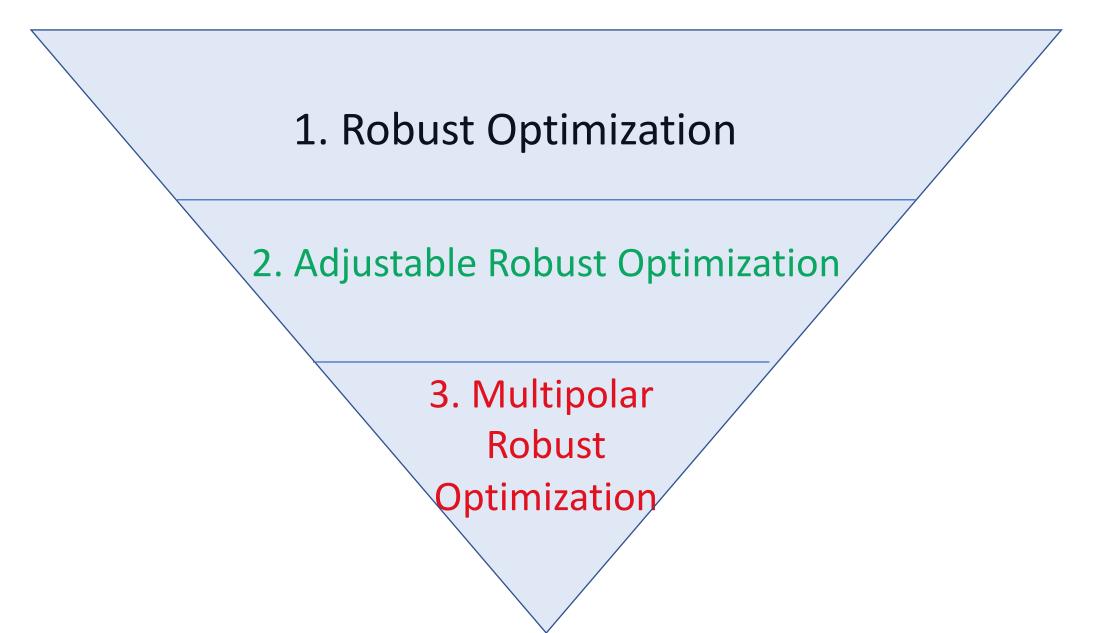


Multipolar Robust Optimization

<u>Walid Ben-Ameur (</u>Telecom SudParis, Institut Polytechnique de Paris) Adam Ouorou (Orange Labs), Guanglei Wang (Alibaba, China) Mateusz Zotkiewicz (Warsaw University of Technology, Poland)

Agenda



Uncertainty

- Data can be random
- Data can be difficult to measure/observe
 - Heisenberg's uncertainty principle

 $\sigma_x\sigma_p\geq rac{\hbar}{2}$

HEISENBERG GETS PULLED OVER

Stochastic approaches

- Requires a good knowledge of the probability distribution of data
- Generally leads to intractable problems
- Chance-constrained programming variant:
 - Impose that some constraints are satisfied with some probability
 - Few cases are tractables: (e,g.) $a \sim \mathcal{N}(\bar{a}, \Sigma); \Sigma = L^{t}L$ $a^{t}x \leq b \text{ holds with probability at least } 1-\varepsilon$ $\overline{a}^{t}x + \phi^{-1}(1-\varepsilon) \|Lx\|_{2} \leq b$

Robust optimization 1.

- Data u belong to an uncertainty set \mathcal{H} (convex compact). Robust counterpart $\min_{\substack{x \ u \in \mathcal{H}}} \max f(x, u)$ $g_i(x, u) \leq 0, \forall u \in \mathcal{H}, \forall i \in I$
 - Make the worst-case as good as possible
 - Several robustness measures:

$$f^*(u) = \min_{x} f(x, u)$$
 subject to $g_i(x, u) \le 0, \forall i \in I$

Absolute Deviation

Relative deviation

$$\min_{x} \max_{u \in \mathcal{H}} f(x, u) - f^{*}(u) \qquad \qquad \min_{x} \max_{u \in \mathcal{H}} \frac{f(x, u) - f^{*}(u)}{|f^{*}(u)|}$$
$$g_{i}(x, u) \leq 0, \forall u \in \mathcal{H}, \forall i \in I$$

Robust optimization 2.

