear Boltzman equation

(1.1) Oife +v-Vaofet+o(fe = Tu(f).) =0.

The quantity f(t, z,v)dzdv represents again the density of particles at time ¢t € Ry,
located at x € R? and with velocity v € B2, the unit disk of R?2. The operator
Ty, € L(L'(B?)) is defined by
(T0) ) = [ ko, w)o(wldu, 6 € L'(B),
B
where dw is the uniform probability measure on the unit ball B2 and the kernel k
is such that

ke CB2xB2), k(w,v)==kw) >0 ae. inv,wc B>
(1.2) . 2
and / k(v,w)dw =1 a.e. in v € B*.

B2
The linear Boltzman equation (1.1) is set on the spatial domain, i.e. the plane R?
with a periodic system of holes removed:
Z. = {z € R?| dist(z,cZ?) > £?}
and we still assume the absorption condition
fe(t,z,v) =0, ny-v>0

that means that every particle falling into a hole remains here for ever. To sum-up,
the function f. is the solution of the Initial Bounadry-value problem

Onfe+v-Vafe+o(fe =Tk (f)g) =0, (x,v)€ Z:x B2t >0,
(Ee)§ felt,z,v) =0, ifv-ng >0, (z,v) € 0Z. x B2,

f-(0,2,v) = fin(z,v), (z,v) € Z. x B2,
Eventually, we assume that the initial data satisfies the assumption

(1.3) f™ > 0onR?xB? and // f™(z,v)dedv+  sup  f7(x,v) < +oo.
R2 xB2 (z,v)ER2 xB2

2. THE MAIN RESULTS

First, we recall the definition of the free path length in the direction w for a
particle starting from x in Z.:

(2.1) Te(z,w) :==inf{t > 0|z —tw € 0Z.} .

The distribution of free path length has been studied in [4, 12, 6, 2]. In particular,
it is proved that, for each arc I C S' and each ¢ > 0, one has

(2.2) meas({(z,w) € (Z. N [0,1]%) x I |eTe(z,w) > t}) — p(t)|1]

as € — 07, where |I| denotes the length of I and the measure considered in the

statement above is the uniform measure on [0,1]? x S'. That implies (see Lemma
1in [1])
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Proposition 2.1. Under the assumptions and with the notations above,

1 x — p(t) in L°(R? x ') weak-* as ¢ — 0.

t<57—5(§,w)

The following estimate for p can be found in [4, 12]: there exist C,C’ > 0 such
that, for all ¢ >:

(2.3)

!
%Sp(t)<g~

In [2] F. Boca and A. Zaharescu have obtained an explicit formula for p:

+oo
(2.4) p(t) = /t (r—t)Y(r)dr,

where the function T is expressed as follows:
(2.5)

: 1
)
g 20 5P - 5) = 31 - Pl 3] it (5 400).

2.1. The homogenized equation. Consider next F' := F(t,s,x,v) the solution
of the Cauchy problem

O F +v-VyF+0sF =—0F + |v|%(|v|(t/\ s)F, t,5>0,(z,v) € R? x B
+oo
(X)] F(t,0,z,v) = 0/ Ty (F) (t,s,z,v)ds, t>0,(x,v) € R? x B?
0

F(0,s,2,v) = ge 8 fi"(z,v), s> 0,(x,v) € R? x B?

with the notation ¢ A s := min(¢,s). Notice that F' is a density defined on the
extended phase space:

{(s,x,v)|5 >0,zeR%ve 1832}.
Our first main result is

Theorem 2.2. Under the assumptions and with the notations abowve,

(= [ ras

in L°(Ry x R? x B?) weak-* as ¢ — 0T, where F is the unique (mild) solution of

(2).

2.2. The mass and its asymptotic behavior in the long time limit. Consider
then the following equation

atlu‘(ta S, U) + asu(ta S, ’U) + B(ta S, ’U)p,(t, S, U) = 07 ta s> 07 v e BQ’
(R){ u(t,0,v) = afooo Tk (1) (¢, 8,v)ds t>0,v € B?,

w(0,s,v) = ce 7 flRZ fin(x,v)da, s> 0,v € B?,
with
B@&vy:a—w%qm@A@%uszaveB?

The first corollary of Theorem 2.2 is
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Corollary 2.3. For all T > 0, the PDE (R) has a unique mild solution p in
L> ([0,T]; L* (R4 x B?)) . Moreover,

// u(t, s,v) :/ F(t,s,z,v)dsdzd.
R4 xB2 R4 xR2xB2

a.e. imtecRy.

Next we discuss the asymptotic decay as t — 400 of the total mass of the
particle system in the homogenization limit ¢ < 1. As in the monokinetic case, the
asymptotic behavior in the long time limit of the total mass of the solution of the
homogenized equation is a consequence of the renewal PDE sarisfied.

Theorem 2.4. Under the assumptions and with the notations abowve,

(1) the total mass

/// F.dsdxdv — w(t, s, v)dsdv as e — 0T,
Ry xR2 xB2 Ry xB?

in L} _(R,) and a.e. int > 0 after extracting a subsequence of € — 07

loc
(2) assume moreover for the sake of simplicity that Ty has finite rank, then

there exists Cy > 0, ny € N and &, € (—0,0) such that
m(t) ~ Cot™etot ast — +oo,

with Cy and &, depending on Ty and o and n depending only on Tk;
(3) and the exponential mass loss rate &, satisfies

£, ~—0aso— 0.

Statement (1) above means that ¢ — fR+XBQ u(t, s,v)dsdv is the limiting total
mass of the particle system at time ¢ as ¢ — 0%. Statement (2) gives a precise
asymptotic equivalent of ¢ — IJR+ <2 1(t, 8,v)dsdv as t — +oo. The main difference
with the monokinetic case is the total mass decay. We recall that if 0 = 0 in
the linear Boltzmann equation (Z.), the total mass of the particle system in the
vanishing ¢ limit is asymptotically equivalent to

ffRZ < B2 f(z,v)dzdv
2

wet

as t — 4oo. This algebraic decay is due to the existence of infinite open strips
included in the spatial domain Z. avoiding all the holes. A particle located in one
such channel and moving in a direction close to the channel’s direction will not
fall into a hole before exiting the channel and thus in a long time, longer as the
particle’s direction is closer to the channel’s one.

In the monokinetic case, the collision operator in the linear Boltzmann equation
destroys the influence of the channels, which entails a exponential decay — see [1].
If we keep o > 0 whithout the monokinetic assumption, that means that the speed
can change. More precisely, as a particle slows down, it will obviously fall into a
hole in a longer time. Therefore, the decay of the total mass will be downgraded.

Indeed, as we will see in section 5 and section 6, the particle system is split into
subpopulations organized as a nest by the collision operator. That phenomenon is
illustrated by the graph in Figure 1
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@
@
~

-

v
ﬁ

A, ..., I designate the subpopulations. The arrow between two supopulations
means that the collision operator send one into the other, and the arrows with
greek letters mean that each subpopulation has a exponential mass decay rate
designated by that greek letter that depends upon the spectral properties of the
collision operator and . Obviously, the exponential decay rate £, of the total mass
is the lowest exponential decay rate among all the subpopulations. The integer
n is the length of the longest chain connecting the subpopulations with the same
exponential decay rate — see section 6.

It is worth noticing that it is similar to a random walk on graph with at least
one trap. When a graph is finite, the asymptotic decay has an exponential rate.
ON the contrary, in the case of a infinite graph, the asymptotic behavior may be
a power law — see the review [5]. Therefore, we may think that statement (2)
of Theorem 2.4 holds for each compact collision operator. And some noncompact
collision operators — as for the inelastic linear Boltzmann equation — will have a
cooling effect that destroys the exponential decay.

In section 3, we give the proof of Theorem 2.2; in section 4, we study the gov-

erning equation of the total mass in the vanishing e limit; while its asymptotic
behavior as ¢ — 07 is discussed in section 5, section 6 and section 7.

Figure 1 : a graph
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3. THE HOMOGENIZED KINETIC EQUATION

As in [1], our argument for Theorem 2.2 is splitted into the same steps.

3.1. A new formulation of the transport equation. As in the monokinetic
case, we introduce here a extended phase space involving the additional variable s.
Consider the initial boundary value problem

OF, 4+ 0sF, +v.V F. +0F. =0, t,s >0, (z,v) € Z. x B2,
F.(t,s,x,v) =0, ifv-ng >0, t,s >0, (x,v) € 0Z. x B2,
(=) -
F.(t,0,2z,0) =0 [ Tk (F.) (t,s,2z,v)ds, t>0,(z,v) € Z x B,
FE(O,S,I,’U) :O_efo'sfin(x,,v), S>Oa (I,U) € Z€ XB27
with unknown F, := F.(¢,s,z,v). We here establish the relation between theses

two initial boundary value problems, (Z;) and (3;)

Proposition 3.1. Assume that f'" satisfies the assumptions above. Then

(1) for each € > 0, the problem (¥.) has a unique mild solution such that

(t,xz,v) — |F.(t,s,z,v)|ds belongs to L>([0,T] x Z. x B?)
0

for each T > 0;
(2) moreover

0 < F.(t,s,z,v) < ||f7;nHLoc(]R2><]R2)O'eigs
a.e. int,s >0, v € Z. and v € B2, and

/ F.(t,s,z,v)ds = fe(t,x,v),
0

for a.e. t >0, x € Z. and v € B2, where f. is the solution of (Z.).

Proof. (1) By the methods of characteristics, we see that if a mild solution F;
of (X.) exists then it must satisfy
(31) Fs :F1,5+F2,s
with
F o= ]ls<,5]ls<”5(£ v)e_”FE(t — 5,0,z — sv,v)

= 15<t18<675(%)v)0_6703 /O Ty (F.) (t — s, 7,2 — sv,v)dr,

and
Fs .= ]1t<s]1t<575(%)v)67"tF5(0, s—t,x—tv,v)
t<€Ta(%’v)cre*"5fm(z — tv,v).

a.e. in (t,s,2,v) € Ry x Ry x Z. x B2 We define then for all T > 0 Xr
the set of measurable functions G defined on Ry x R} x Z. x B? such that

= ]]-t<s]]-

(t,z,v) — / |G(t,s,z,v)|ds € L= (R+ X Zg X IB%Q) )
0
It is obviously a Banach space for the norm

e / Gt 5,2, 0)|ds
0

L (RyxZ. xB?)



100 CHAPTER IV : THE NONMONOKINETIC CASE

Next, let T : X — X defined by
o0
T(G) = ]15<t]18<67'5(5 U)oe_“s / T (G) (t — s, 7,2 — sv,v)dT
e’ 0

for each G € Xp. Notice that since k € C (182 X 182), we have k € L™ (B2 X IB%Z) .
That being said, observe that for each n > 0

TGl = H [ 6. as
0

L>(Ry xZ.xB?)

t [e%}
/ aef‘”]ls@&(£ v) / Ty (T"flG) (t—s,7,20 — sv,v)dr
0 < Jo

t e8]
/ / / k(v,w) (T"'G) (t — s, 7,2 — sv,w)dvdr
o Jo Jm2

L (Ry X Z. xB?)

<o

L (Ry X Z. xB2)

/OO (T"flG) (t,7,x,w)dr
0

S (THkHLac(IBzX]EQ)

L> (R4 X Z: xB?)
t

< ol orsey [ 1T Glads:
0

By induction

U||k||Loo B2 xB2 "
176l < ¢ - I
We have
FI,E = TFS
so that

F,.=TF, + Fy.

This integral equation has a solution F, € X7 for each T' > 0 given by the
serie

F.=) T'F.

n>0

that converges normally in the Banach X7 as

n 0||k||L°° B2 xB2 "
>IT Fz,alXTS;)( i )5,y < 4o

Moreover, this solution is unique in X7 since if G, is another solution in
X1 we have

||Fs - GEHXT = HTn(FE - GE)”XT

< (U\|k||L°°(JB2xIBZ))n
- n!
— 0 as n — +oo.

