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Uncertainty
• Data can be random

• Data can be difficult to measure/observe
• Heisenberg’s uncertainty principle 



Stochastic approaches
• Requires a good knowledge of the probability distribution of data

• Generally leads to intractable problems

• Chance-constrained programming variant:

• Impose that some constraints are satisfied with some probability

• Few cases are tractables: (e,g.) 
𝑎 ~𝒩 $𝑎, Σ ; Σ = 𝐿!𝐿

𝑎!𝑥 ≤ 𝑏 holds with probability at least 1-𝜀
𝑎!𝑥 + 𝜙"# 1 − 𝜀 𝐿𝑥 $ ≤ 𝑏



Robust optimization 1.
• Data 𝑢 belong to an uncertainty set ℋ (convex compact).

min
%
max
&∈ℋ

𝑓 𝑥, 𝑢

𝑔) 𝑥, 𝑢 ≤ 0, ∀𝑢 ∈ ℋ,∀𝑖 ∈ 𝐼
• Make the worst-case as good as possible
• Several robustness measures:

𝑓∗ 𝑢 = min
"
𝑓 𝑥, 𝑢 subject to 𝑔# 𝑥, 𝑢 ≤ 0,∀𝑖 ∈ 𝐼

Absolute Deviation Relative deviation

min
%
max
&∈ℋ

𝑓 𝑥, 𝑢 - 𝑓∗ 𝑢 min
%
max
&∈ℋ

A %,& "A∗ &
A∗ &

𝑔) 𝑥, 𝑢 ≤ 0, ∀𝑢 ∈ ℋ,∀𝑖 ∈ 𝐼

Robust counterpart



Robust optimization 2.
• We can assume that the objective function is deterministic (by adding 

constraints of type 𝑓 𝑥, 𝑢 ≤ 𝑡
• We can assume that uncertainty is constraint-wise                            

(Ben-Tal, El-Ghaoui, Nemirovski, 2009)
• Example: Robust Linear Programming

min
!"#$,∀!∈ℋ

𝑐)𝑥

min
*!""#$!,∀*!∈ℋ!≡,-./! ℋ

𝑐)𝑥
⇔



Robust optimization 3.
History:
• Soyster, A.L., 1973. Convex programming with set-inclusive constraints and 

applications to inexact linear programming. Oper. Res. 21, 1154–1157. 
• Mulvey, J.M., Vanderbei, R.J., Zenios, S.A., 1995. Robust optimization of large-

scale systems. Oper. Res. Lett. 43 (2), 264–281. 
• Kouvelis, P., Yu, G., 1997. Robust Discrete Optimization and its Applications. 

Kluwer Academic Publishers.
• El-Ghaoui, L. and Lebret, H. (1997). Robust solutions to least-square problems to 

uncertain data matrices. SIAM Journal on Matrix Analysis and Applications, 
18:1035–1064. 
• Ben-Tal, A. and Nemirovski, A. (1998). Robust convex optimization. Mathematics

of operations research, 23(4):769–805. 
• Fingerhut, J. A., Suri, S., and Turner, J. S. (1997). Designing least-cost nonblocking

broadband networks. Journal of Algorithms, 24(2):287–309. 



Robust optimization 4.
• How to solve ?:
• By convex reformulation:

𝑀𝑖𝑛 𝑐!𝑥
𝑎"!𝑥 ≤ 𝑏", ∀𝑎" ∈ℋ", ∀𝑖 ∈ 𝐼 ℋ": 𝑎", 𝐷" 𝑎" ≤ 𝑑"

𝑀𝑎𝑥 𝑎"!𝑥
𝐷" 𝑎" ≤ 𝑑"

𝑎"!𝑥 ≤ 𝑏", ∀𝑎" ∈ℋ" 𝑀𝑎𝑥 𝑎"!𝑥 ≤ 𝑏" ∃𝑦" ≥ 0,𝐷"!𝑦" = 𝑥, 𝑑"
!𝑦" ≤ 𝑏"

𝐷" 𝑎" ≤ 𝑑"

𝑀𝑖𝑛 𝑑"
!𝑦"

𝐷"!𝑦" = 𝑥, 𝑦" ≥ 0
=

⇔ ⇔

𝑀𝑖𝑛 𝑐!𝑥
𝑎"!𝑥 ≤ 𝑏" , ∀𝑎" ∈ℋ"