• We can assume that the objective function is deterministic (by adding constraints of type $f(x, u) \le t$

 $\min_{a_i^t x \le b_i, \forall a_i \in \mathcal{H}_i \equiv Proj_i(\mathcal{H})} c^t x$

- We can assume that uncertainty is constraint-wise (Ben-Tal, El-Ghaoui, Nemirovski, 2009)
 - Example: Robust Linear Programming

 $\min_{Ax \le b, \forall A \in \mathcal{H}} c^t x$

Robust optimization 3.

History:

- Soyster, A.L., 1973. Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21, 1154–1157.
- Mulvey, J.M., Vanderbei, R.J., Zenios, S.A., 1995. Robust optimization of largescale systems. Oper. Res. Lett. 43 (2), 264–281.
- Kouvelis, P., Yu, G., 1997. Robust Discrete Optimization and its Applications. Kluwer Academic Publishers.
- El-Ghaoui, L. and Lebret, H. (1997). Robust solutions to least-square problems to uncertain data matrices. *SIAM Journal on Matrix Analysis and Applications*, 18:1035–1064.
- Ben-Tal, A. and Nemirovski, A. (1998). Robust convex optimization. *Mathematics of operations research*, 23(4):769–805.
- Fingerhut, J. A., Suri, S., and Turner, J. S. (1997). Designing least-cost nonblocking broadband networks. *Journal of Algorithms*, 24(2):287–309.

Robust optimization 4.

- How to solve ?:
 - By convex reformulation:

 $\begin{aligned} &Min \ c^{t} x\\ &a_{i}^{t} x \leq b_{i}, \forall a_{i} \in \mathcal{H}_{i}, \forall i \in I \end{aligned}$

 $\mathcal{H}_i: \{a_i, D_i \ a_i \leq d_i\}$

 $d_i^t y_i \leq b_i, \forall i \in I$

 $y_i \geq 0$, $\forall i \in I$

$$\begin{array}{ll} Max \ a_i{}^t x & = & Min \ d_i{}^t y_i \\ D_i \ a_i \leq d_i & & D_i{}^t y_i = x, y_i \geq 0 \end{array}$$

 $a_{i}^{t}x \leq b_{i}, \forall a_{i} \in \mathcal{H}_{i} \iff Max a_{i}^{t}x \leq b_{i} \iff \exists y_{i} \geq 0, D_{i}^{t}y_{i} = x, d_{i}^{t}y_{i} \leq b_{i}$ $Min c^{t}x$ $Min c^{t}x \qquad \longleftrightarrow \qquad D_{i}^{t}y_{i} = x, \forall i \in I$

 $\begin{array}{l} \operatorname{Min} c^{t} x \\ a_{i}{}^{t} x \leq b_{i}, \forall a_{i} \in \mathcal{H}_{i} \end{array}$

Ben-Tal, A. and Nemirovski, A. (1998) El-Ghaoui, L. and Lebret, H. (1997)

Robust optimization 5.

- How to solve ?:
 - By convex reformulation:

 $Min c^t x$ $a_i^t x \leq b_i, \forall a_i \in \mathcal{H}_i, \forall i \in I$ $\mathcal{H}_i: \{a_i, \|a_i - \overline{a}_i\|_2 \le \rho_i\}$ $\max_{\|u_i\| \le 1} \overline{a_i}^t x + \rho_i u_i^t x = \overline{a_i}^t x + \rho_i \|x\|_2$ $\begin{aligned} & Max \ a_i{}^t x \\ & \|a_i - \overline{a}_i\|_2 \le \rho_i^- \end{aligned}$ $Min c^t x$ $\overline{a_i}^t x + \rho_i \|x\|_2 \le b_i, \forall i \in I$ \Leftrightarrow $Min c^t x$ $a_i^t x \leq b_i, \forall a_i \in \mathcal{H}_i$

Robust optimization 6.