”Fe - GEHXT

(2) We observe that if G € X7 is nonnegative a.e. on Ry x R, x Z. x B? then
TG >0ae. on Ry xRy x Z. x B2 Since f" > 0 a.e. on R? x B2, we
have Fp . > 0 on Ry x Ry x Z, x B2 and consequently, the serie defined
above is nonnegative on Ry x R, x Z. x B2. Next, integrating both sides
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of (3.1) with respect to s leads to

/ Fa(t7s7x,v)ds:/ FLE(t,s,x,v)ds—i—/ Fy(t,s,x,v)ds
0 0 0

= ]1t<€rs(%’v)fm(x —tv,v)e” 7!

t [ee]
4 U/O eigs]ls<sfs(§,v) <Tk/0 F5d7'> (t— s,z — sv,v)ds

in which we recognize the Duhamel formula giving the unique mild solution
fe of (E¢). Hence

fe(t,z,v) = / F.(t,s,z,v)ds ae. in (t,z,v) € Ry x Z. x B
0

As (E.) satisfies the maximum principle, we have

0 < fo(t,z,v) < fi"(x,v) a.e. in (t,z,v) € Ry x Z. x B2

And (3.1) can be recast in the form
(

F.(t,s,2,0) = 1,1 oe” 7Ty (fo) (t — s, — sv,v)

s<67'5(§,'u)

+ Tl )ae_"sfm(m — tv,v)

t<s7—5(§,v
S 06_05||fin||Loo(R2 xB2)

a.e. in (t,s,7,v) € Ry x Ry x Z. x B2 which concludes the proof.
U

3.2. The distribution of free path lengths. We extend the e—vanishing limit
of 1 in the nonmonokinetic case.

t<ere(Z,v)
Lemma 3.2. Let 7. be the free path length defined in. Then for each t > 0
52) Bicer (2.0 > 2 (1)

in L (R? x B?) weak-* as € vanishes.

Proof. Recall that for each ¢ > 0

(3.3) 1t<ers(§,w) — p(t)

in L°°(R? x S') weak-* as e vanishes — see Lemma 1 in chapter II ([1]). Since the
linear span of functions x = x(z,v) € C§°(R? x B?) is dense in L!'(R? x B?), and

the family Licor (20) 19 bounded in L>(R? x B?), it is enough to prove that

// x(x,v)]lkﬂe(ﬁw)dxdv — // p ([v]t) x(z,v)dzdv as e — 07,
Z.xB2 € R2 xB2

for each y € C§°(R? x B?). Notice that

1
// X(m,v)]lt@%(gm)dxdv / / / X(:C,rw)]lt<sT€(§7m)rdrdwda:
Z.xB2 z.Jo Jst

1
= / / (/ X(xa Tw)]]-rt<5-r (£ w)dw> Td’rdl‘_
eJ0 St =(Z,

As x € Cg°(R? x B?), for each r > 0, (z,w) — x(z,7w) € L>®(R2 x S.). That
implies by (3.3)

x(z,rw)l » ydw = p(rt) | x(z,rw)dw as e — 07,
1 rt<57'5( - ,w) 1
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Thus

1 1
/ / (/ x(w,rw)l . (= w)dw> rdrdr — / / p(rt)/ x(z, rw)dwrdrdz
. J0 st e R2 J0 st

_ /R /Wp(h)\t) (e, v)dadv.

which is the announced result. O

3.3. Extending f. by 0 in the holes. We recall (see Lemma 2 in chapter II ([1])
) that for each & > 0 the function {f.} satisfies

(at + U-vx) {fs} + U({fe} =Tk ({fe})) = (U.nz)fg |BZ€><]E%2 002
in D' (R% xR?xB?), where 8y, is the surface measure concentrated on the boundary
of Z., and n, is the unit normal vector at x € 0Z,. pointing towards the interior of
Z.. Moreover (see lemma 3) for each R > 0 the family of Radon measures
(v.ng)fe |loz. xB2 0oz, |—Rr,R]>xB?
is bounded in M([—R, R]? x B?).

3.4. The velocity averaging lemma. We recall first a classical result averaging
that is a special case of Theorem 1.8 in [3].

Proposition 3.3. Let p > 1 and assume that fo = f:(¢,x,v) is a bounded family
in LY (RS x R% x B~Y) such that

loc
T
sup/ // |0 + v - V fe|dedvdt < 400
e>0.Jo B(0,R)xBd—1

for each T > 0 and each R > 0. Then, for each ¢ € C(B?~! x B4~1), the family
py [fe], defined by

Py [fa] (t,x,?}) = s fs(t7xaw)w(vaw)dwa
Bd—
is relatively compact in Li, (RS x RZ x BI~1).
A straighforward consequence of Proposition 3.3 is the compactness in L}, of
(Tk ({f})).>o which a key argument in the proof of Theorem 2.2.

Lemma 3.4. Let f. = f.(t,x,v) be the family of solutions of the initial boundary
value problem. Then the families

T ({fe}) = {Tk (£}

IR

are relatively compact in L} (R} x RE x BI~1) strong.

loc

and

Proof. By the Maximum Principle,
|fe(t,2,0)] < 1™ (| oo (r2 xB2)
a.e. int>0,z € Z. and v € B2, so that
Slglp I {f} ||L°°(R+><]R2><JE2)'
We recall that {f.} satisfies
O +v.Ve) {fe} +o({fe} = Ti ({fe}) = (vna) fe |oz. xp2 doz.
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in D'(R% x R? x B?). By the inequality above and given that & is nonnegative, one
has

lo(Ti ({fe}) = {feDllLoe®y xroxB2) < 20| {fe} | (m) xR2xB2)
since Ty (1) = 1. Besides we know that the family of Radon measures
pe = fe |az.xm2 (v.12)002z,
satisfies

sup/
>0 J[0,T)x [~ R, R]? xB?

for each T' > 0 and R > 0. Consequently, Proposition 3.3 implies that the family

Ty, ({fe})

is relatively compact in L}, (R4 x R? x B?). O

|pe| < +o00

3.5. Uniqueness for the homogenized equation. Consider the Cauchy prob-
lem with unknown G = G(t, s, x,v)

p([v[(tAs)) 2 2
O 4+v-Vp+0s)G=—-0G+ |v|—/———=G, t,s>0,z € R v e B,
@ ’ ool ns))
G(t,0,z,v) = S(t, x,v), t>0,(x,v) € R? x B?,
G(0,s,2,v) = G"(s,2,v), s> 0,(z,v) € R? x B2

If, for a.e. (t,s,2,v) € Ry x Ry x R? x B2, the function 7 +— G(t+7, s+ 7,2+ 7v,v)
is C! in 7 > 0, then, since the function p € C'(R,) and p > 0 on R, , one has

(4 4+ ompuiflilinsss)

ar p(|v|(t/\8+r)))G(t+7»5+7,x+7—v7v)

=e "p(lv|(tAs+T))

d (e TG(t+ 1,8+ T,z + TV,0) —0
dr N

dr p(lvl(t A s+ 7))

Hence
e TGt + 1,84+ T, + TV, V)

B el ns + 1)

is a constant. Therefore
[ (=) ift <s,
r(0) = { ['(—s) if s <t,

so that
(3.4) ‘
G(tv S,LC,’U) = ]]-t<se_atp(‘v|t)Gm(s_ta x—tuv)+ls<te_asp(|v|s)5(t—s,x—sv,v) .

Proposition 3.5. Under the assumptions and with the notations above, the prob-
lem (X) has a unique mild solution F such that

(t,x,v) — / |F(t,s,z,v)|ds € L™ (R x R* x B?).
0

This solution satisfies

F(t,s,x,v) = lycsoe 7 'p (Jult) f"(z — tv,v)
+ ILS<tUe*"5/ (TR F) (t — s,7,@ — sv,v)dr
0

for a.e. (t,s,r,v) € Ry x Ry x R? x B2. Besides, F >0 a.e. on Ry xR, x R? x B?
if >0 a.e. on R? x B2,
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Proof. If a mild solution exists, it must satisfies the integral equation worked out
before the proposition. For each T' > 0 define V1 the set of measurable functions
G defined a.e. on Ry x Ry x R? x B? such that
oo
(t,z,v) — / |G(t,s,2,v)|ds € L™ (Ry x R* x B?).
0
It is obviously a Banach space for the norm

1Glyy = / Gds

Let the operator Q € L (Yr) defined by

L (Ry xR2xB2)

oG = ]ls<tae_"s/ (TxG) (t — s, T, — sv,v)dT
0
for each G € Yr. A computation similar as in the proof of Proposition 3.1 shows
that for each n > 1

. (01l 52 x2))"
19"y, < LGl

Besides integral equation (3.4) can be recasted in the form
F=F +QF
where
Fi(t,s,z,v) == Lic,oe 7'p ([v|t) [ (z — tv, ).

Consequently, as established in the proof of Proposition 3.1, the integral equation
has a unique mild solution F' in Yr given by

F= Z O"F;.
n>0

Finally, we observe that if G > 0 a.e. on Ry x Ry x R2 x B2 then for each n > 0
Q" >0a.e. on Ry xRy x R? x B2. Therefore, if f > 0 a.e. on R% x B2, we have
Fy >0ae on Ry x Ry x R? x B? and thus F > 0 on R, x Ry x R? x B2, (]

3.6. Proof of Theorem 2.2.

Proof. We recall that the solution F; of (3.) admits a decomposition (see equality

(3.1))
Fs:Fl,e+F2,s

with
Fic(t,s,2,0) = ]15<t118<575(£ U)Uefgs/ Ty (F.) (t — s, 7,2 — sv,v)dT,
e’ 0

and

Fo (t,s,z,v) == 15l oe 75 iz — tu,v).

t<s‘ra(§,v)

Passing to the limit as e — 0" in the term Fj . is easy. By Lemma 3.2 we have
(3.5) Lcer.(2.0) —P(I0]0)
in L™ (R2 X ]B%Q) weak-* as ¢ — 01 for each ¢ > 0. Hence

F2,s(t, S,:L',U) = Ti<sl Jeigsfin(l' - tv,v)

t<675(§,v)
— Lyesp (J0[t) o775 7 (2 — tv, )
in L= (R4 x Ry x R? x B?) . We denote in the sequel

Fy = Tycsp (|v|t) e 75 fi (2 — tv, v)
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Next, consider the term F; . We have the uniform bound

sup || {f=} | R, xr2xB2) < [|f7]| L (R2xB2)

e>0
thus by the Banach-Alaoglu theorem
(3.6) {f-} = fin L®(Ry x R? x B?) weak-*

for some f € L=(R, x R? x B?) after a possible extraction of subsequence ¢ — 0%.
Therefore, by the strong compactness lemma implies then

Tk ({f€}> — Tk (f) in Llloc(R‘F X R2 X BQ)a
as € — 07. Hence we have
{F.} = Fo+ Lseip(Jv|s) oe™7° (Ti f) (t — s, — sv,v),
= F

: 1
in L,

(R4 x R? x B?) . Fix T' > 0, we remark that for each ¢ € [0, 77, on has

T T
/ F.(t,s,z,v)ds = / Fi(t,s,z,v)ds + eigt]lKETE(g v)fm(a: —tv,v)
0 0 <’

since F . is supported in s <t < T so that

T T
/ F.(t,s,z,v)ds = / F(t,s,z,v)ds
0 0

: 1
in L,

(R4 x R? x B?)-weak as ¢ — 07. And on the other hand we have

Amﬁuwéf

in L>°(R; x R? x B?) weak-* as ¢ — 0T and therefore in L], (R} x R? x B?) weak
as € — 0. By uniqueness of the limit, we have

o ~
(3.7) /‘szf
0
and so that F satisfies
F(t,s,z,v) = Fy + Loy (Jv]s) ae*”/ (Tkﬁ) (t—s, 7,2 — sv,v)dr.
0

By Proposition 3.5 the integral equation above has a unique mild solution that is
F and thus

F=F
and
F. =~ Fin L}, (Ry x Ry x R? x B?) — weak
as € — 07, Finally, (3.6) and (3.7) imply

{ﬂkAfzéme

in L}, (R+ x R? x B2)—Weak as ¢ — 0T which concludes the proof of Theorem
2.2. U
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4. THE MASS EQUATIONS

4.1. The Renewal PDE governing the total mass of the homogenized
system. We begin with a proof of Corollary 2.3.

Proof. Should a mild solution M of the Renewal PDE above exist, it must satisfy
(4.1)

p(t, 5,0) = Lecsoe™ 7 p(joft)u™ (v) + lls<te’“p(lv\5)/ Ty, (u) (t = s, 7, v)dr.
0

We define for each T" > 0, Vr the set of measurable function G defined on R X
R, x B? such that

(t,v) — / |M(t,s,v)|ds € L= ([0,T]; L* (B?)).
0
It is a Banach space for the norm

M|y = H/ / |M(t, s,v)| dsdv
B2 JO
Introduce here K : Vr — Vr defined by

L= ([0,77)

o0
K(M):= ]ls<te_”p(\v|s)/ Tp (M) (t — s, 7,0v)dT
0
for each M € Vr. As for each v € B? and ¢t > 0, p(Jv]) < 1, we show, with a

argument similar as in Proposition 3.1, that for each n > 0

(O’||kHLoc(]B2><BZ))n
n!