𝑀𝑖𝑛 𝑐!𝑥
𝐷"!𝑦" = 𝑥, ∀𝑖 ∈ 𝐼
𝑑"
!𝑦" ≤ 𝑏", ∀𝑖 ∈ 𝐼

𝑦" ≥ 0 , ∀𝑖 ∈ 𝐼

⇔
Ben-Tal, A. and Nemirovski, A. (1998)

El-Ghaoui, L. and Lebret, H. (1997)



Robust optimization 5.
• How to solve ?:
• By convex reformulation:

𝑀𝑖𝑛 𝑐!𝑥
𝑎"!𝑥 ≤ 𝑏", ∀𝑎" ∈ℋ", ∀𝑖 ∈ 𝐼 ℋ": 𝑎", 𝑎" − 𝑎" 0 ≤ 𝜌"

𝑀𝑎𝑥 𝑎"!𝑥
𝑎" − 𝑎" 0 ≤ 𝜌"

𝑎"
!𝑥 + 𝜌" 𝑥 0=

𝑀𝑖𝑛 𝑐!𝑥
𝑎"!𝑥 ≤ 𝑏" , ∀𝑎" ∈ℋ"

𝑀𝑖𝑛 𝑐!𝑥
𝑎"
!𝑥 + 𝜌" 𝑥 0 ≤ 𝑏", ∀𝑖 ∈ 𝐼

⇔

max
1! 23

𝑎"
! 𝑥 + 𝜌"𝑢"!𝑥 =



Robust optimization 6.
• How to solve ?:
• By convex reformulation:

• Roughly speaking, convex reformulation can be found mainly when functions f and 𝑔# are convex 
in 𝑥 and concave in 𝑢

• Exceptions: if 𝑔# is quadratic (not necessarily concave) and ℋ# is an ellipsoid (a convex set 
defined by one convex quadratic constraint), then a convex reformulation exists (strong duality 
still holds here)  (Ben-Tal, El-Ghaoui, Nemirovski, 2009)

min
4
max
1∈ℋ

𝑓 𝑥, 𝑢
𝑔" 𝑥, 𝑢 ≤ 0, ∀𝑢 ∈ ℋ,∀𝑖 ∈ 𝐼



Robust optimization 7.
• How to solve ?:
• By constraint generation:

• Let ℋ$
# be a finite subset of ℋ#

• Repeat
• Solve 

• For each 𝑖 ∈ 𝐼,

• If  𝑎′"
!𝑥> 𝑏", add 𝑎"#to ℋ#

" ,

𝑀𝑖𝑛 𝑐!𝑥
𝑎"!𝑥 ≤ 𝑏", ∀𝑎" ∈ℋ", ∀𝑖 ∈ 𝐼

𝑥7 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑐!𝑥
𝑎"!𝑥 ≤ 𝑏", ∀𝑎" ∈ ℋ7

", ∀𝑖 ∈ 𝐼

𝑎"7 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑎"!𝑥
∀𝑎" ∈ ℋ"

Ben-Ameur and Kerivin, (2001,2003,2005)



Robust optimization 8.
• How to solve ?:

• By constraint generation:

• More efficient than convexification for some uncertainty sets (for example a polytope having an 
exponential number of facets, while being well described by a separation oracle). 

• Polynomial-time if we use the ellipsoid method (equivalence of separation and optimization)

𝑀𝑖𝑛 𝑐!𝑥
𝑎"!𝑥 ≤ 𝑏", ∀𝑎" ∈ℋ", ∀𝑖 ∈ 𝐼



Robust optimization 9.
• How to solve ?:

• By duality approach of Beck, Ben-Tal (2009):

• Under the constraint-wise uncertainty condition, Primal worst equals dual Best !!

• Result holds for the general problem under convex-concave conditions and Slater’s qualification

𝑀𝑎𝑥 𝑐!𝑥
𝑎"!𝑥 ≤ 𝑏", ∀𝑎" ∈ℋ", ∀𝑖 ∈ 𝐼

𝑥 ≥ 0

min
4

max
1"∈ℋ"

𝑓 𝑥, 𝑢8
𝑔" 𝑥, 𝑢" ≤ 0, ∀𝑢" ∈ ℋ",∀𝑖 ∈ 𝐼

𝑀𝑖𝑛 𝑏!𝑦
∃𝑎" ∈ ℋ": ∑" 𝑦"𝑎" ≥ 𝑐

y ≥ 0

=

Optimistic dualPessimistic primal



Robust optimization 10.
• How to choose the uncertainty set ?:

• Using data and statistical tests….
• Choose ℋ% such that  𝑎&𝑥 ≤ 𝑏, ∀𝑎 ∈ ℋ%, implies that   Pr(𝑎&𝑥 ≤ 𝑏)≥ 1 − 𝜀

• Example: assume that   𝑎 = 𝑎 + 𝑃𝑢, 𝐸 𝑢 = 0, 𝑢 $ ≤ 1, 𝑢%, 𝑢&, … independent

• ℋ' = 𝑎 + 𝑃𝑢, 𝑢 $ ≤ 1, 𝑢 & ≤ 2 ∗ 𝑙𝑛 %
'

gives the wanted probability

• Etc. 