- How to solve ?:
 - By convex reformulation:

$$\min_{\substack{x \ u \in \mathcal{H} \\ g_i(x,u) \leq 0, \forall u \in \mathcal{H}, \forall i \in I}} \max_{\substack{x \in \mathcal{H}, \forall i \in I}} f(x,u) \leq 0, \forall u \in \mathcal{H}, \forall i \in I$$

- Roughly speaking, convex reformulation can be found mainly when functions f and g_i are convex in x and concave in u
- Exceptions: if g_i is quadratic (not necessarily concave) and \mathcal{H}_i is an ellipsoid (a convex set defined by one convex quadratic constraint), then a convex reformulation exists (strong duality still holds here) (Ben-Tal, El-Ghaoui, Nemirovski, 2009)

Robust optimization 7.

- How to solve ?:
 - By constraint generation:

 $\begin{array}{l} Min \ c^{t} x \\ a_{i}^{t} x \leq b_{i}, \forall a_{i} \in \mathcal{H}_{i}, \forall i \in I \end{array} \end{array}$

- Let $\mathcal{H'}_i$ be a finite subset of \mathcal{H}_i
- Repeat

• Solve
$$x' = argmin c^{t}x$$

 $a_{i}{}^{t}x \leq b_{i}, \forall a_{i} \in \mathcal{H'}_{i}, \forall i \in I$

• For each
$$i \in I$$
, $a_i' = argmax a_i{}^t x$
 $\forall a_i \in \mathcal{H}_i$

• If $a'_i x > b_i$, add a_i' to \mathcal{H}'_i ,

Ben-Ameur and Kerivin, (2001,2003,2005)

Robust optimization 8.

• How to solve ?:

$$\begin{aligned} &Min \ c^t x \\ &a_i{}^t x \leq b_i, \forall a_i \in \mathcal{H}_i, \forall i \in I \end{aligned}$$

• By constraint generation:

- More efficient than convexification for some uncertainty sets (for example a polytope having an exponential number of facets, while being well described by a separation oracle).
- Polynomial-time if we use the ellipsoid method (equivalence of separation and optimization)

Robust optimization 9.

- How to solve ?:
 - By duality approach of Beck, Ben-Tal (2009):
 - Under the constraint-wise uncertainty condition, Primal worst equals dual Best !!

$$Max c^{t}x = Min b^{t}y$$

$$a_{i}^{t}x \leq b_{i}, \forall a_{i} \in \mathcal{H}_{i}, \forall i \in I$$

$$x \geq 0$$

$$y \geq 0$$
Pessimistic primal
$$Min b^{t}y$$

$$\exists a_{i} \in \mathcal{H}_{i}: \sum_{i} y_{i}a_{i} \geq c$$

$$y \geq 0$$
Optimistic dual

• Result holds for the general problem under convex-concave conditions and Slater's qualification

$$\min_{\substack{x \ u_0 \in \mathcal{H}_0}} \max_{\substack{u_0 \in \mathcal{H}_0}} f(x, u_0) g_i(x, u_i) \le 0, \forall u_i \in \mathcal{H}_i, \forall i \in I$$

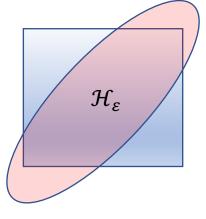
Robust optimization 10.

- How to choose the uncertainty set ?:
 - Using data and statistical tests....
 - Choose $\mathcal{H}_{\varepsilon}$ such that $a^t x \leq b, \forall a \in \mathcal{H}_{\varepsilon}$, implies that $\Pr(a^t x \leq b) \geq 1 \varepsilon$
 - Example: assume that $a = \overline{a} + Pu$, E(u) = 0, $||u||_{\infty} \le 1$, u_1 , u_2 , ... independent

•
$$\mathcal{H}_{\varepsilon} = \left\{ \overline{a} + Pu, \|u\|_{\infty} \le 1, \|u\|_{2} \le \sqrt{2 * ln\left(\frac{1}{\varepsilon}\right)} \right\}$$
 gives the wanted probability

Ben-Tal, El-Ghaoui, Nemirovski, 2009

- Etc.
- Sampling:
 - Knowing the distribution of data, by choosing a largely enough number of samples, we can guarantee that the probability to have of a violation is less than some constant (see the precise statement in Calafiore and Campi, 2005; Campi and Gratti, 2008)



Robust optimization 11.

- Robust discrete optimization:
 - Generally difficult
 - Example : given two edge weight scenarios, compute an s-t path minimizing the maximum of the two total weights...