KMy, < 1My, -

Equation (4.1) is equivalent to
u(t, s,v) = Licsoe 7 p(|v|t) ™ (v) + (Ku) (t, s,v).
It has a solution pu € Vp for each T' > 0 given by the serie
(4.2) W= Z Kryim
n>0
with
v (t,5,0) = Licsoe” " p(jo]t) '™ (v) € Vr.
This serie converges normally in the Banach Vr since

n. in O—”kH (B2 2 " mn
S ey, < 3 Rl Een) oy

n!
n>0 n>0

Moreover, this solution is unique in Vr since if ' est another solution in Vr, we
would have

/ _ /
e = lly, = K" (= 1)l
< (U||k||L°°(IB%2x]B2))n
- n!
— 0 asn — 4oo.

e = Iy,

Observe that since k& > 0, K (V; ) - ij where V; is the cone of nonnegative
functions of Vr. Therefore (4.2) implies, as p'" is nonnegative, that

p is nonnegative on Ry x R, x B2,
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Finally, let F' be the mild solution of the problem (X) obtained in Proposition 3.1.

Since F > 0 a.e. on Ry x R, x R? x B? is measurable, one can apply the Fubini
theorem to show that

m(t,s,v) : :/ F(t,s,z,v)dx
R2

= Tycsoe ""p(|v] t)/ i (x — tv,v)dx
R2

+ Lscroe™7%p(|v] 5)/ / Ty (F) (t — s, 7@ — sv,v)dzdr
o Jr2

—Licaoe pl(ol) [ (. 0)dy
R

+Loep(lols) [ [ Te(E) o)y
o Jr2

—Licsoe pl(ol) [Py 0)dy
RQ

+ Lscroe™ 7% p(|v] s)/ k(v,w)/ F(t —s,7,y, w)dydwdr
0o Jm2 R2

= Li<soe” 7' p(fv] )" (v)

+Lcoe p(lols) [ Tlm) (e~ s,r)dr
0

where the second equality follows from the substitution y = = — tv that leaves the
Lebesgue measure invariant. In other words,

m satisfies the same integral equation as p.

Now the solution f. of (Z.) satisfies

f- >0ae. onR; xR?xB? and // (t,y,v)dydv < // i (y,v)dydv,
2><IB%2 R2 xB2

which implies by Theorem 2.2 that

“+oo
/ fs(t,y,v)dvdyé/ / / F(t,s,y,v)dvdyds.
ly|<R JB2 0 ly|<R JB2

Hence, by Fatou’s lemma

“+ o0
/ / / F(t,s,y,v)dvdyds < lim // fe(t,z,v)dzdv
0 ly|[<R J B2 e—0t R2 xB2
S// ™ (y, v)dydv,
R2xB2
a.e. int > 0.

Letting R — +o0o0 in the inequality above, we see that m € L>®(R;"; L' (R} xB?))
and so that for each 7" > 0

m € Vr.

Therefore, since the mild solution of the Renewal PDE is unique and nonegative
a.e. on Ry x Ry x B2, one has

/// F(t,s,z,v)dsdedv = // wu(t,s,v) ae inte R,
R4 xR2xB? R4 xB2
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4.2. The total mass in the vanishing ¢ limit. By Theorem 2.2, the solution f.
of (E;) satisfies

+oo
{fe}— / Fds in L*(R; x R? x B?) weak-x;
0

therefore, checking that

/ /R szz{fs}dardv - /0 +Oo / /]R , ., Pdadvds = M(t)

reduces to proving that there is no mass loss at infinity in the x variable.

Lemma 4.1. Under the same assumptions as in Theorem 2.2

//Exw fe(t, x, v)dzdo = /A2XB2{fg}(t,x7v)dxdv — M(t)

strongly in L}, .(Ry) ase — 0.

Proof. Going back to the proof of Proposition 3.1 (whose notations are kept in the
present discussion), we have seen that

F.=) T'F: onRy xRy x Z. xB?,
n>0
with the notation
Fyc(t,s,x,v) = ]]-t<€7'5(§,v)]lt<sae_asfin(x —tv,v).
Since T® > 0 a.e. whenever ® > 0 a.e., the formula above implies that
F.<G:= ZT”GQ a.e. in (t,s,,v) € Ry x Ry x Z. x B?,
n>0

where
Go(t,s,x,v) = licgoe 75 f"(x — tu,v).

Thus, G satisfies the integral equation

G=G:+TG
meaning that G is the mild solution of
(Or+v- -V, +05)G = —0G, t,s >0, (z,v) € R? x B2,
+oo
G(t,0,z,v) =0 KG(t,s,x,v)ds, t>0, (z,v) € R? x B?,
0
G(0,s,2,v) = fi"(x,v)0e %, s>0, (r,v) € R? x B?,
Reasoning as in Proposition 3.1 shows that
+oo
g(t, z,v) = G(t,s,z,v)ds
0

is the solution of the linear Boltzmann equation
(O +v-Vy)g+o(g—Kg)=0, t>0,z2eR?, |v]=1,
g(O,x,v):fi"(x,v), :I}ERZ, |U|:1'

In view of the assumption (1.3) bearing on £, we know that

G>0ae. on Ry x Ry x R? x B?
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+oo
/ // G(t,s,z,v)dxdvds = // g(t, z,v)dzdv
0 R2 xB2 R2 xB2
= // f(x, v)dzdv
R2xB2

0<{F}<G

/// G(t,s,z,v)dsdxdv = // f(z,v)drdy < +o0.
Ry xR2 xB2 R2 xB2

Then we conclude as follows: for each R > 0, one has

+oo
// fe(t,z,v)dadv —/ // F(t,s,z,v)dzdvds
- xB2 0 R2xB2
+oo
:/ / /{FE}(t,s,x,v)dvdxds
0 |z|>R JB?

+ /0+OO /|ng /}B2 ({F.} - F)(t,s,x,v)dvdxds

“+o0
—/ / / {F}(t,s,z,v)dvdrds = Ip(t) + [Ig(t) + [1IR(t).
0 |z|>R JB2

and

for each t > 0.
Summarizing, we have

and

First, for a.e. t > 0, the term Ir .(t) — 0 as R — +oo uniformly in € > 0 since
0<{F.} <G and G € L=(Ry; L' (R, x R? x B2)).

Next, the term I1p . (t) — O strongly in L}, (Ry) as ¢ — 0T for each R > 0 by
Lemma 3.4.

Finally, since {F.} — F in L} (R, x Ry x R? x B?) weak as € — 0T, one has
0<{F} <G, sothat F € L*(R,; L*(R, xR? xB?)). Hence the term IIIg(t) — 0
as R — +oo for a.e. t > 0.

Thus we have proved that

+oo
// fe(t, z,v)dedv — / // F(t,s,z,v)dzdvds
Z. xB2 0 R2 x B2
in L}

1oe(R4) and therefore for a.e. t > 0, possibly after extraction of a subsequence
of e = 07. O

4.3. An integral equation for ¢,v — m(t,v). We recall the notation

m(t,v) := / wu(t, s, v)ds.
0
with p is the unique mild solution of the renewal PDE.

Lemma 4.2. The function m satisfies the integral equation

m(t,v) = m(0,v)p (Jv]t) e 7" + U/o p(|Jv|s) =T (m)(t — s,v)ds.

Proof. We apply the same method as in Proposition 3.5 for deriving the explicit
representation formula for F' in order to find an exact formula for m. Indeed, by
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the method of characteristics,

p(t,s,v) = Loeip(|v| 8)e™ 75 u(t — 5,0,v) + Licsp(jv| t)e” 7 u(0, 5 — t,v)

(4.3) = Lol e | T () (¢ — 5,0, 0)du

+1t<sp(|v|t)oe_°'s/ fi"(x,v)dv.
RQ

We notice that

/OooTk () (lf—S,u,v)du:/OOO/B2 k(v w)p(t — s, u, w)dwdu

= /13;2 k(v,w)m(t — s, w)dw = Ti(m)(t — s,v).
Therefore, integrating both sides of (4.3) in s € Ry gives
m(t,v) = e 7'p(Jv|t)m(0,v) + /Ot ae”%®p (Jv] s) Te(m)(t — s,v)
a.e. int > 0 and v € B? with
m(0,v) = /2 [ (x,v)de,
which is precisely the desired integral e(]fuation for m. O

5. ASYMPTOTIC BEHAVIOR OF THE MASS IN THE LONG TIME LIMIT IN THE
IRREDUCIBLE CASE

We recall that we henceforth assume for simplicity that the operator T} has finite
rank. That means there exists n € N and two finite sequences (¢;)1<i<n € L*°(R?)
and (¥;)1<i<n € L'(R?) such that for each f € L'(R?)

6.1 10 = Y- ( [ rwet)an ) o)

i=1

In other words T}, € L*°(R?) @ L'(R?) c £ (L' (B?)), and

Ty = ¢ @1 in L(L'(R?)).

i=1

5.1. A system of integral equations. Let us return to the integral equation

m(t,0) = m(@.0pel)e "+ [ pllols)e**Ti(m)(t - 5.0)
Define
(5.2) wi(t) == m(t,v)d;(v)dv, 1 <i<mn,

R2
so that
¢
m(t,v) = m(0,v)p(|v[t)e” 7" + 0/ p(jv]s)e” 7 Tk (m)(t — s,v)ds
0

— m(0,)p(jolt)e"
vo [ bl Z ([ awimte - s.we) oy

= m(Oo)p(ole ™ +0 Y [t = ols)e v 0)ds.
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If the asymptotic behavior of p; in the long time limit are known for each i € [|1,n|],
then one deduces from the equality above the asymptotic behavior of m(.,v). We
begin with the integral equation governing the evolution of (1), ;,, -

Introduce here the matrix convolution product:

Definition 5.1. Let n,m,p € N and let F' be a n X p matriz valued function and
G be a p x m matriz-valued function whose entries belong to L'(R,). We define
H := F % G the matriz convolution product by the formula
Pt .
. 1<i<n,
hij(t) := ; ; fir(t = 8)gr;(s)ds, | <i<m,

where fir(t), gr;(t) and h;;(t) designate the entries of F(t),G(t) and H(t) respec-
tively.

In the case n = p = m = 1, we recover the classical convolution product of two
functions defined on the half-line. We have thus defined the convolution exactly as
we define matrix multiplication except that we convolve entries instead of multi-
plying them. Like matrix multiplication, matrix convolution product is associative
but is noncommutative except in the scalar case n =m =p = 1.

Let us return to equation above:
nooat
mit,0) = m(0,0)p(loitle ™+ 3 [ it~ p(lols)e v (o).
i=170

Multiplying both sides of the equality above by ¢;, integrating in v € R? and
applying Fubini’s Theorem leads

ni(®) = [ m(Ov)p(lelte o, (0)ao
¥ ai / it~ 9) ([ ptisestorss o) s

We define the matrix-valued function
(54) P(t) = (pU (t))lgi,jgn for each t Z 0,

where

(5.3)

pij(t) := / @i (V)Y (v)p(Ju|t)dv for each t >0, 1 <4,j <n
R2
together with
(5.5) K(t) := oe 7' P(t) for each ¢ > 0.
We also define
g1(t)
(5.6) g(t) :== :
gn(t)

with

gi(t) :== / m(0,v)p(|v[t)e 7 ¢;(v)dv  for each t > 0 and 1 < i < n.

R2

With these notations, (5.3) is transformed into the system of integral equations

(5.7) wi(t) =g;(t) + Z(kﬂ * p;)(t) for each 1 < j < n.
i=1
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In other words, the vector-valued function p defined by

pir(t)
p(t) = :
in (t)
is a solution of the following vector-valued integral equation
(5.8) u(t) = g(t) + (K * ) ).

The equation above is of renewal type. At variance with the scalar Renewal equation
(see [11], pages?) the asymptotic behavior of the vector-valued case is much more
involved, as it relies on the algebraic structure of the matrix kernel K. More

precisely, if the matrix
/ K(s)ds
0

is irreducible then the asymptotic behavior of i is homogeneous (see [8],[10] or [13]).
But dropping the irreducibility assumption may lead to a much intricate behavior,
as we shall see below (see also [9] for an other example).

So that, the present section is devoted to the study of the asymptotic behavior
of (u) in the long time limit with the further assumption if irreducibility of the
operator Tj. The evolution of (u) when Ty is reducible is discussed in the next
section.

For each measurable A C B2, we denote

Iy := {f€L1 (Bz) |suppf§A},

and denote by A the uniform probability measure on B2. In other words, for each

measurable A C B2,
A(A) ::/ dv.
vEA

We next give the definition of irreducibility for an operator of L' (IEB2) .
Definition 5.2. Let T € L (Ll (]E%Q)) . The operator T is irreducible if and only if
T(Ia) CIsae MNA) €{0,1}.

We call reducible an operator that is not irreducible.

Notice that T being irreducible is equivalent to

/IB2\Q </Q k(w’v)dw> dv >0

holding for every subset  C B? satisfying
0< A () <1
We establish in the present section

Proposition 5.3. Assume that Ty, is irreducible. Then there exists &, € (—0o,0)
and ¢; > 0 for each i € [|1,n]] such that

pi(t) ~ cietot as t — +oo.