• Sampling:
• Knowing the distribution of data, by choosing a largely enough number of samples, we can 

guarantee that the probability  to have of a violation is less than some constant (see the precise 
statement in Calafiore and Campi, 2005;  Campi and Gratti, 2008) 

Ben-Tal, El-Ghaoui, Nemirovski, 2009

ℋ'



Robust optimization 11.
• Robust discrete optimization:

• Generally difficult
• Example : given two edge weight scenarios, compute an s-t path minimizing the maximum of the 

two total weights...

• Some easy special cases
• 𝑆 ⊆ 0,1 ', ℋ(= 𝑢:∑# 𝑢# ≤ Γ, 0 ≤ 𝑢# ≤ 1

can be solved by solving  n+1 nominal  
problems with modified costs and can be 
approximated with the same ratio       

• Some generalizations (Knapsack constraints: Minoux 2009; Poss 2018)…

Bertsimas&Sim, 2003

min
4∈C

max
1∈ℋ#

E
"

𝑐" + 𝑢"𝑑" 𝑥"



Adjustable robust optimization 1.

• Multistage optimization: here and now variables 𝑥 and wait and see variables 
𝑦 (recourse variables) that can be adjusted once the scenario is revealed 

𝐴 = 𝐴 𝑢 ≡ 𝑃! ++
"

𝑃"𝑢" , 𝑅 recourse matrix

min 𝑐#𝑥
𝐴 𝑢 𝑥 + 𝑅𝑦 𝑢 ≤ 𝑏, ∀𝑢 ∈ ℋ

• Fully adjustable robust optimization is coNP-hard in general
Gupta, Kleinberg, Kumar, Rastogi, Yuenber, 2001
Ben-Tal, Goryashko, Guslitzer, Nemirovski, 2004

• Fully adjustable is easy to compute if the set of extreme points of ℋ is polynomially
bounded (each point of ℋ is a convex combination of extreme points)



Adjustable robust optimization 2.

• Under constraint-wise uncertainty, static is as good as fully adjustable
(Ben-Tal, Goryashko, Guslitzer, Nemirovski, 2004)

• Fully adjustable robust optimization is more efficient than static robust 
optimization

min 𝑐!𝑥
𝐴 𝑢 𝑥 + 𝑅𝑦 𝑢 ≤ 𝑏, ∀𝑢 ∈ ℋ

min 𝑐!𝑥
𝐴 𝑢 𝑥 + 𝑅𝑦 ≤ 𝑏, ∀𝑢 ∈ ℋ≤

Fully adjustable robust counterpart Static robust counterpart

𝐴 𝑢 ≡ 𝑃( +F
"

𝑃"𝑢"



Adjustable robust optimization 3.
• Affine adjustability:  Assume that the wait and see variables affinely depend 

on uncertainty (Ben-Tal, Goryashko, Guslitzer, Nemirovski, 2004)  (related to first-
order decisions in multi-stage stochastic optimization, Garstka and Wets, 1974) 

• Similar to a static robust problem where x, M, l are here and now variables 
(solved as before)

• If 𝑅 is not fixed, for example, 𝑅 is affine in 𝑢, the problem is generally intractable 
(exception: if ℋ is an ellipsoid)    (Ben-Tal, Goryashko, Guslitzer, Nemirovski, 2004)

Affinely adjustable robust counterpart min
4,G,H

𝑐!𝑥
𝐴 𝑢 𝑥 + 𝑅 𝑀𝑢 + 𝑙 ≤ 𝑏, ∀𝑢 ∈ ℋ

𝑦 𝑢 = 𝑀𝑢 + 𝑙

𝐴 𝑢 ≡ 𝑃( +F
"

𝑃"𝑢"



Adjustable robust optimization 4.
• Polynomial decision rules: (Bertsimas, D., Iancu, D. A., and Parrilo, P. A., 2011) 

• The complexity of the robust counterpart problem (find the best monomials
coefficients) is related to testing the positivity of a polynomial.