- Some easy special cases • $S \subseteq \{0,1\}^n$, $\mathcal{H}_{\Gamma} = \{u: \sum_i u_i \le \Gamma, 0 \le u_i \le 1\}$ min max $\sum_{i} (c_i + u_i d_i) x_i$ $x \in S \ u \in \mathcal{H}_{\Gamma} \sum_{i} (c_i + u_i d_i) x_i$ bertsimas&Sim, 2003 can be solved by solving n+1 nominal problems with modified costs and can be approximated with the same ratio
 - Some generalizations (Knapsack constraints: Minoux 2009; Poss 2018)...

Adjustable robust optimization 1.

• Multistage optimization: here and now variables x and wait and see variables y (recourse variables) that can be adjusted once the scenario is revealed

$$A = A(u) \equiv P_0 + \sum_i P_i u_i, \quad R \text{ recourse matrix}$$
$$\min c^t x$$
$$A(u)x + Ry(u) \leq b, \forall u \in \mathcal{F}$$

- Fully adjustable robust optimization is coNP-hard in general Gupta, Kleinberg, Kumar, Rastogi, Yuenber, 2001 Ben-Tal, Goryashko, Guslitzer, Nemirovski, 2004
- Fully adjustable is easy to compute if the set of extreme points of $\mathcal H$ is polynomially bounded (each point of $\mathcal H$ is a convex combination of extreme points)

Adjustable robust optimization 2.

• Under constraint-wise uncertainty, static is as good as fully adjustable (Ben-Tal, Goryashko, Guslitzer, Nemirovski, 2004)

$$A(u) \equiv P_0 + \sum_i P_i u_i$$

• Fully adjustable robust optimization is more efficient than static robust optimization

Fully adjustable robust counterpart

Static robust counterpart

 $\min c^{t} x \leq A(u)x + Ry(u) \leq b, \forall u \in \mathcal{H}$

 $\min c^{t} x$ $A(u)x + Ry \le b, \forall u \in \mathcal{H}$

Adjustable robust optimization 3.

• Affine adjustability: Assume that the wait and see variables affinely depend on uncertainty (Ben-Tal, Goryashko, Guslitzer, Nemirovski, 2004) (related to firstorder decisions in multi-stage stochastic optimization, Garstka and Wets, 1974)

y(u) = Mu + l

$$\min_{x,M,l} c^{t} x$$

$$A(u)x + R(Mu+l) \le b, \forall u \in \mathcal{H}$$

$$A(u) \equiv P_{0} + \sum_{i} P_{i} u_{i}$$

- Similar to a static robust problem where x, M, I are here and now variables (solved as before)
- If R is not fixed, for example, R is affine in u, the problem is generally intractable (exception: if \mathcal{H} is an ellipsoid) (Ben-Tal, Goryashko, Guslitzer, Nemirovski, 2004)

Adjustable robust optimization 4.

• Polynomial decision rules: (Bertsimas, D., Iancu, D. A., and Parrilo, P. A., 2011)

y(u) = P(u), P is a polynomial

- The complexity of the robust counterpart problem (find the best monomials coefficients) is related to testing the positivity of a polynomial.
 - A positive polynomial can be expressed as a sum of squares (not a priori degree-bounded)...
 - The robust counterpart is approximated by sums of squares of degree no larger than a fixed constant (can be represented by a semidefinite programming, Lasserre, 2001)

Adjustable robust optimization 5.

- Fourier-Motzkin elimination: (Zhen, Hertog, Sim, 2018)
 - Eliminate some adjustable variables (but increase the number of constraints)...

Adjustable robust optimization 6.

- Duality approach of Bertsimas and De Ruiter 2016:
 - Transform an adjustable robust primal problem to an adjustable robust dual problem (with another uncertainty set)

$$A(u) \equiv P_0 + \sum_{i}^{i} P_i u_i \qquad \min c^t x$$

$$\mathcal{H}_{primal} = \{a: Da \leq d\} \qquad A(u)x + Ry(u) \leq b, \forall u \in \mathcal{H}_{primal}$$

• Some similarities with a paper by Kuhn, Wieseman and Georghioi, 2011

Adjustable robust optimization 7.