Before going further, we establish a lemma about Tj. We will establish that
assumption (0.3) excludes precisely the possibility of T nilpotent.

Lemma 5.4. Let T, € L (L' (B?)) be as in (0.3). Then for each nonnegative
f e L (B?)

[ nnwio= [ s

B2 B2
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Proof. Denote L% (R?) the cone of nonnegative integrable function. Since the kernel
is nonnegative, Ty, (L1 (R?)) C L% (R?) and for each f € L} (R?), by the Fubini-
Tonelli Theorem

/RQ Ty, (f) (v)dv = /R (/R k(v,w)f(w)dw> dv,

fw)dw
]RQ

5.2. A renewal theorem for vector-valued equations.

5.2.1. The Banach space M,, (L' (R)) and the renewal equation. We denote M, (R)
the real n x n square matrix algebra and M, (R ) the subset of matrices whoses
entries are nonnegative. Notice that it is a cone, i.e. a closed convex set K such
that A C K for all A > 0. Moreover it is proper: K N (—K) = {0}. As proper
cone, M,,(R.) induces a partial order < on M,,(R) by the following rule:

For each A, B € M,(R), A< B if and only if B— A € M, (Ry).

In the same way, we denote A < B if and only if B — A is a matrix whose each
entry is positive.
As matrix norm, we take

n
[ Alloc,00 == sup Z|aij|'
1<i<n i

Define now M,, (L* (R)) the vector space of matrices whoses entries are integrable
functions defined on R, with values in R. It is a Banach space for the norm

IFIl, = sup Z TSI

Moreover, we notice that for each F, G € M,, (L' (R)) we have

n ~ | n
1P <Gl = s 3 [ 3(s)ds| .
Isisn ;70 k2
n o N t
< su ik(t—s (s)| dsdt,
< s 305 [ it )l lgws o)
j=1 k=1
< su iL(s ds/ (s)|ds.
< pz_j/ o)l ds [ oy (s)
In other words
e ecll, < | [ reas [“owa
(5.9) e ’
<| | SN
since || - |loo,00 1S @ norm for the Banach algebra M,, (R).

Hence (M,, (L' (R)), *,|||.||1) is a Banach algebra. Eventually, introduce M,, (L> (R))
the Banach space of matrices whose entries are essentially bounded functions with
the norm

I[[F|l|loc = sup sup |fi;(t)].
1<i,j<n teR,
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We check easily that for each F' € M,, (L* (R)) and G € L> (R4; M,, (R)) we have
F+G,G*F e M, (L' (R)) with

HE Gl < NEIL NG »

and
NG * Flll; < Gl HIEN; -

We henceforth denote for each F € M,, (L' (R))

| reas= ([ noas) e

Now (LP (Ry)) with p € [1, +00] denotes the vector spaces of vectors whose entries
are LP—integrable functions defined on R with values in R. It is a Banach space
for the norm

I lloop = s 1 ill o,
Ssn

With the Young inequality and a similar argument as in 5.9, we have for each
F € My, (L' (R)) and for each f € (L* (Ry)) with p € [1,400], F % f € (L? (R}))
with

(5.10) IE  fllop < NEI N1 lloo p -

Let A € M,, (R), we designate its spectral radius with p(A4). We now give

Proposition 5.5. Let F' be in M,, (L' (R)) with F >0 such that

p (/OOO F(s)ds) <1

and let g be in (LP (R4))"™ with p € [1,400] then the renewal equation
f=g9+Fxf
has a unique solution in (LP (Ry))" that is
D Fxg,
n>0

with F*0 := §I,, where § is the identity element for the scalar convolution product
and I, the matrixz identity and F*" .= F « F % ---x F .
—_—

n factors

Proof. For each N > 0 one has

N N
ST Fragl < SO IFT gl

n>0 n>0
o,p

N
<D ME N gl by (5.10)

n>0
([ oy

N
<l9lloop
1
) —>p</ F(s)ds) <lasn— +4oo,
00,00 0

by (5.9).

n>0 00,00

Noticing that

(IO reo)
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one concludes by the root test that the series

N

n>0

converges absolutely in (L” (R4 ))" and so that

S Fage (L (Ry))".

n>0
Now, one observe that
oo o0
S Fsge (LP(RY)) = (0L)xg+ Y FMxg
n>0 n>1

=g+ f* ZF*"*g

n>0

hence, it a solution of the Renewal equation. Finally, for the uniqueness. Assume
that f; and fy are solution, so that f := f; — f is a solution of

f=Fxf
and verifies for each n > 1
f — F*n * f'
That implies that for each n > 1

o< || ([ F@as) | sl
Since
p</ F(S)ds) <1
0
one has
H (/ F(s)ds> — 0 asn — +oo,
0 00,00
so that
1fllsop =0,
meaning that f; = fo in (L? (R}))". O

With a similar argument, one has

Proposition 5.6. Let F' be in M,, (L' (R)) with F >0 such that

p (/OOO F(s)ds) <1

(Ry))"™ with p € [1,4+0o0] then the renewal equation

f=g9g+Fxf
(R)"™ that is

(o)
ZF*” * (.

n>0

and let g be in (LY

loc

. Lo p
has a unique solution in (L,
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5.2.2. Irreducibility. Recall now the notion of irreducibility for matrix.

Definition 5.7. A square matriz M is said reducible if and only if there exists a
permutation matrix P such that

r (A B
PMP_<O pl

with A,B and C are matrices. If M is not reducible, it is said irreducible.
We give here two criteria characterizing the reducibility of a matrix.

Criterion 1. A matriz A is reducible if and only if there exists a mon trivial
partition I,J of [|1,n|] such that for each (i,j) € I x J one has a;; = 0.

For the other criterion, we first give a definition.
Definition 5.8. Let A a matriz and i,j € 1,--- ,n. One said that there is a chain
joining i and j if and only if there exists a finite sequence (k;))_, € [|1,n|] with
p <nky =1 and k, = j such that ayx,., # 0 for every 0 <1 <p. A such sequence
(ki) is denoted C;j and is called a chain joining ¢ and j.

The second criterion is then

Criterion 2. A matriz A is irreducible if and only if for each i,j € [|1,n|], there
exists a chain joining i and j.

We recall then the Perron-Frobenius Theorem

Theorem 5.9. Let A be an irreducible matriz with nonnegative entries then

(1) p(A) is a simple eigenvalue of A and there exists two vectors x,y with

positive entries
Az = p(A)x
and
)" A= p(A)H)".

(2) Let B € M,, (R}) such that 0 < B < A then p(B) < p(A). Moreover

B # A implies p(B) < p(A).

5.2.3. The Renewal Theorem. Let M € M,, (L' (R4)), we denote

My = </ mij(s)ds> .
0 1<i,j<n

One assumes M is irreducible with p (M) = 1. By The Perron-Frobenius Theo-
rem, there exists a positive right eigenvector m,. and a positive left eigenvector m;
such that
Moom’r = my
and
mlM =m;.
We construct a matrix-valued renewal measure H by the formula
H(dt) :=> M*"(t)dt,
n=0
and each solution of the renewal equation
(5.11) x(t) = y(t) + (M = x)(t)
with y € L' (R, ;R"), has the form

x(t) == /0 H(ds)y(t — s),vt > 0.
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Theorem 5.10. Under the assumptions and with the notations above, the matriz-
valued renewal measure H is decomposed as

H=H, + H,,
where Hy is a finite matriz-valued measure on Ry and Hy(dt) := (hi;(t))};_dt
where for each 1 <i,5 < n, hi; is bounded and continuous with
™M1y

(5.12) M s )= = e s (syds) ooy
0 ™

t——+o0

In other words, for each f € L*(Ry;R™)
/Hds (t—s)=(Hy=* f)(t /Hgdsf(t—s)Vt>0

with fooo Hy(ds) < +o0.

For the proof of this theorem, see for instance [10, 13]. Any decomposition
above is known as a Stone decomposition. It is not unique but the limit (5.12) is
unique. It enables to remove the directly Riemann integrable assumption (see [11],
pp. 348-349) and gives us an short proof of the following renewal theorem

Theorem 5.11. Assume moreover that y € L™ (R ;R™) and lim;—, 1o y(t) = 0.

Then
tllinoox(t) = DOO/O y(s)ds

mymmy

my (fy° sM(s)ds) m

with

D =

Proof. We have for each t > 0

(t) = /0 H(ds)y(t — s).

And let (Hy, Hs), a Stone decomposition, then

2(t) = (Hy * y)(t /Hst (t—s).

First, since y € L>®(R4;R™), there exists 0 < C' < oo such that |y(¢)] < C a.e.
in t € Ry. Since Hs is finite measure, t — C' € Ly (Ry;R™) so that (y(t — ),
is dominated by a Hy—integrable function. Besides y(t) — 0 as t — +o0. Conse-
quently, one has by dominated convergence that

t
/ Hy(ds)y(t — s) — 0 as t = +oo.
0
We establish with a similar argument that

lim (H; *y)(t) MR

o0 T m (J5F sM(s)ds) my /0 yls)ds.

O

5.3. The vector-valued intergral equation (5.8) and the matrix kernel K.
We have noticed that the essential assumption for the Renewal Theorem is the irre-
ducibility of the matrix M,. Thus, we have to discuss the long-time limit behavior
of the mass according the irreducibility of the matrix kernel K.
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5.3.1. The irreducibility of P(0). We recall that we have assumed in the present
section that the operator T}, € £ (L' (B?)) is irreducible (see Definition 5.2). We
now give the relation between the two notions of irreducibility presented above.

Proposition 5.12. Let Ty, and P be as in (5.1) and (5.4). The following statements
are equivalent.

(1) the matriz P(0) is irreducible,
(2) the operator Ty is irreducible.

Proof. We first show that (2) implies (1). Indeed, assume that P(0) is reducible.
By criterion 1, there exists a non trivial partition I, .J of [|1,n|] such that

pi; (0) = /B? ¢itp; =0 for (i,7) € I x J.

We define
A= U supp v;
jEJ
and
B = U supp ;.
iel

As (¥, 6i),<; j<,, are nonnegative,

/ ¢i(v)hj(v)dv =0
]BZ

for (é,7) € I x J implies that A (AN B) = 0. Besides, 0 < A(A) < 1. That being
said, we have for each f € I4

/)= (Z és ®¢i> f)
_ Z( 6:(0)f (v )dv) "

_Z</ e dv)?ﬁl—I—Z(/ 6i(v )wi

ieJ

= < - ¢i(v)f(v)dv> Wi € I,

icJ

Therefore, T}, is reducible, and by contraposition, if T} is irreducible, the matrix
P(0) is irreducible.

Now show that the irreducibility of P(0) implies the one of Ty. Assume that Ty
is reducible. There exists A C B2 with 0 < A(A) < 1 such that

Tk (Ia) C 14.

In particular, we have

= (Z ¢ ® wi) (14) =

—Z(/sm dv)wz,

el

zn; ( /A @(v)dv) v

K2

with
I:={ie[|1,n]]|]x (AN supp ¢;) > 0}.
Define
J:=[1,n|]\I.
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These set I,.J form a partition of [|1,n[]. Since Ty (14) € 14 and ([, ¢i(v)dv) >0
for each i € I, we have supp 1; C A for each i € I and fEQ ¢j(v);(v)dv = 0 for
each 5 € J. In other words,

for each 4,j € I x J p;;(0) = 0.

Consequently, by Criterion 1, if I, J is a nontrivial partition of [|1,n|], the matrix
P(0) is reducible. Therefore it remains to show that I,J is nontrivial, meaning
that I # @ and I # [|1,n|].

If I was empty, it would imply that

T, (14)=0
but we have
/ Ti (1a) = A(A) > 0.
IB‘Z

If I = [|1,n[], it would imply that [, ¢;(v)dv > 0 for each i € [|1,n|] and, since
Ti (14) € 14, for each i € [|1,n|], supp 1; C A. Yet, the assumptions

k(v,w)dv =1
B2
and
k(v,w) = k(w,v), for each (v,w) € B?
imply
kE(v,w)dw = 1.
]BZ

In other words

/ k(v,w)dw = Z (/ ¢¢(w)dw> Y;(v) = Zaﬂlzi(v) =1 for each w € B2.

B2 i=1 \/B? i=1

This is obviously incompatible with the condition supp ¥; C A for each i € [|1,n]].
Therefore, I # @ and I # [|1,n]], so that I, J is a nontrivial partition of [|1,n|]. O

Lemma 5.13. Assume that P(0) is irreducible, then P(t), K(t) are irreducible for
each t >0, and [;° e S'K(t)dt is irreducible for each & > —o.