• A positive polynomial can be expressed as a sum of squares (not a priori degree-bounded)…

• The robust counterpart is approximated by sums of squares of degree no larger than a fixed
constant (can be represented by a semidefinite programming, Lasserre, 2001)

𝑦 𝑢 = 𝑃 𝑢 , 𝑃 𝑖𝑠 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙



Adjustable robust optimization 5.
• Fourier-Motzkin elimination: (Zhen, Hertog, Sim, 2018)

• Eliminate some adjustable variables (but increase the number of constraints)… 
min 𝑐!𝑥

𝐴 𝑢 𝑥 + 𝑅𝑦 𝑢 ≤ 𝑏, ∀𝑢 ∈ ℋE
I

𝐴"I(𝑢)𝑥I +E
J

𝑅"J𝑦J(𝑢) ≤ 𝑏"

If 𝑅"J" > 0, 𝑦J" ≤
3

K!$"
𝑏" − ∑I𝐴"I(𝑢)𝑥I − ∑JLJ" 𝑅"J𝑦J(𝑢)

If 𝑅"7J" < 0, 𝑦J" ≥
3

K!%$"
𝑏"7 − ∑I𝐴"7I(𝑢)𝑥I − ∑JLJ" 𝑅"7J𝑦J(𝑢)

1
𝑅"7J"

𝑏"7 −E
I

𝐴"7I(𝑢)𝑥I − E
JLJ"

𝑅"7J𝑦J(𝑢) ≤
1
𝑅"J"

𝑏" −E
I

𝐴"I(𝑢)𝑥I − E
JLJ"

𝑅"J𝑦J(𝑢)



Adjustable robust optimization 6.
• Duality approach of Bertsimas and De Ruiter 2016: 
• Transform an adjustable robust primal problem to an adjustable robust dual 

problem (with another uncertainty set)

• Some similarities with a paper by Kuhn, Wieseman and Georghioi, 2011

min 𝑐!𝑥
𝐴 𝑢 𝑥 + 𝑅𝑦 𝑢 ≤ 𝑏, ∀𝑢 ∈ ℋMN)OPQℋ)*#+,- = 𝑎:𝐷𝑎 ≤ 𝑑

ℋ./,- = 𝜔:𝑅&𝜔 ≤ 0, 1&𝜔 = 1,𝜔 ≥ 0

min 𝑐!𝑥
𝜔!𝑃)𝑥 + 𝐷!)𝜆 𝜔 ≥ 0, ∀𝑖,∀𝜔 ∈ ℋV&PQ

𝑑!𝜆 𝜔 + 𝑏!𝜔 − 𝜔!𝑃W𝑥 ≤ 𝑏, ∀𝜔 ∈ ℋV&PQ

𝐴 𝑢 ≡ 𝑃( +F
"

𝑃"𝑢"



Adjustable robust optimization 7.
• Sampling for multi-stage robust optimization: Vayanos, Kuhn and Rusten, 2012

• Randomly select a finite subset of scenarios ℋ′ ⊆ ℋ with a sufficiently large cardinality (based on 
Calafiore and Campi, 2005;  Campi and Gratti, 2008)   

• Choose a set of basis functions (a set of functions whose linear hull is dense in the set of 
continuous functions)

• Solve the adjustable robust problem considering ℋ′ and optimizing the linear coefficients 

min 𝑐!𝑥
𝐴 𝑢 𝑥 + 𝑅𝑦 𝑢 ≤ 𝑏, ∀𝑢 ∈ ℋ

min
%,Y!

𝑐!𝑥

𝐴 𝑢Z 𝑥 +L
[

𝜑[ 𝑢Z 𝑅𝛽[ ≤ 𝑏, ∀𝑢Z ∈ ℋ′
𝑦"(𝑢) ≈F

)

𝛽)
"𝜑)(𝑢)



Adjustable robust optimization 8.
• Multi-static/Finite adjustability: Partition the uncertainty set into several 

subsets and consider a fixed recourse y for each subset…
Ben-Ameur 2007; Ben-Ameur&Zotkiewicz 2009,2011
Bertsimas and Caramanis, 2010; Bertsimas and Dunning, 2016

Postek and den Hertog, 2016

• We can also consider a more general decision rules for each subset (affine for example)