- Sampling for multi-stage robust optimization: Vayanos, Kuhn and Rusten, 2012
 - Randomly select a finite subset of scenarios H' ⊆ H with a sufficiently large cardinality (based on Calafiore and Campi, 2005; Campi and Gratti, 2008)
 - Choose a set of basis functions (a set of functions whose linear hull is dense in the set of continuous functions)
 - Solve the adjustable robust problem considering \mathcal{H}' and optimizing the linear coefficients

 $\min c^{t} x$ $A(u)x + Ry(u) \le b, \forall u \in \mathcal{H}$

$$\min_{x,\beta_k} c^t x$$

$$y_i(u) \approx \sum_k \beta_k^{\ i} \varphi_k(u) \qquad A(u^j) x + \sum_k \varphi_k(u^j) R \beta_k \le b, \forall u^j \in \mathcal{H}'$$

Adjustable robust optimization 8.

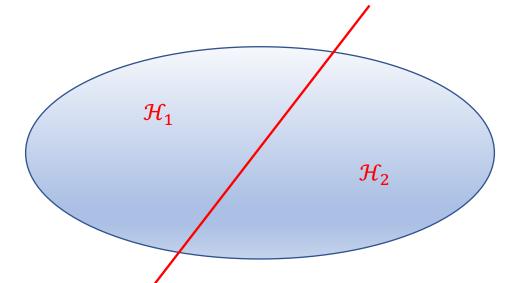
• Multi-static/Finite adjustability: Partition the uncertainty set into several subsets and consider a fixed recourse y for each subset...

Ben-Ameur 2007; Ben-Ameur&Zotkiewicz 2009,2011

Bertsimas and Caramanis, 2010; Bertsimas and Dunning, 2016

Postek and den Hertog, 2016

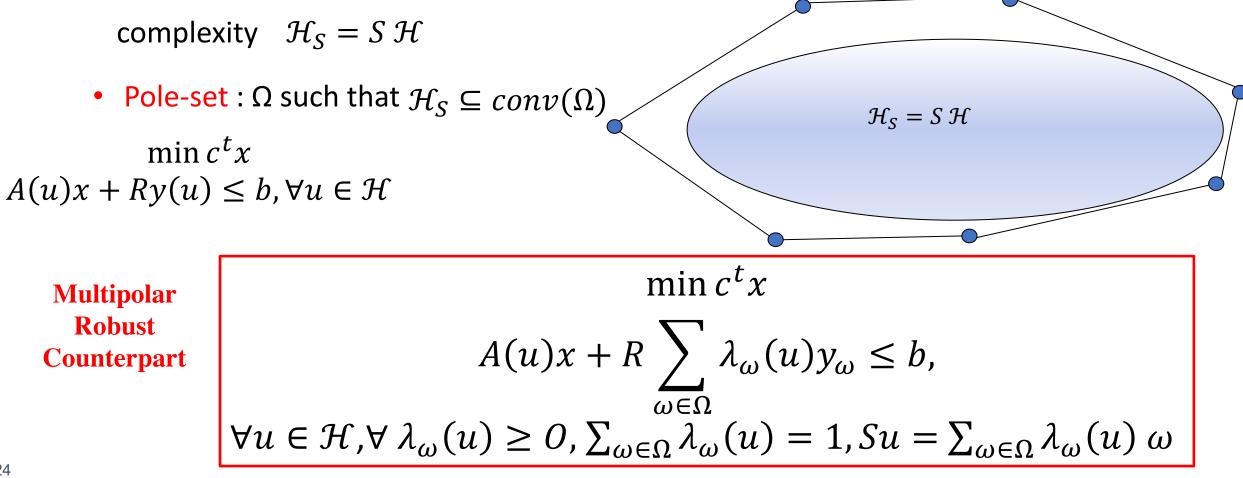
$$\begin{aligned} \mathcal{H} = & \mathcal{H}_1 \cup \mathcal{H}_2 \\ \min c^t x \\ A(u)x + Ry_1 \leq b, \forall u \in \mathcal{H}_1 \\ A(u)x + Ry_2 \leq b, \forall u \in \mathcal{H}_2 \end{aligned}$$



• We can also consider a more general decision rules for each subset (affine for example)

Multipolar robust optimization 1.

- Ingredients:
 - Shadow matrix S: either related to observations or just used to reduce



Multipolar robust optimization 2.