Proof. We recall that the function (¢, v) — p(Jv|t) is positive and that (i, ¢:);<;<,,
are nonnegative. As o

pij(t) = /]B2 @i (V)Y (V)p(Jv|t)dv.

for each t > 0, 4,5 € [|1,n|], one has p;;(0) # 0 if and only if p;;(t) # 0 for each
t>0,i4,j€[1,nl.

Assume now that P(0) is irreducible, there exists for each i, j a chain C;; joining
¢ and j, hence by the remark above this very chain C;; also joins ¢ and j in P(t)
for each ¢ > 0. Therefore by Criterion 2, P(t) is irreducible for each ¢ > 0.

Finally, we establish that K (t) and [~ e *'K(t)dt are irreducible for each t >
0,¢ > —o with a similar argument. O

Proposition 5.14. Let T}, and P(0) be as in (5.1) and (5.4). Assume moreover

that Ty, is irreducible, then
P </ K(t)dt) < 1.
0
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Proof. By Proposition 5.12 the irreducibility of T}, entails the irreducibility of P(0).

We shall show that
( / K(t dt) < p(P(0)).

Notice that for each v € B2\ {0}, and we recall that p(t) < 0 for each ¢t > 0.
Therefore for each ¢,j € [|1,n|] such that p;;(0) # 0 the function p;; is decreasing
with p;;(t) < 0 for each t > 0. We have

/ kij (t)dt = / Jeigtpij (t)dt
0 0

- / e~y (£)dt + pij (0)
0
pi; (0).

The inequality above is strict if p;;(0) # 0 since the term fooo e 7'p;; (t)dt is nega-
tive. So that

IN

0< /0 K(t)dt < P(0),
with -
/ K(t)dt # P(0).
0

That implies by the Perron-Frobenius theorem that

o([ K0 <)

p(P(0) = 1.
As P(0) is irreducible, by the Perron-Frobenius Theorem, there exists a vector x
whose entries are positive such that

P(0)z = p(P(0))z.

We now establish that

We have for each j € [|1,n]]

Ty (1) = Z ( s qsi(vm(v)dv) "

= Z%(OW

As fBZ T: (f) = fB2 f for each nonnegative function, the equality above entails that

i </B2 wi(““”) pi;(0) = /B Wi(v)dv

i=1

In other words,
y" P(0) =y"

v=( [ v )

p(P0)y"z=y"z>0
since yTx is a matrix whose entries are positive. Thus

p(P(0)) = L.

with

That implies that
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Henceforth we denote

(oo}
(5.13) H(t) = K*"(t) for each t > 0.
n=0

5.3.2. An explicit representation formula for .

Proposition 5.15. Under the assumptions and with the notations above, Equation
(5.8) has a unique solution in L*(Ry;R™) that is H * g.

Proof. 1t is an immediate consequence of Proposition 5.14 and Proposition 5.5. [

5.4. The characteristic exponent &,.

Proposition 5.16. Let T}, and P be as in (5.1) and (5.4) and let
K(t) := oce 7' P(t)

for each t > 0. Assume moreover that Ty, is irreducibleo then for each o > 0, the

equation
p (/ e_gsK(s)ds> =1
0

with unknown & has a unique real solution &,. Moreover, one has
—0 <& <0.

Proof. Consider the Laplace transform of the matrix-valued function

LIK] (&) == (L[kij] (E))1<ij<n
= </OO 0'6_(U+£)tpij(t)dt> .
0 1<i,j<n
We define

(5.14) Ai(—0,400) 3 &= p(L[K](E)) € Ry.
To prove the proposition, we must show that there exists a unique &, € (—0,0)
such that
A&r) =1
As 0 < p <1 and the functions (¢;,%;); <, € L™ (B?) x L' (B?) and are non-
negative, the function
L[ki;] (€)
is of class C'! on (—a, 4+00) for each 7,5 € [|1,n]], and
Ll == [ oe O [ plloioo) e <o,
dg 0 R2
with strict inequality whenever p;;(0) # 0. Therefore one has, for each & < &,
LIK] (&) < LIK] (&),
with
LIK] (&) # LIK] (&),

and L [K] (&1) being irreducible by Lemma 5.13. So that by the Perron-Frobenius
Theorem
P(LK] (§2)) < p(L[K](1))-
In other words, the function A is decreasing on | — o, +00].
Moreover the spectral radius is continuous on M, (R) and thus X is also contin-
uous on | — g, +00[.
Notice that whenever p;;(0) # 0,

kij(t)e " — 0T as & — +o0,
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for each ¢ > 0 and ¢, j € [|1,n|] while
kij(t)e " < Coe "
where

C:= sup p;;(0)
1<i,j<n

Therefore one obtains by dominated convergence,
L[K] (&) — 0" as & = +oo,
and since p is continuous, one concludes that
A(€) — 01 as &€ — +oo0.
We denote

= (7 _ [ 1ifpy(0) >0,
K= (k”)lgw'gn T { 0 otherwise.

As P(0) is irreducible, K is irreducible by a similar argument as in the proof of
Lemma 5.13 and thus by the Perron-Frobenius Theorem, we have

p (K’) > 0.
That being said for each ¢ > 0,1, j € [|1,n|], whenever p;;(0) # 0
]f”(t) T O'pij(t) as g\L —0’+.

As (t,v) = p(Jv|t)¢i(v)1h;(v) is nonnegative, applying the Tonelli Theorem for each
(i,) such that p;;(0) # 0 shows that

/OOO opij(t)dt = U/RQ ¢i (V) (v) </O°° p(|v|t)dt) do

= +OO
since L'(R,). So that by monotone convergence, for each (4, 5) € [|1,n
pé + y gence,  J
L ki) (€) = 40 as &) —o™.

whenever p;;(0) # 0. Hence, for each M > 0, there exists, & such that £ < &
implies L [k;;] (§) > M for each ¢, j such that p;;(0) # 0. In other words, for each
M > 0, there exists, £ such that for each £ < &y one have

LIK](§)>MK
and thus

p(L[K](€) > Mp(K).
Therefore
AE) = +ooas €| —ot.

The function A is a continuous decreasing function on (—o, +00) with
AE) = +ocas &) —o,
and
A(€) = 0 as £ 7 +oo,

so that, by the intermediate value theorem, there exists a unique £, > —o such
that

A(go) =1

Finally, we show that &, is negative. By corollary 5.14, we have

p([[ K)o 1] 0) = 20) <1 = A& )

and since A is decreasing,
& < 0.
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5.5. The asymptotic behavior of i in the irreducible case.

Proof. First, for each n € R and each locally bounded measurable matrix-valued
function M : R — M,, ,(R) supported in Ry, denote

(5.15) oM = (e"m;(t)) , foreach t € R.

UML) >

Notice that for each such M, N, we have

e™(M x N)(t) = (,M *, N)(t) for each t € R.
Hence, if p is a solution of the equation (5.8), the function p_g, satisfies
(5.16) —e (1) =—¢, g(t) + (—e, K wg, p)(1)

which is a system of renewal equations in the sense of Theorem 5.11. Thus, applying
this theorem to the equation above shows that

fooo e~%o%g(s)ds

t)e st — m,m = .
uit) lmg (fo se=(7+E) P (s)ds) m,

6. THE ASYMPTOTIC BEHAVIOR OF 1 IN THE REDUCIBLE CASE

6.1. Summary of the previous section and main result. We have seen in the
previous section that the function m verifies

m(t,0) = m(@,v)p(olt)e "+ [ ult = p(lols)e v ()ds.
i=170

with p defined in (5.2). Moreover, u is solution of the vector-valued equation
(6.1) p=g+Ksx*p
where ¢ is defined in (5.6) and

K(t) :=oe 7' P(t)

for each ¢ > 0 with P defined in (5.4). Besides, if T} is irreducible, then there exists
¢y € (—0,0) and a vector ¢ with positive entries such that

w(t) ~ esotcas t — +oo.

In other words, the irreducibility assumption entails both an exponential-type decay
and a uniform behavior for (u;),,;~, - In the present section, we discuss the as-
ymptotic behavior of  in the long time limit without the irreducibility assumption.
The main result is

Proposition 6.1. Let Ty be defined as in (5.1) and p be the solution of equation
(6.1). Then for each i € [|1,n|] there exists ¢; > 0, & € (—0,0) and n; € [|0,n]]
such that

pi(t) ~ cit™ietit as t — 4-o0.
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6.2. A new formulation for the Renewal Equation in the reducible case.
Return to the equation (6.1)

p(t) = g(t) + (K * p) (),
for each ¢t > 0 with P defined in (5.4). By Proposition 5.12, the reducibility of T

entails that P(0) is reducible, meaning that there exists a permutation matrix IT
such that

Py1(0) o P(0)
(6.2) IPO)I7T = O Py (0) -+ PQki(O)
6 o 0. Pkk.(o)

with & < n and, for each i € [|1, k|], either P;;(0) = 0 or is an irreducible matrix.
Since IT is a permutation matrix II7 = II~!, so that

Sp(P(0)) = Ur<i<kSp(Pii(0)).
Likewise as p;;(t) # 0 if and only if p;;(0) # 0, the same permutation induces

Pll(t) Plk(t)
HP(t)HT = 0 P22(t) - PZk(t)
6 - 0' Pkl;(t)

with P;;(¢t) = 0 or irreducible for each ¢ > 0 (see the argument for Lemma 5.13).
Returning to equation (6.1) and multiplying both sides by IT leads to
0 ITp(t) = Hg(t) + (ITK + 1)(1)
= IIg(t) + (ITKIT) « ITp)(t) for each t > 0,
with for each ¢t > 0
OKHOT = Hoe ' P(t) [T
= ge o' ITP(t)ITT

Pll(t) Plk(t>

o 0 Pyo(t) -+ Po(t)

64 0 0 Pal)
Kll(t) Klk(t)
- 0 Kapn(t) - Kult)
0 e 0 Km(®)

where K,,(t) := ge 7 P,y (t) for each 1 < a,b < k. Each permutation in &,
defines a partition of [|1,n|] (the subsets of [|1,n|] invariant under that permuta-
tion). We therefore deduce from ((6.4) a partition of [|1,7n|] into k disjoint classes
Cy,Cy, - -+, Cy such that

(6.5) Kap(t) = (kij(t))icc,,jec, for each t > 0.
For a,b=1,2,--- ,k define
Va(t) := (pi(t))iec, for each t > 0,

and
ha(t) := (g9i(t))icc, for each t > 0.
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Therefore the system of equations (6.3) can be written in the form
(6.6)  valt) =ha(t) + > (Kap*16)(t) + (Kaa % va)(t), a=1,--- k.

b>a
We shall prove the following proposition that entails obviously Proposition 6.1.
Proposition 6.2. Under the assumptions and with the notations above, for each
a € [[1, k]

(1) either Kuq(t) is a zero matriz for all t > 0, then for each i € C,, there
exists ¢; > 0, n; € [|0,k — al] and & € (—0,0) such that

wi(t) ~ cit™ et as t — +oo;

(2) or Kuu(t) is an irreducible matriz for all t > 0, then there exists a vector
cq With positive entries, £, € (—o,0) and an integer n, € [|0,k — al] such
that

Va(t) ~ cat™@eSet as t — 400.

6.2.1. Summary of the argument. Equation (6.6) shows that the behavior of v, is
determined by that of (14),-,. Hence, we proceed as follows.

First, we prove that Proposition 6.2 holds for vy that is the solution of the
equation
(6.7) Vi (t) = hi(t) + (Kgk * vi) (2).
Then, we eprove the desired estimate for each v, with a € [|1,k — 1|] assuming that
it holds for v, with b > a.

6.3. A few technical lemmas. Before going further, we give two technical lem-
mas

Lemma 6.3. Let f,g be two nonnegative functions on Ry. We assume that there
exists ¢ >0 and n € N and o < 0 such that
ft) ~ ct™e™ ast — +oo.
(1) Ift — e °tg(t) € L*(Ry) then

(fx9)(t) ~c (/0 easg(S)ds) t"e as t — 4-00;

(2) if there exists d > 0 such that
lim e *g(t) =d

t——4o0
then

d
(f*g)(t) ~ %t”“eat as t — +oo.
n

The (elementary) proof is given in Appendix.
Lemma 6.4. Let P(0) be defined as in (5.4) then
p(P(0) < 1.

Proof. First recall given a nonnegative matrix A, then for each r and each x with
positive entries such that
Ax < rzx,
then
p(A) <.
That being said, since [z, Tk (f) (v)dv = [, f(v)dv, for each j € [|1,n|]

/IB2 Ty (2pj)(v)dv = Z </IB2 qbi(v)ﬁ)j(v)dv) /15;2 bi(v)dv.