ℋ=ℋ# ∪ℋ$
min 𝑐!𝑥

𝐴 𝑢 𝑥 + 𝑅𝑦# ≤ 𝑏, ∀𝑢 ∈ ℋ#
𝐴 𝑢 𝑥 + 𝑅𝑦$ ≤ 𝑏, ∀𝑢 ∈ ℋ$

ℋ%

ℋ&



Multipolar robust optimization 1.
• Ingredients:

• Shadow matrix S:  either related to observations or just used to reduce 

complexity ℋC = 𝑆 ℋ

• Pole-set : Ω such that

24

Multipolar 
Robust 

Counterpart

min 𝑐!𝑥
𝐴 𝑢 𝑥 + 𝑅𝑦 𝑢 ≤ 𝑏, ∀𝑢 ∈ ℋ

min 𝑐!𝑥

𝐴 𝑢 𝑥 + 𝑅 L
\∈]

𝜆\ 𝑢 𝑦\ ≤ 𝑏,

∀𝑢 ∈ ℋ,∀ 𝜆\ 𝑢 ≥ 𝑂, ∑\∈] 𝜆\ 𝑢 = 1, 𝑆𝑢 = ∑\∈] 𝜆\ 𝑢 𝜔

ℋC ⊆ 𝑐𝑜𝑛𝑣(Ω) ℋ* = 𝑆 ℋ



Multipolar robust optimization 2.
• Static is a special case of multipolar: 𝑆 null matrix and Ω contains only the 

null vector as a pole  

• Fully-adjustable is a special case of multipolar: take 𝑆 = 𝐼 and Ω be the set 
of extreme points of ℋ

Theorem: Affine is a special case of multipolar: 𝑆 = 𝐼 and conv(Ω) is any
simplex containing ℋ

Corollary: If the uncertainty set is a simplex, then the affine adjustable 
approach is equivalent to the fully adjustable robust approach
(generalizing a result of Bertsimas&Goyal, 2012 where only right-hand-side uncertainty is considered)



Multipolar robust optimization 3.
• Tractability:

min 𝑐&𝑥
𝐴 𝑢 𝑥 + 𝑅∑0∈2𝜆0 𝑢 𝑦0 ≤ 𝑏, ∀𝑢 ∈ ℋ,∀ 𝜆0 𝑢 ≥ 𝑂, ∑0∈2𝜆0 𝑢 = 1, 𝑆𝑢 = ∑0∈2𝜆0 𝑢 𝜔

m𝑎𝑥 𝐴# 𝑢 𝑥 + 𝑅# d
0∈2

𝜆0 𝑢 𝑦0 − 𝑏#

𝑢 ∈ ℋ
𝜆0 𝑢 ≥ 𝑂,

∑0∈2𝜆0 𝑢 = 1,
𝑆𝑢 = ∑0∈2𝜆0 𝑢 𝜔

Constraint generation

Convex reformulation 
using strong duality



Multipolar robust optimization 4.
• Monotonicity:  If                                                       then 

𝑀𝑅𝐶(Ω) ≤ 𝑀𝑅𝐶(Ω′)
ℋe ⊆ 𝑐𝑜𝑛𝑣(Ω) ⊆ 𝑐𝑜𝑛𝑣(Ω′)

ℋ* = 𝑆 ℋ



Multipolar robust optimization 5.
• Convergence: if 𝑆 = 𝐼 , under mild assumptions, the solution 

converges to an optimal fully-adjustable solution

ℋ



Multipolar robust optimization 6. 
• Pole-set construction:

• Generate a set  of                          affinely independent points.  
Compute 𝜎 and ℎ such that

Theorem:  the smallest value of 𝜎 and  the corresponding translate 
vector ℎ can be computed efficiently for any convex set ℋ$

(Generalizes a result of Nevskii 2011 established for hypercubes)

Ω′ 1 + dim(ℋC)
𝜎×𝑐𝑜𝑛𝑣 Ωf + ℎ ⊃ ℋe



Multipolar robust optimization 7. 

• Pole-set construction
• The pole-set is updated by a tightening procedure

30

ℋ* = 𝑆 ℋ



Multipolar robust optimization 8.
• Numerical example: lobbying problem
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Conclusion
Multipolar robust optimization

• Encompasses previous main approaches (Static, Affine, Fully adjustable)

• Makes the link between discrete approaches (through pole recourses) and 

continuous approaches (through convex combinations)

• Allows some control of complexity

• Works even with partial information (through shadow matrix)