- Static is a special case of multipolar: S null matrix and Ω contains only the null vector as a pole
- Fully-adjustable is a special case of multipolar: take S = I and Ω be the set of extreme points of \mathcal{H}

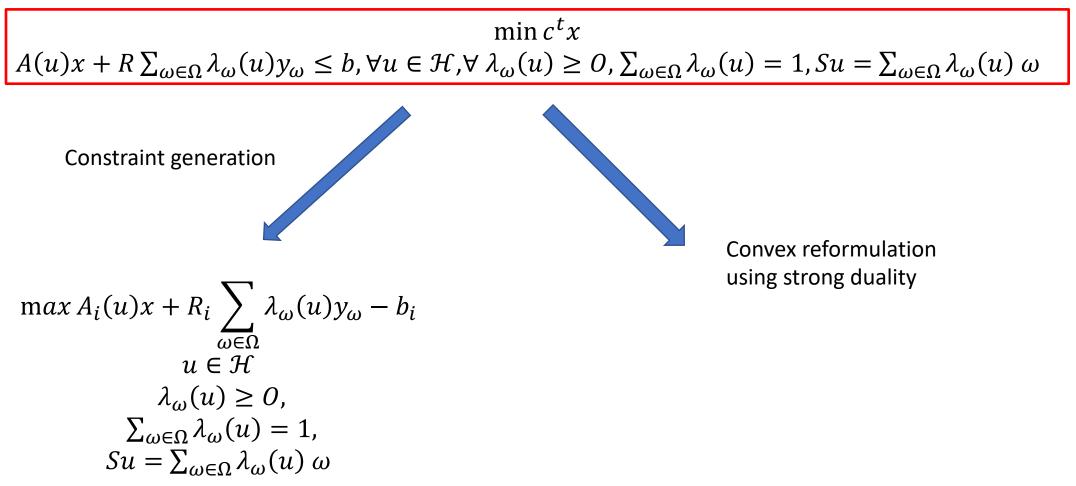
Theorem: Affine is a special case of multipolar: S = I and conv(Ω) is <u>any</u> simplex containing \mathcal{H}

Corollary: If the uncertainty set is a simplex, then the affine adjustable approach is equivalent to the fully adjustable robust approach

(generalizing a result of Bertsimas&Goyal, 2012 where only right-hand-side uncertainty is considered)

Multipolar robust optimization 3.

• Tractability:



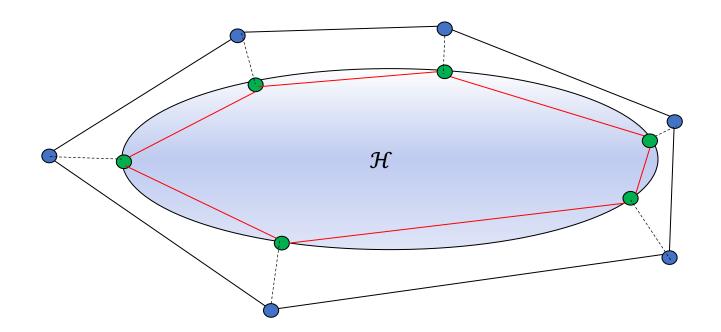
Multipolar robust optimization 4.

• Monotonicity: If $\mathcal{H}_S \subseteq conv(\Omega) \subseteq conv(\Omega')$ then $MRC(\Omega) \leq MRC(\Omega')$

 $\mathcal{H}_S = S \mathcal{H}$

Multipolar robust optimization 5.

• Convergence: if S = I, under mild assumptions, the solution converges to an optimal fully-adjustable solution



Multipolar robust optimization 6.

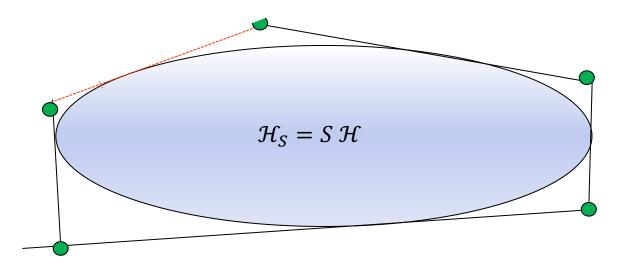
- Pole-set construction:
 - Generate a set Ω' of $1 + \dim(\mathcal{H}_S)$ affinely independent points. Compute σ and h such that $\sigma \times conv(\Omega') + h \supset \mathcal{H}_S$