=1
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In other words, on has

PO)x <z
with
Jgz U1 (v)dv
r=|
S5z ¥n(v)dv
Thus, by the argument above,
p(P(0) < 1.

O

6.4. The asymptotic behavior of v in the long time limit. Consider the
case a = k for which equation (6.6) reads

vi(t) = hi(t) + (Kii * vg)(1).

First, we show that Py (0) is irreducible. Assume that Py (0) is a zero matrix,
then for each i,j € Cy, with C}, defined in (6.5), one has

po(0) = [ ooy 0)do =0
And by (6.2),
[ stz =0

for each ¢ € Cy, j € [|1,n]]. That implies, as (¢s,%;) are nonnegative,

1<i<n

A Supp i ()| | Supp ¢ | | =0,

j=1

for each i € C, j € [|1,n|], with A the uniform probability measure on B?. The
assumption

k(v,w)dw =1
B2
implies
/ k(v, w)dw = Z </ d)i(w)dw> Yi(v) = Zaﬂbi(v) =1 for each v € B?
B2 i=1 \/B? i=1
so that

U Supp ; = B
j=1
which means that
¢; =0 for each i € Cy.

Hence Pyr(0) is irreducible and therefore Ky is irreducible (see Lemma 5.13).
Besides, since p (P (0)) € Sp (P(0)), one has by Lemma 6.4

p (Pex(0)) < 1.

Therefore, with a similar argument as in the section devoted to the irreducible case,
we show that there exists a unique & € (—o,0) such that

p (/ e_g’szkk(s)ds> =1,
0

and conclude that there exists a vector ¢, with positive entries such that
Vg (t) ~ cpe t as t — +o0.

Therefore Proposition 6.2 holds for vy.
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6.5. The asymptotic behavior of (v4);.,., in the long time limit with
K,a(t) = 0 for each t > 0. Let a € [|1,k — 1|]. We assume that Proposition 6.2
holds for each (1) and consider the case where K,,(t) = 0 for each t > 0. By
Equation (6.6)

b>a’

Va(t) = ha(t) + Z(Kab x 1p)(t) for each ¢t > 0.

b>a

which means that for each i € C,,

pilt) = git) + D (Kap +11) (1)

(68) b>a
=gi(t)+ D> > (kij x ) (1),
b>aj€Cb
We define

IV = {j € Cy, b>alpi;(0)#0}.

We first show that IL(f) is not empty whatever i € C,. Assume that there exists
i € Oy such that

I = g.

That means that for each j € Cp with b > a, one has p;;(0) = 0. But one has
already p;;(0) = 0 for each j € Cy,b < a. As (Cp)yeqy 5 I8 @ partition of [[1,n]],
that implies that for each j € [|1, n|]

ps(©) = [ o)y (v =0
which contradicts

U Supp ; = B2.
j=1

Hence I,Si) is not empty for each i € C,. Let i € Cy, one deduces from equation
(6.8)
(6.9) 1i(t) = gi(t) + Z (Kij * p15)(1).

jer?
By definition, for each j € Lgi)7 there exists ¢; > 0, {; € (—0,0) and an integer
n; € [|0,k — b]] (b denoting the class C} containing j) such that

(6.10) i (t) ~ c;t"™ eS8t as t — +oo.
That being said, we define for each i € C,,

& = max &,
jerl?
and
=i e 1 lg =6},
together with

n; = max nj,
jeIs”

and
N .= {] e J |n; =n, } .
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Obviously, & € (—0,0) and n; € [|0,k — al]. Since k;;(t) = oe7'p;(t), for each
je 189 the function ¢ > e %itk;;(t) € L' (Ry). With (6.10) and Lemma 6.3, this
implies that

o0
(kij % pj) (t) ~¢; (/0 e 0y (s)ds) t"ieSit as t — +oo.

Hence for each j € Lgi) \ Néi)
(kij * p5) (8) = o (™€) as t — +oo.
Besides, one has
gi(t) =0 (t""'eg"t) as t — +o0.
Therefore in view of (6.9), one deduces that for each i € C,
pit) ~ cit™ietit as t — +oo,
with
o0
ci = Z ¢ (/ e_&skij(s)ds> > 0.
jeENG” ’

Thus Proposition 6.2 holds for v,.

6.6. The asymptotic behavior of v, with 1 <a < k in the long time limit
with K,,(t) irreducible for each t > 0. We consider here the other case, where
K is an irreducible matrix. By Equation (6.6), one has

Va(t) = ha(t) + (Z Kap * ub> (t) + (Kaq * va) (t).

b>a

With a similar argument as for the equation governing the evolution of vy, we show
that there exists a unique o, € (—0,0) such that

p (/Ooo e““sKaa(s)ds> =1

As in the case K4, (t) = 0 for each t > 0, we define
I):={j € Cy, b>alpi;(0) # 0},

and

I, = U I,

i€Cq
Finally, we set
o=
Notice that
I,={je€Cy b>alq3ieCyst. p;ij(0)#0}.

We distinguish three cases, namely 8, < g, Bq > g and B, = .
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6.6.1. The case B, < a,. Returning to the equation above

Vo (t) = ho(t) + (Z K l/b> (t) + (Kaa * Vo) (t),

b>a
and multiplying both sides by e~ leads to
—onVal(t) =—a, ha(t) + > e (Kap * 13) (£) + (—a, Kaa *—a, Va) (1)
b>a
with the notation used in (5.15).
Proposition 6.2 holds for (14),-, , , meaning that for each j € Cp with b > a, there
exists ¢; > 0, n; € [|0,k —b|] and &; € (—o,0) such that
;i () ~ c;t"i et as t — oo,
Since k;j(t) = oe™7'p;;(t) for each 7,5 € [|1,n|] and &; € (—0,0) for each j € C)
with b > a, one has by Lemma 6.3

(kij * py) (t) ~ ¢ </ ek (s)ds) t"ieSit as t — +oo.
0

Since §; < B, < oy for each j € I,, the long time limit asymptotic behavior
established above implies that t — >, e~*" (K4 * 1) (t) is a vector whose all
of entries are integrable. Besides _,_h, is also a vector with integrable entries.
Hence, by a similar argument as in the section devoted to the irreducible case,
one has
va(t) ~ ce®! as t — +oo,

where ¢ is a vector with positive entries. Therefore Proposition 6.2 holds for v,.
6.6.2. The case B, > a. Returning to the equation

Va(t) = ha(t) + (Z Kap * vb> (t) + (Kaa * va) (t).

b>a

and multiplying both sides by e~#s* leads to

~BaVa(t) =—p, ha(t) + <Z —B.Kap 3, Vb) () + (=8, Kaa*—gov,) ()

b>a

Obviously ¢ —_g, ha(t) + (Xpen —8.Kab *—p, 1) (t) is locally bounded and by a
similar argument as in the proof of Proposmon 5.16, one has

P </ e_B“SKaa(s)ds> < 1.
0

Therefore by Proposition 5.6,

~BaVa(t) = —p,ha(t) + (Z —BaKab -3, Vb) (t)

b>a
+ (F(L * —ﬁah(l) (t) + (Fa * <Z _ﬂaKab *_Ba Vb)) (t)
b>a
with
Fa = Z ( —BaKaa)*n .
n>1
Define

Ca(t) == e_ﬁ“th )+ e Pat <Z K * I/b> ,

b>a
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and for each b > 0
Fop(t) i= (Fa x—p, Kab) ().

The equation above is then recast as

—6uVa(t) = Calt) + D (Fap %—p, 1) (£)-

b>a
or equivalently, with the notation
Fou(t) = ((?w) ’
b( ) fl] 1€Cq,j€CY
as
(6.11) pt) = Bt + Ht ST S / F (¢~ 5)e=Pe iy (s)ds,
b>a jeCy

for each 7 € C,. We denote

Bi = max Bj,

jertd
and
I ={ieiB=¢
while
7i1=:;2f§§7%
and

N .= {j e JD |y, fnj}
By definition, one has for each ¢ € C,

Batg = 91 + Z Z / ZJ S)ds

b>a jeC
(6.12) e

—at)+ Y / Fij(t — $)py(3)ds.

jerl

Since Proposition 6.2 holds for (1)
deduces from by Lemma 6.3 that

/ kij(t — s)p(s)ds ~ ¢; (/ kij(s ds) t"iefit as t — +o0.

Therefore, in view of the equality (6.12), one has

poas and t — e 5%k;;(s)ds € L' (Ry), one

(6.13) Pl Gi(t) ~ et as t — +oo

C = c](/ ks (s )

JEN

with

We now discuss the asymptotic beahvior of

t s eflal Z Z / ab) — s)e P p;(s)ds

b>a jeCy
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in the long time limit. Before going further in the computation of the long time
asymptotic behavior of v,, we show that fo w(s)ds is a matrix with positive
entries.We recall that

/ ds—/ Z " (s)ds

n>1

> ([ ﬁaSKaa@)ds)n-

n>1

With a similar argument as in Lemma 5.13, we show that the matrix

/ e PaSKoq(s)ds
0

is irreducible meaning that for each i, j, there exists n > 1 such that

( (/Ooo e_B“SK,w(s)ds) n) g > 0.

Hence, fo s)ds is a matrix with positive entries. Besides for each b > a,
o0 oo oo
/ Fyxp, Kap(s)ds = / Fa(s)ds/ e*B“SKab(s)ds.
0 0 0
As fo s)ds is a matrix with positive entries, a j-th column of the matrix

15 Fa *BH,K »(s)ds is a zero vector if and only if the j-th column of [ e™#+% K (s)ds
is a zero vector. And in the case where the j-th column of fooo e‘ﬁasKab( )ds is
not a zero vector, each entry of the j-th column of the matrix fo F, xg, Kqp(s)ds

is positive. Indeed f(ab = 0 if and only if j € I,. Hence
ehet 3 Z/ V(& — 5)eBe uy(s)ds = bt Z/ D (& — 5)e=Pa% i (s)ds.
b>a jeCy j€la

Now, we show that for each i € C,, j € I, the function ¢ — e(ﬂa_gf)tfi(;b) (t) €
L' (R). Observe indeed that

eBa=CtE (1) = P8 (F, x5, Kap) ()

= el N (L5, Kaa)™ | %2, K | (1)

n>1

= e %t Z (Kaa)™ | * Kap | (2).

n>1

Thus, since K (t) = ge~ 7" P(t), the function t — e+~ Fuy(t) € Mard ¢, Card ¢, (L' (Ry)) -
Therefore, by Lemma 6.3, for each (¢,5) € C, x I,

(6.14)
/ f(ab) P p1y(s)ds ~ ¢ (/0 e(Bagj)Sfi(fb)(s)ds) t"i et as t — +oo.
Jo={j€lal§j =08}
with
Ng 1= Maxn;
jela
and

Ny :={jeda|nj=ng}.
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In view of equality (6.11), one easily deduce from (6.13) and (6.14) that
pi(t) ~ ct™eelat as t — +oo

with
C1

Cm

where m = Card C, and
ZjeN[E” Cj (fooo kij(s)ds) + ZjeNn, Cj (fooo fi(flb)(s)dtS) if (8s,7v) = (Barna),
Zjezva Cj (fooo T z'(;'lb)(s)ds) otherwise.

Thus Proposition 6.2 holds for v,.

C; =

6.6.3. The case B, = ay. Returning to the equation

Va(t) = ha(t) + (Z Kap * ub> (t) + (Kaq * va) (t).
ba

and multiplying both sides by e~% leads to
—aoVa(t) =—a, ha(t) + Z e (Kap * 13) (t) + (0, Kaa *—a, Va) (t)
b>a
with the notation in (5.15). We denote the renewal measure by
Hq(t) := Z (—auBaa)™ (1),
n>0
where _q, Koq 1 t — e %" K,,(t). And let (Hél)H((f)) be a Stone decomposition

of the renewal measure:
(6.15) H,=H®Y + H? in M(Ry).

2) . . . . 1) . .
where H(S ) is a matrix whose entries are finite measures on R and H(S ) is a matrix

of absolutely continuous measures with bounded continuous densities HS" := (ha)ij
such that there exists a positive matrix Ho, (see Theorem 5.10) verifying

6.16 lim HWY(#) = H,, = (h .

(6.16) oo ®) ( K )1gi,ngard Ca

We have

(6.17) va(t) = e (Hy *_a, ha) (t) + €'Y (Ha %0, Kab %—a, 1) (t).

b>a

We recall — see the cases discussed above — that, since Proposition holds 6.2 holds
for () » for each (i,5) € Coq X (Upsa Cb)

t o]
/ kij(t — s)p;(s)ds ~ ¢ (/ kij(S)dS) t"i et as t — +oo,
0 0
or equivalently
t o0
e_a“t/ kij (t— s)uj (s)ds ~ c;j </ kij(S)dS) thie&—aalt agp +00.
0 0

We denote
Jo={jel,§=a.}.



