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Decision making under uncertainty

▶ There are many frameworks for decision making under uncertainty

▶ I will focus on Stochastic Programming

▶ In the classical formulations, the c.d.f. of the random elements of
the model is assumed to be known

▶ In this talk we will focus on static (as opposed to dynamic)
problems
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Stochastic Programming in today’s data-rich world

In classical approaches, the contextual information (i.e.,
covariates/features/attributes) associated with the random parameters
of interest, ξ, is either totally ignored or it is encapsulated in ξ

QUESTIONS:

▶ Could we have leveraged the information on the historical
covariates along with the information on the future covariates in
our favor?

▶ How can we include the contextual information within the
stochastic programming framework?
▶ Observe data (Xi, ξi)Ni=1 : Covariates Xi along with the

realizations of random parameter of ξi
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More examples

Farming/Agriculture

ξ: Crops yield
Covariates: precipitation,
pesticides, humidity, ...

Finance

ξ: Return
Covariates: Google searches/news
on war, oil price, political
comments, unemployment, ...
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Recent papers

▶ Ascarza ’18 argues the churn problem (prediction) must take
sensitivity to the intervention into account (prescription).

▶ In Muñoz et al. ’20 the authors solve a predictive-prescriptive
Cournot strategic producer partaking problem, consider a
problem-aware loss function.

▶ In Wang et al. the authors consider MDPs where some parameters
need to be estimated (transition function, transition probability)

Decision-focused learning, problem-aware loss function,
predict-then-optimize, end-to-end model learning, objective
mismatch. . .
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Contextual stochastic programming

Two-stage stochastic
programming

min
u∈U

{cu+ E [Q(u, ξ)| X = x]} ,

Q(u, ξ) = min
y∈Y

{qy | Tu+Wy ≥ h}

Expected value constraints
(chance constraints, risk)

max
u∈U

f(u)

s.t.
E{G(u, ξ) ≤ 0 | X = x} ≥ α

Earlier Work: Hannah et al. ’10, Donti et al. ’17, Bertsimas & Van Parys, ’17,
Elmachtoub & Grigas, ’17, Deng et al., ’18, Deng and Sen, ’18, Ban & Rudin, ’19,
Bertsimas & McCord (’18, ’19), Ho & Hanasusanto ’19, Larsen et al. ’19,
Bertsimas & Kallus ’19, Cohen et al. ’20, Rohit et al. ’20
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A portfolio problem

Γ∗ = max
u∈U

(1 + r̄)Tu

s.t. P
(
(1 + r)Tu ≥ v | X = x

)
≥ 1− α,

where r̄ = (0.0145, 0.0083), v = 0.8, α = 0.1 and
U = {u ∈ R2 | u1 + u2 = 1, u1 ≥ 0, u2 ≥ 0}.

The random vector r ∼ N(1 + r̄,Σ(x)):

Σ(x) =


(
0.02900 0.02051
0.02051 0.01819

)
if x = 0 (bull),(

0.04799 0.02051
0.02051 0.02859

)
if x = 1 (bear).
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Solution

▶ SAA problem with 10,000 samples: 5,000 with x = 0 and 5,000
with x = 1:

(u∗1, u
∗
2) = (0.57113, 0.42887), Γ∗

N = 1.01186.

▶ When x = 0 the SAA solution is feasible and performs well.

▶ When x = 1 we have

P
(
rTu ≥ v | X = x1

)
= P

(
rT (0.57113, 0.42887) ≥ v | X = 1

)
= 1− Φ(−1.20409) = .88572 < 1− α = 0.9

INFEASIBLE!!!
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Empirical risk minimization

▶ The idea is to replace u by u(x), e.g.

D =

u : X → R | u(x) = u′x =

p∑
j=1

ujxj


▶ Cross terms such as xixk, and x2i can be introduced as well

▶ Main advantage: by solving the problem once it generates a
response function u

▶ Drawbacks: has issues dealing with constraints, linear rule may
not be suited for all problems, and it often needs regularization
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Kernel optimization

▶ It is an idea with a long history in the field of statistics (Nadaraya
and Watson ’64).

▶ Given contextual data {(xi, ξi)}Ni=1 we want to estimate

m(x) = E [ξ | x] .