Theorem: the smallest value of σ and the corresponding translate vector h can be computed efficiently for any convex set \mathcal{H}_S

(Generalizes a result of Nevskii 2011 established for hypercubes)

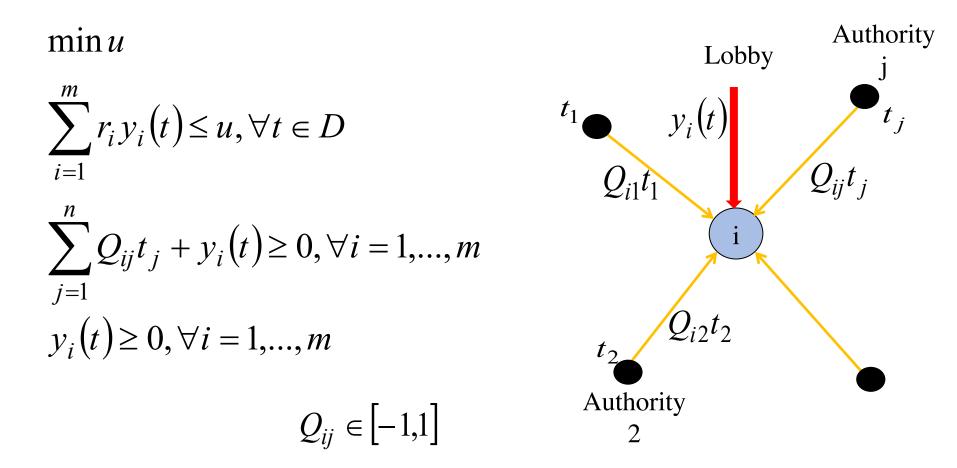
Multipolar robust optimization 7.

- Pole-set construction
 - The pole-set is updated by a tightening procedure



Multipolar robust optimization 8.

• Numerical example: lobbying problem



Hypercube	$ \Omega_0 $	$ \Omega_1 $	$ \Omega_2 $	$ \Omega_3 $	#ext.
H ₉	10	32	162	387	512
H_{10}	11	36	112	322	1,024
H ₁₂	13	44	144	449	4,046

Table 1 The pole-sets of hypercubes

Table 3 The multipolar robust values with different pole-sets (hypercube uncertainty sets)

(m,n)	static	affine/ $\Pi_{H_n}(\Omega_0)$	$\Pi_{H_n}(\Omega_1)$	$\Pi_{H_n}(\Omega_2)$	$\Pi_{H_n}(\Omega_3)$	$\Pi^*_{H_n}$
(10,9)	24.84	12.42	12.18(9.45)	10.55(73.62)	10.16(88.98)	9.88
(10,10)	25.50	12.75	11.53(58.65)	10.96(86.06)	10.70(98.56)	10.67
(10,12)	30.66	15.33	14.63(35.18)	13.71(81.41)	13.43(95.48)	13.34
(20,9)	50.75	25.37	23.82(46.69)	22.08(99.10)	22.06(99.70)	22.05
(20,10)	50.88	25.44	23.56(16.95)	20.74(42.38)	18.58(61.86)	14.35
(20,12)	59.79	29.89	27.54(23.64)	25.40(45.17)	23.58(63.48)	19.95

Table 5 Lower bounds related to hypercubes

(m,n)	$\Pi_{H_n}(\Gamma_0)$	$\Pi_{H_n}(\Gamma_1)$	$\Pi_{H_n}(\Gamma_2)$	$\Pi_{H_n}(\Gamma_3)$	$\Pi^*_{H_n}$
(10,9)	6.88	8.18	9.52	9.65	9.88
(10,10)	7.11	8.12	9.62	8.34	10.67
(10,12)	10.50	8.88	9.48	9.57	13.34
(20,9)	20.08	16.05	18.70	21.98	22.05
(20,10)	11.88	11.88	12.44	12.92	14.35
(20,12)	14.73	16.65	16.96	19.07	19.95

Conclusion

Multipolar robust optimization

- Encompasses previous main approaches (Static, Affine, Fully adjustable)
- Makes the link between discrete approaches (through pole recourses) and

continuous approaches (through convex combinations)

- Allows some control of complexity
- Works even with partial information (through shadow matrix)