CHAPTER IV : THE NONMONOKINETIC CASE 133

If j ¢ J,, the function ¢ + e~ ! fot kij(t — s)p;(s)ds € L* (Ry), so that by domi-
nated convergence, for each [ € C,,

/h(l (t—T)e T /k” 11;(s)dsdr
0

(o)
—>hl(j )/0 e_"‘“skij(s)ds/o e~ p;(s)ds

as t — 400, and

t—dr t
/ e-an(t=7) / ij(t =7 = $)u;(s)h3 (ds) = 0
0 0

ast — 4oo. If j € Jg,,

e el / kij(t — s)pi(s)ds ~ ¢; (/ kij(s ds) t" as t — 400

and we recall that

hi;(t) — hl(]oo) >0 ast— +oo,
so that, by Lemma 6.3,
e ' e (o 1
hy'(t—T7)e %" [ kij(T— (s)dsdT ~ —L—= / TSk (s)ds | t" T
/o 1 (t—rT)e /0 (T — s)pj(s)dsdr oy ( ; e () )

while
t T—t
[ ane s [ k= - s = 0.0)
0 0

=0 (t"fH) as t — 400,

since hg) is a finite measure on R . Consequently, denoting

Ng = Maxn;
jEJa 7

there exists a vector ¢ with positive entries such that

Z (Hy %oy Kap *—a, ) ~ ct™ ™ as t — +o0.
b>a
With a similar argument, we show that

(Hy #—a, ha) (t) = 0 (t" ') ast — +oo.
In view of (6.17) that implies
va(t) ~ et et as t — +oo.
And we conclude by observing that since (n;),c . € [0,k — (a + 1)[], one has
ne +1 € [[0,k — al].
Thus Proposition 6.2 holds for v,.

7. PROOF OF STATEMENT (2) AND (3) OF THEOREM 2.4
We conclude the proof of Theorem 2.4.
Proof. We recall that the function t,v — m(¢,v) verifies the equality

n

(7.1 m(t,v) =m0, v)p(lvlt)e™ " + o Z/O pi(t = s)p(Jvfs)e™"i(v)ds

=1
We denote
h(t) = e*ﬂt/ m(0, v)p([o[t)du, t >0,
RZ



134 CHAPTER IV : THE NONMONOKINETIC CASE
and, for each 1 <i < n,
plt) =oe [ plluls)is(o)de
RQ

Notice that for each o € (—a,0) and for each i € [|1,n]|] the function ¢ — e“p;(t) €
L' (R,). That being said, integrating equality (7.1) in v € B? gives

(2 m(t) = b+ 3 (1 + ) (1), £ 0.
i=1
We have seen that for each i € [|1, n|], there exists ¢; > 0, n; € N and & € (—0,0)

such that
pi(t) ~ cit™etit as t — +oo.

Denote

5:: max gia

i€[|1,n]]
and
={ie[|L,n]]|§& =08},

while

V= g
and

J={ieln=~}.
By Lemma 6.3 for each i € [|1,n]]

(i x i) () ~ ¢ (/ e_fispi(s)ds> thieSit as t — +oo.
0
Obviously
h(t)=o (t”eﬁt) as t — 400,
Therefore, (7.2) implies that

m(t) ~ ct7ePt as t — 400

with
o0
c:= ch/ e Popi(s)ds.
iceg V0
We finish with a discussion of the asymptotic behavior of &, in the collisionless
regime o — 0%. Denote )\, := &, + o. Establishing that £, ~ —0 as ¢ — 0T

amounts to proving that A, = o (o). Observe that, since &, € (—0,0),
0< Ao <o

50 A\ — 07 as o0 — 07. Keeping this in mind, we have by definition of &,

) (/Ooo ae_’\"SP(s)ds> _1,

where P is defined in (5.4). Substituting z = A,s in the integral above, we deduce
from the equality above

(7.3) % =p (/OOO e *P (;) dz) .

Since A\, — 07 as 0 — 0" and p;;(t) — 0" as ¢t — +oo for each i, € [|1,n]], one
has p;; (2/As) = 07 as 0 — 0T for each 4,5 € [|1,n|]. Besides, 0 < e *p;; (2/\s) <
e™* [52 @i(v);(v)dv so that by dominated convergence

o0 z
/ e P () dz—0aso—0".
0 Ao
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Therefore (7.3) implies by continuity of the spectral radius that

Ao
2 50t aso— 0.

8. ANNEXE

‘We here establish Lemma 6.3.

Lemma 8.1. Let f,g be two nonnegative functions on Ry. We assume that there
exits ¢ >0 and n € N such that

f@) ~ct" ast — +oo.
(1) Ifg € LY(Ry) then

(fxg)t)~c (/Ooog(S)ds> t" as t — +oo;

(2) If f € LY, (Ry) and there exists d > 0 such that
lim ¢g(t)=d

t——+o0

then

cd
(f*g)(t) ~ mtm’l as t — +oo.

Proof. (1) We recall that
(f=g)(t /ft—s s)ds, ¥t > 0.
By assumption, one has for each s > 0
tinf(t—s)%cast%+oo

and
(/=909 <o) € L' &)

so that one obtains by dominated convergence

H+oot"/ flt=s)g ds-(/ooog(S)d8>c.

(2) One first recalls that if f, g are two nonnegative functions on R, such that
ft) ~g(t) ast — 400
and their integrals diverge at infinity then
t t
/ f(s)ds ~ / g(s)ds as t — +o0.
0 0
Therefore one has for f verifying the hypothesis

/ f(s dSN t”Jrl as t — +oo.

To obtain the desired Comcluslon7 it remains to show that for each nonneg-
ative function g such that g(t) — a # 0 as t — 400,

(f*xg)t) ~ a/o f(s)ds as t — +o0.
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By assumption, for each € > 0, there exists A > 0 such that t > A implies
lg(t) — a| < e. Thus

/Ot (t— ) ds—a/f < /Ot|g<s>a|f(ts>ds
A
< / l9(s) — al f(t — 5)ds
[~ alg e - syas
</ " o) — al (e — s)ds + ¢ / (e~ s)ds
< uf o) — alds + Za / f(s)ds,

where M verifies
f(t) < M ae. in [0, A].

So that
A
0 |f0 (t—s)f sfafo s)ds| 5+Mf0 |g(s)fa|ds'
afo s)ds Ta afotf(s)ds
As fo s)ds diverges, for each € > 0 there exists B > 0 such that ¢ > B
implies
’ M [*1g(s) — ald
/ f(s)ds Z fO |g($) a| S
0 ac
or N
M [ |g(s) — alds -
afg f(s)ds
So that t > max(A, B) implies that
| [T gt —s)f —a [y f(s)ds] catl
afo s)ds Toa

That is the wanted result.

And we conclude by noticing that Lemma 8.1 obviously entails Lemma 6.3.
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CHAPTER V
HOMOGENIZATION OF TRANSPORT PROBLEMS AND
SEMIGROUPS

1. INTRODUCTION

The mathematical modeling of the response of composite materials to exter-
nal fields usually involves partial differential equations with oscillating coefficients.
Specifically, the wavelengths of these oscillations correspond with the spatial scales
defined by the microscopic structure of the composite, i.e. the scale at which the
elementary constituents of the composite are assembled. When investigating the
macroscopic properties of such a composite material, a first step is to average out
the oscillations of the coefficients at microscopic scale, and to filter the high fre-
quency oscillations they induce in the response fields one is interested in. This
mathematical process is called homogenization, since it may be viewed as the re-
placement of a composite material by an equivalent homogeneous material. In the
most favorable cases, this would be done by simply replacing the response coeffi-
cients oscillating at microscopic scale in the field equation with coefficients for the
equivalent homogeneous material where the oscillations at microscopic scale have
been eliminated.

Unfortunately, this picture is outrageously optimistic. In many cases, a single
response coefficient oscillating at microscopic scale will be replaced with several ho-
mogenized equivalent coefficients, for instance due to the persistence of anisotropy
effects in the microscopic structure of the composite material. Worse, the structure
of the partial differential equation itself can be modified after taking the homog-
enization limit, and this is precisely our concern in the present work. A striking
example of such a change in the structure of the homogenized equation was given
by Tartar [10], who observed that the homogenization limit of the simplest imag-
inable ordinary differential equation would lead to an integro-differential equation
(i.e. involving memory terms). In other words, the group property of the original
evolution equation can be destroyed by the homogenization limit.

Some time later, Vanderhaegen [11, 12], Levermore-Pomraning-Sanzo-Wong [5],
and Sentis [8] studied in detail the homogenization problem for the absorption
coefficient in transport theory (for either neutrons or photons). Their work also
leads to integro-differential equations as in the simple example considered by Tartar
— and for the same basic reason.

The phenomena observed by Tartar in his simple example — i.e. the fact that the
group property satisfied by the solutions of an evolution equation can be destroyed
by the homogenization limit — also occurs in very different contexts. It has been
very recently identified in a classical problem in nonequilibrium statistical mechan-
ics, namely the Boltzmann-Grad limit of the periodic Lorentz gas, by E. Caglioti
and the second author, and by J. Marklof and Strémbergsson in [3, 2, 6], as well as
in a homogenization problem for the linear Boltzmann equation in a periodically
perforated domain, by the two first authors and E. Caglioti [1]. In all these works,
the solution of the equation at microscopic scale is given by a semigroup, and, in
order to keep the semigroup property after passing to the macroscopic limit, it is
necessary to consider an enlarged phase space involving additional variables. The
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present paper explains how the ideas in [2, 6, 1] can be applied in the context of
the homogenization of opacities considered in [11, 12, 5, 7, §].

Semigroups and kinetic models have been among Aldo Belleni-Morante’s favorite
scientific subjects. His own ideas have had a great influence on the development
of this field of mathematical analysis. In view of his own particular interest in
photonics and, more generally, transport problems in astrophysics, we dedicate this
modest contribution to his memory.

2. HOMOGENIZATION OF AN ODE

Our starting point is the following elementary, yet fairly instructive example,
due to L. Tartar [10].

Let a € L>=(TY), assume without loss of generality that a > 0 a.e. on TV, and
consider, for each € > 0, the ODE with unknown u. = u(t,2) € R:

due
ta(Z)uc=0, t>0, zeRY,
(2.1) dt ¢/

ue(0,2) = u'"(2),
where u™ € L2(RV) N L= (RY). Obviously, for each € > 0, one has

uc(t, z) = u(z)e =) t>0, ze RV,
so that, in the limit as € — 07, one has
ue—u in L= (R x RY) weak-*

where the limit u is explicitly given by the formula

(2.2) u(t,z) = u™(2)®(t), t>0, ze RV,

with

(2.3) B(t) = / e Wy t>0.
TN

This example shows that the homogenized solution u does not satisfy the equation
d
ditL +au=0

where @ is the average of @ on TV, i.e.

a= /TN a(y)dy

as someone unfamiliar with the intricacies of homogenization might (naively) ex-
pect. Worse, unless a is a.e. constant on T, there does not exist any A € R such

that
du

(Should such an A exist, it would be referred to as the “homogenized coefficient”
equivalent to the oscillating coefficient a(z/€).) Equivalently, although for each
€ > 0 the solution u. is defined in terms of 4™ by the semigroup S(t) defined on

L?(RY) by the formula
(2.4) Se(t)p = p(z)e™ "/,
the homogenized solution u is not given in terms of u® by a semigroup acting on
L?*(RY), since (by convexity of the exponential)
D(ty +to) # P(t1)D(ta), t1,t2 >0,

unless a is a.e. constant on TYV — meaning that there are no fast oscillations in
the original problem (2.1), so that there is no need for homogenization in this case.
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In fact, L. Tartar (see lecture 35 in [10]) proved that the homogenized solution
satisfies the following integro-differential equation

d t
(2.5) d—?(t,z) +au(t,z) = /0 K(t—s)u(s,z)ds, t>0, z€ RN,

u(0,2) = u™(2),

where the Laplace transform of K is given by the expression

K(p) == /Oooe‘ptK(t)dtZ/TN(p+a(y))dy— (/TN pfz(wdy)_l, p>0.

Concerning the appearance of an integro-differential equation such as (2.5) as the
homogenization limit of an ODE, it is instructive to compare the situation above
with the problem

de +b<t>v€:0, £>0,
(2.6) dt €

v:(0) = v,

with unknown v, = v.(t) € R, where b € L>°(T?!). In this case

ve(t) = vim exp (- /O t b(s/e)ds) s vine=Bt — (1)

for each t > 0 as € — 0T, where

B = /01 b(o)do .