▶ Locally weighted average:

mh(x) =

∑N
i=1Kw(x− xi)ξi
Kw(x− xi)

▶ Kw(·) = K(·/w)/w, the parameter w is the bandwidth, and it
has to be calibrated
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Illustration - random data

Data Att 1 Att 2 Att 3 ξ

1 -0.75 15.28 151.56 510
2 5.16 12.37 122.69 463
3 4.82 16.70 78.92 484
4 -3.94 17.60 145.58 651
5 0.03 9.98 97.60 498
6 2.99 11.55 91.14 499
7 0.20 14.08 71.41 579

x 2 13 110 ???
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Weights

Sample average Weighted average

ξ 526.28 501.82
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Examples of Kernels

Naive Kernel: K(x) = 1/2 1{∥x∥ ≤ 1}

Gaussian Kernel: K(x) = 1/(
√
2π) e−∥x∥2/2

Epanechnokov: K(x) = (1− ∥x∥2)1{∥x∥ ≤ 1}
Quartic: K(x) = (1− ∥x∥2)21{∥x∥ ≤ 1}

Tri-cubic: K(x) = (1− ∥x∥3)31{∥x∥ ≤ 1}

For categorical variables we need special kernels proposed in Aitchison
& Aitken ’76, and their ideas are implemented in the np package in R
(Hayfield & Racine ’08).

Drawbacks: Kernels with categorical variables come with more
parameters to calibrate, and the resulting kernel is the product of
different types of kernels → instability.
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Weighting functions

▶ Similar to kernel methods:

P{G(u, ξ) ≤ 0 | X = x} = E
[
1(−∞,0)(G(u, ξ)) | X = x

]
≈

N∑
i=1

wi(x)1(−∞,0)(G(u, ξi))

▶ Weights can be given by

1. k-NN: wi(x) = 1/k,wi(x) = N1/2

2. CART: wi(x) = 1/b for b instances that constitute the leaf where
x belongs to in the tree

3. Random forest: Same, averaging over different trees

▶ The general structure is similar to that of SAA

▶ Can we obtain theoretical results for sums of weighted random
variables (as opposed to 1/N?)
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Lower bound

Theorem I (Rahimian and P.)

Consider a sequence of pairs of i.i.d. random vectors {(xi, ξi)}Ni=1 on a
probability space (X × Ξ,FX ×FΞ, P ), where xi ∈ Rp and ξi ∈ R.
For the positive values of the function Qx, where Qx : Rp → R is a
continuous function, for a fixed X = x. Define the array of weights
wi(x), i = 1, . . . , N as

wi(x) :=
Qx(Xi)∑N
j=1Qx(Xj)

, i = 1, . . . , N, (1)

and assume at least one Qx(xi) is positive. If α > ϵ, we have

PN (zNα ≤ z∗ϵ |X = x) ≥ 1− exp

{
− 2(α− ϵ)2∑N

i=1wi(x)2

}
.
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Corollary I

k independent of N :

If wi(x) = 1/k, from some value integer value of k ≤ N we have

exp
{
−2k(α− ϵ)2

}
. (2)

No asymptotic convergence.

k = N1/2:
In this case we have

exp
{
−2

√
N(α− ϵ)2

}
,

which goes to zero. If we want a lower bound with confidence 1− δ
we need at least

N ≥ 1

4(α− ϵ)4
(log(1/δ))2

data points.
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Feasibility result I

Theorem II (Rahimian and P.)

Assume that the feasible set U ⊂ Rn of CCP is finite, and let
α ∈ [0, ϵ). For a covariate vector x ∈ Rp, we have

Pξ|X(UN
α ⊆ Uϵ | X = x) ≥ 1− |U\Uϵ|exp

{
− 2(ϵ− α)2∑N

i=1wi(x)2

}
,

where
Uϵ = {u ∈ U | p(u) ≥ 1− ϵ}

is the feasible set of C-CCP.
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Corollary

Number of data points N

If we have k−NN with k = N1/2 we get exponential convergence to 1
as the data size grows. Moreover, if N satisfies

N ≥
(
log

(
|U\Uϵ|

δ

))2 1

4(ϵ− α)4
,

then with probability 1− δ a solution of problem DDC-CCP will be
feasible to problem C-CCP.
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Feasibility result II

Theorem III (Rahimian and P.)

Let α ∈ [0, ϵ), β ∈ (0, ϵ− α) and η > 0. Under mild assumptions, for a
covariate vector x ∈ Rp, we have

Pξ|X(UN
α,η ⊆ Uϵ | X = x) ≥ 1−⌈1/β⌉⌈2LD/η⌉du exp

{
−2(ϵ− α− β)2∑N

i=1wi(x)2

}
,

where UN
α,η is the modified feasible set of CCD-CCP and Uϵ is the

feasible set of C-CCP.
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Corollary

Number of data points N

If we have k−NN with k = N1/2, and ϵ, α such that α < ϵ and
β ∈ (0, γ), e.g., β = (ϵ− α)/2, we have that a feasible solution to
DDC-CCP is feasible to C-CCP with confidence at least 1− δ if

N ≥ 4

(ϵ− α)2

(
log

1

δ
+ du log

⌈
2LD

η

⌉
+ log

⌈
2

ϵ− α

⌉)2

.
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Portfolio selection: history

▶ Any person or institution who wants to invest faces the same
problem: “How should I allocate my funds?”

▶ There have been several rule-of-thumb approaches to investing,
and one of the most popular is the Equally Weighted (EW)
approach

▶ Markowitz ’52 published a seminal paper introducing the trade-off
between risk (variance) and return.

▶ Even though Markowitz’s work was revolutionary, it had its own
pitfalls: bringing the methodology to practice proved challenging
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Portfolio selection: today

Over the last years, there have been several advances in the discipline.
Examples include the introduction of risk measures (coherence, the
CVaR), the use of copulas to estimate joint distribution functions, and
the advent of AI and Machine Learning that is starting to permeate
into finance.

Main issues to tackle:

▶ Low signal-to-noise ratio, specifically of yearly returns.

▶ Use of ML techniques to incorporate contextual information
(features).
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Mathematical Formulation

max
w

E
[
w⊤r | X = x

]
s.t. CVaRα

[
−w⊤r | X = x

]
≤ γ

w⊤
1 = 1

w ≥ 0

To solve the problem we need the conditional distribution Pr|X=x, i.e.,
distribution of (r | X = x), which in most cases is not available
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Asset Classes (Jan ’07–Jan ’21)

Stocks

VTMSX Total Stock Market Index
VEIEX Emerging Markets Stock Index

Bonds

VBMFX Total Bond Market Index
VIPSX Inflation Protected Securities

Real Estate

VGSIX U.S. Real Estate Investments

Sixth asset class: a risk-free investment with a 0.5% annual return.
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Feature Selection

The goal: Select features that capture the current state of the world
and that can be helpful to estimate future returns

Pre selected 20 potential features picked by several investment
professionals.

Applied a feature selection algorithm (PFA) to choose the
best-performing features

Final selection consist of U.S. unemployment rate, the St. Louis Fed
financial stress index, the Euro-area package holidays index, and the
manufacturers’ inventories-to-sales ratio1.

1The respective mnemonics are UNRATE, STLFSI2, CP0960EZ19M086NEST
and MNFCTRIRSA.
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Selecting the weights

▶ Given historical data DN := {(xi, ri)}Ni=1 we use a weight
function wi(x) to estimate the conditional distribution Pr|X=x

▶ Intuitively, given the current state of the world x, the weight of
each observation will be the its distance to x

▶ The proposed weight function wi(x) is a local learner model
based on the Nadaraya-Watson kernel regression:

wi(x) =
Kb(x− xi)∑N
i=1Kb(x− xi)

, i = 1, . . . , N
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Data-Driven Formulation

max
z,vi,η

z⊤
N∑
i=1

wi(x)ri

s.t. η + 1
1−α

N∑
i=1

wi(x)vi ≤ γ

vi ≥ −z⊤ri − η, i = 1, . . . , N
z⊤1 = 1
z, v ≥ 0
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Results

▶ Two methods reported, NORTA with Features (NwF) and
NORTA without features (Nw/oF)

▶ Equally Weighted (EW) reported for benchmarking purposes

▶ 1,000 synthetic years generated per investment window

33 / 41



NwF surface

Figure: 3-D efficient frontier for NwF with bandwidth b = 2 for different values of α and γ.
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2D Plane

Figure: Efficient frontiers at α = 0.9.
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Diversification

Diversification index (DI) for different values of α and γ.

α = 0.85 α = 0.90 α = 0.95

γ Nw/oF NwF Nw/oF NwF Nw/oF NwF

0.03 45% 47% 51% 53% 63% 58%
0.05 29% 28% 41% 42% 53% 53%
0.07 26% 22% 28% 28% 40% 40%
0.09 23% 19% 25% 22% 32% 33%
0.12 22% 14% 24% 18% 25% 23%

DI =
1−

∑m
i=1 z

2
i

1− 1/m
.

36 / 41



Results

(a) γ = 0.03 and α = 0.95.
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Results

(a) γ = 0.07 and α = 0.95.

(b) γ = 0.12 and α = 0.95.

Figure: Asset allocation with the NwF approach.
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Concluding remarks

▶ We discussed how to include contextual information in risk
constrained problems

▶ We showed theoretical results that ensure feasibility for the CC as
the number of data points grows (results hold for expected value
constraints)

▶ We illustrated our findings in a portfolio selection problem under
CVaR constraints

▶ Future work includes extensions to the multistage case,
methodological developments exploring the link between
prediction and prescription, and applications in transportation
(urban mobility), energy (OPF problem), natural resources
management...
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