Indeed,
1 t € t/é 1 t
f/ b(s/€e)ds = 7/ b(o)do — lim f/ b(oc)do = B
t 0 t 0 t—+oo t 0
as € — 0", Hence, the homogenized equation obtained from (2.6) is
dv
—+Bv=0, t>0
L + bv ) >0,
v(0) = v,

and in this case, B is the equivalent absorption coefficient obtained from the oscil-
lating absorption coefficient b(t/€) by homogenization.

The difference between the homogenization of problems (2.1) and (2.6) is that
in the latter case, the oscillating variable in the coefficient b is the time variable,
and the equation (2.6) provides a bound on the time derivative of the solution v,
thereby excluding the possibility of fast oscillations in ¢ in the solution v..

At variance with this case, in Tartar’s example (2.1), the oscillating variable is
z, and the equation (2.1) does not involve derivatives in z to prevent the buildup
of fast oscillations in z in the solution u.. In that example, the fast oscillations in z
in both a(z/€) and u. combine to produce the integral term on the right-hand side
of (2.5).

Obviously, the example (2.1) can be generalized to the case where the quasi-
periodic oscillating coefficient a(z/€) is replaced with a bounded family a. = a.(2)
of functions in L>(R") converging in the sense of Young measures as ¢ — 0F.
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3. A SEMIGROUP IN EXTENDED PHASE SPACE

As a warm-up, we shall in this section consider again Tartar’s example above,
and express the homogenization limit of (2.1) in terms of a semigroup defined on
an extended phase space — i.e. acting on functions with additional variables.

Let a. = ac(z) be a bounded family of functions in L>(RY) converging in the
sense of Young measures to (p),ern~ (see [9] for a lucid presentation of the notion
of Young measures.) In other words, (u.),crn~ is a family of probability measures
on R that measurably depends on z, and satisfies, for each f € C,(R)

flae)—F, in L°°(RN) weak-*, with F,(z) = /Rf()\)d,uz()\) =: (s, f)

in the limit as ¢ — 07. Without loss of generality, we henceforth assume that
a. > a>0ae. on RV.
For each € > 0, let u. = u.(t, z) be the solution of
du,

(3.1) ﬁ—kas(z)uszo, t>0, ze RV,

ue(0,2) = u™(2),
where u™ € L' N L>®(RY).
Proposition 3.1. In the limit as ¢ — 0, one has

“+oo
Ue—u = / Uds in L (R x R™) weak-*,
0

where U = U(t, s, z) is the solution of
U —9,U=0, t,s>0, zeRY,

(3.2) , 7
U(0,s,2) = —u""(2) dc’Z: (s).

(We recall that the notation i, designates the Laplace transform of p.)

Before giving the (elementary) proof of this result, a few remarks are in order.

First, the equation satisfied by U is a free transport equation, where s € R
is the space variable. Since the vector field —0; is outgoing on the boundary of
the half-line R, there is no need of a boundary condition for s = 0, so that the
problem (3.2) is well-posed — in L?(R; x RY; e *dsdz), for instance.

Next, although the homogenization limit u of u. as € — 07 is not of the form
u(t, ) = S(t)u'™ with S(t) a semigroup on L*(RY), the function U is defined by
a semigroup in terms of its initial data (since the equation satisfied by U is a free
transport equation.) Specifically

Ul(t,s,z) = 2()U(0, s, 2) with S(t)y)(s, 2) = (t +5,2), t,s>0, z€ RV,

In other words, while there does not exist any semigroup S(¢) acting on L2(R™)
such that S¢(t) — S(¢) in the weak operator topology for each t > 0 as e — 07,
one has

S.(t) - / ™ S()ds
in that same topology. ’
Proof. For each € > 0, define
Uc(t, s, 2) = uc(t, 2)ac(z)e ") | t,.s>0, ze RV,
Obviously

(0 — Bs)Uc(t,5,2) = ac(z)e 322 (d;;(t, z) + ae(z)ue(t,z)>
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so that U, satisfies

U, —9U. =0, t,s>0, ze RV,
(3.3)

Ue(oa S, Z) = Uin(Z)ae(z)efs‘IE(Z) .

Since ac > 0 a.e. on RN, one has [|Uc(t,,")|| Lo, xry) < [|[u™| Lo (m). Hence
U, is bounded and therefore (by the Banach-Alaoglu theorem) relatively weak-*
compact in L¥(R; x Ry x RM)). If U is a weak-* limit point of U, as ¢ — 0%,
by passing to the limit in the sense of distributions in the free transport equation
satisfied by Ue, we conclude that (9, — d5)U = 0.

Since U, is bounded in L= (R, x Ry x RY), the free transport equation satisfied
by U, implies that 9,U. is bounded in L>® (R, x RY;W~1°(R,)). Therefore,
U, |t:0_\U‘t:O in L2 (RYN; W~1>(R))) weak-* for each subsequence ¢, | 0 such
that U, —U in L®(R; x Ry x RY) weak-*. Since

in oo —sa in d,l]z
Ul icg=u() [ e ) = =" () G

in L (R, x RY) weak-*

and the problem (3.2) has a unique solution, U.—U in L* (R, x Ry x RV) weak-*
as e — 0T,
Since ac(z) > a > 0 a.e. in z € R, one has

+oo
/ |Uc(t, s, 2)|ds = e_T‘IS(Z)|u€(t7 2)| < e_Ta”uln”Loo(RN)
T
so that, for each test function ¢ € L'(Ry x RY),

—+o00 —+o0
/ / ( / U (4,5, z)|ds) 16(t, 2)|dtdz — 0 uniformly in € > 0
0 RN T

as T — 400, by dominated convergence. Since on the other hand

—+o0
uc(t, z) = / Uc(t, s, z)ds
0

+oo +oo
U z/ Uedsé/ Uds
0 0

in L (R, x RY) weak-*. O

we conclude that

4. HOMOGENIZATION OF OPACITIES IN RADIATIVE TRANSFER

In this section, we shall apply the method described above to the equation of
radiative transfer.

Radiative transfer is a kinetic theory for a gas of photons exchanging energy with
a background material (such as a plasma, a stellar or a planetary atmosphere). This
energy exchange is the result of absorption, emission or scattering of photons by the
atoms in the background matter. The state at time t of the population of photons
is given by the specific radiative intensity denoted I(¢,z,w, ) that is chv times the
number density of photons with frequency v located at the position x with direction
w. Here, c is the speed of light while A is Planck’s constant.

Neglecting scattering processes, the radiative intensity satisfies the radiative
transfer equation

(4.1) éatf +w -V, I=0(w,T)B,(T)—o(v,T)I.

Here B,(T) is the specific radiative intensity at frequency v of a black body at
temperature T', while o(v,T) > 0 is the opacity, or absorption cross-section per
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FIGURE 1. Opacity of a boron plasma (see [4] on p. 98)
unit volume, of the background material at temperature T for an incident radiation
with frequency v. While B, (T) has the explicit expression

_ 2m® 1
BV(T) 2 ehl//kT -1 )

the opacity o(v,T) is in general not known explicitly but tabulated. What is
worse, the dependence of o (v, T') in either v or T is quite involved, and the function
v o(v,T) can be wildly oscillating, even for T fixed, as can be seen on the graph
given above.

We recognize in (4.1) the same type of difficulty that was handled in the two pre-
vious sections, since oscillations in the opacity o (v, T) are due to the dependence of
that coefficient in the frequency v, while the streaming (or free transport) operator
%8,5 + w -V, acts on the variables ¢ and x only.

Henceforth, we assume for simplicity that the temperature T = T'(¢, ) is given
in the background medium which occupies the Euclidian space R3. We consider
the following model problem:

1
(4.2) E(()tfs +w-Vole=0.w,T)B,(T) —o.(v,T)I,,

IE‘t:O =I'"(z,w,v),

posed for (t,z,w,v) € R} x R? x 82 x R’ . Here the oscillations of the opacity
are recorded by the small parameter e that is the typical “oscillation wavelength”
in the variable v.

We henceforth assume that the given temperature profile 7' is bounded away
from 0 and +oo, i.e. that T' € [0, O] for some constants 0 < § < ©, and that the
family (o¢(v,T))es0 satisfies the uniform bound

0<m<o.(v,T) <M, foreache,v>0andT € [0,0].

Furthermore, we assume that, for each 7' > 0, the family o.(-,7") converges in the
sense of Young measures to (ul),~o as € — 07. By the method introduced in
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the previous section, we can formulate a theorem on the homogenized limit of the
model problem (4.2) in the following manner.

Theorem 4.1. In the limit as € — 0T, one has
“+o0
I—I :/ Jds in L®(Ry x R® x 8% x R weak-*,
0

where J = J(t,s,z,w,v) is the solution of

1 2~T
LT +w-Vod — 0,0 = TP g (1)
c ds?
(4.3) | -
J|t:0 =—-I"(z,w,v) dsV (s),

posed for (t,s,z,w,v) € RYL x R x R® x 82 x R, where the notation AL denotes
the Laplace transform of ul.

The proof of this theorem is essentially the same as that of Proposition 3.1 —
except for the source term in (4.2) — and we do not repeat it.

Observe that the homogenized problem (4.3) is a transport equation where the
space variables are x and s, and therefore defines a semigroup acting on the extended
phase space Ry x R? x 82 x Ry = {(s,7,w,v)}, instead of the usual phase space
R3 x 8% x Ry = {(7,w,v)} familiar in radiative transfer problems. More precisely,
the solution of (4.3) is given in terms of the Duhamel formula for the transport
semigroup in extended phase space defined by the left-hand side of that equation.
This is at variance with the homogenized radiative transfer equations obtained in
[5, 8] which are written in the usual phase space, but involve memory terms as in
Tartar’s example — and precisely for the same reason.

Notice that we have assumed that the initial data I*" does not have fast oscil-
lations in the v variable — as is the case of B,. In general, treating the case of
an oscillating initial data I" (in the v variable, say) would require considering the
joint Young measure of 1" and 0. — i.e. the Young measure of the couple (1", o)
viewed as a function of v with values in R2. The complexity of the resulting model
could be reduced in the case where the oscillations of I’ and o are independent
so that the joint Young measure is the tensor product of the Young measure of ‘"
by that of o.

A few words about the meaning of the additional variable s appearing in the
homogenized equation (4.3) are in order. The original equation (4.2) can be viewed
as a balance equation for the number density of photons with frequency v located
at the position x with direction w at time ¢, that is ﬁ[s(t,x,w,l/). The loss
term —o (v, T)I(t,z,w,v) on the right-hand side of (4.2) models the absorption
of photons by the matter as follows. Assuming for simplicity that o, = o.(v)
is independent of temperature, the probability that a photon with frequency v is
not absorbed in the time interval [0,¢] is e~*°<(*). In the homogenized equation
(4.3), the loss of photons due to absorption by the atoms of the surrounding matter
is described by the term —0sJ on the left-hand side. Any characteristic line of
the streaming operator %5& + w -V, — 9 being of the form t — (z + ctw, s — t),
the unknown quantity ——.J(t,s,z,w,v) in (4.3) should be viewed as the number
density at time ¢ of photons with frequency v at the position x in the direction w
which will be absorbed precisely at time s + ¢t. In other words, in the homogenized
model (4.3), the additional variable s should be viewed as the “life expectancy” of
photons, and their number density is disintegrated with respect to — in probabilistic
terms, conditioned relatively to — this new variable. The absorption of photons is
described by characteristic lines of the streaming operator on the left-hand side of
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equation (4.3) leaving the phase space s > 0, and not by prescribing the probability
that a photon of frequency v is absorbed in the infinitesimal interval of time [¢, t+d¢].

5. CONCLUSION

We have explained how the notion of a “kinetic theory in extended phase space”
introduced in [2] can be used in the homogenization problem for opacities in ra-
diative transfer (Theorem 4.1), and how it avoids considering integro-differential
equations whose solutions do not have the semigroup property, as in Tartar’s ele-
mentary example.

The formalism presented here could be applied to various problems of the same
nature. For instance, as mentioned above, opacities are strongly oscillating func-
tions of the frequency variable, which seriously complicates the discretization of the
radiative transfer equation. Usually, this is done by replacing the radiative intensity
I(v) with the vector (Ij)1<;<n, wWhere

Vjt1
I; ~ / I(v)dv,

j
and where the frequency groups — i.e. the intervals (v;,v;41) — are chosen ap-
propriately. Of course the main difficulty is to understand what to do with the
absorption term

Vit1
/ oc(w)I(v)dv.
vj
The projection of the radiative intensity on frequency groups as above is an instance
of homogenization process, and one could hope that the considerations outlined in
Theorem 4.1 might be helpful in this context.

Similar difficulties exist in the theory of neutron transport — with the neutron
kinetic energy being the analogue of the frequency in radiative transfer. One could
hope to apply the same method as above to this type of problem also; however,
scattering processes are more important and should be taken into consideration,
at variance with the discussion in the present paper. We hope to return to these
questions in a forthcoming publication.
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