Optimization problems in graphs with locational uncertainty

Marin Bougeret, Jérémy Omer, and Michaël Poss

October 22, 2021

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given:

:
$$\mathcal{U}_i \subset \mathbb{R}^2$$
 for $i = 1, \dots, 6$
• G=(V, E)

Given: $\mathcal{U}_i \subset \mathbb{R}^2$ for $i = 1, \dots, 6$ • G=(V, E)

Find: path from \mathcal{U}_1 to \mathcal{U}_6

Given: $\mathcal{U}_i \subset \mathbb{R}^2$ for $i = 1, \dots, 6$ • G=(V, E)

Find: path from \mathcal{U}_1 to \mathcal{U}_6

Given: $\mathcal{U}_i \subset \mathbb{R}^2$ for $i = 1, \dots, 6$ • G=(V, E)

Find: path from \mathcal{U}_1 to \mathcal{U}_6

Given

- A graph G = (V, E)
- \blacktriangleright A family of admissible subgraphs ${\cal F}$
- Finite uncertainty set U_i for each $i \in V$
- ▶ Distances $d(u_i, u_j)$ for each $u_i \in U_i, u_j \in U_j$

Solve

$$\min_{\mathbf{F}\in\mathcal{F}}\max_{\mathbf{u}\in\mathcal{U}}\sum_{\{i,j\}\in\mathbf{F}}d(\mathbf{u}_i,\mathbf{u}_j) = \min_{\mathbf{x}\in\mathcal{X}}\max_{\mathbf{u}\in\mathcal{U}}\sum_{\{i,j\}\in\mathbf{F}}\mathbf{x}_{ij}d(\mathbf{u}_i,\mathbf{u}_j)$$

Motivation

Subway network expansion

- Exact locations of the stations
 hard to predict
- Construction cost proportional to lengths
- \mathcal{F} consists of **paths** (possibly **trees**)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Motivation

Data classification

- Missing entries replaced by intervals
- Different distances may be relevant
- *F* consists of unions of cliques

Related work I: Affine decision rules [Zhen et al. (2021)]

They consider the special case

1.

$$\begin{split} \min_{\boldsymbol{x} \in \mathcal{X}} \max_{\boldsymbol{u} \in \mathcal{U}} \sum_{\{i,j\} \in E} \boldsymbol{x}_{ij} \| \boldsymbol{u}_{i} - \boldsymbol{u}_{j} \|_{2} \\ \text{Replace } \| \cdot \|_{2} \text{ by the maximization over ellipsoid } \mathcal{W}^{\ell} \subset \mathbb{R}^{\ell}: \\ \min_{\boldsymbol{x} \in \mathcal{X}} \max_{\boldsymbol{u} \in \mathcal{U}} \sum_{\{i,j\} \in E} \boldsymbol{x}_{ij} \max_{\boldsymbol{w}_{ij} \in \mathcal{W}^{\ell}} \boldsymbol{w}_{ij}^{T} (\boldsymbol{u}_{i} - \boldsymbol{u}_{j}) \\ = \min_{\boldsymbol{x} \in \mathcal{X}} \max_{\boldsymbol{w} \in \mathcal{W}} \max_{\boldsymbol{u} \in \mathcal{U}} \sum_{\{i,j\} \in E} \boldsymbol{x}_{ij} \boldsymbol{w}_{ij}^{T} (\boldsymbol{u}_{i} - \boldsymbol{u}_{j}) \\ \mathcal{U}=\{A\boldsymbol{u} \leq c\} \\ \min_{\boldsymbol{x} \in \mathcal{X}} \max_{\boldsymbol{w} \in \mathcal{W}} \min c^{T} \boldsymbol{\lambda} \\ \text{ s.t. } A_{i}^{T} \boldsymbol{\lambda} = \boldsymbol{x}_{ij} \boldsymbol{w}_{ij} - \boldsymbol{x}_{ji} \boldsymbol{w}_{ji}, \ i \in V \\ \boldsymbol{\lambda} > 0 \end{split}$$

2. Use Affine Decision Rules and dualize the robust constraints

Related work II: Maximum pairwise distances [Citovsky et al. (2017)]

$$d_{ij}^{max} = \max_{\substack{\boldsymbol{u_i} \in U_i, \boldsymbol{u_j} \in U_j}} d(\boldsymbol{u_i}, \boldsymbol{u_j})$$

- 1. Solve the problem $\min_{\mathbf{F}\in\mathcal{F}}\sum_{\{i,j\}\in\mathbf{F}}d_{ij}^{max}$
- 2. Return F*

They prove that for the traveling salesman problem, the returned solution cost is not worse than twice the optimal solution cost.

Our contributions

- 1. Prove the NP-hardness of $\min_{\mathbf{F}\in\mathcal{F}} \max_{\mathbf{u}\in\mathcal{U}} \sum_{\{i,j\}\in\mathbf{F}} d(\mathbf{u}_i, \mathbf{u}_j).$
- 2. Provide exact solution algorithms.
- 3. Study extensions of the approximation guarantee of d^{max} for more general structures and distances.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

4. Provide a FPTAS for the shortest path problem.

Theorem ROBUST- Δ -SP is \mathcal{NP} -hard, even when (\mathcal{M}, d) is the 1-dimensional Euclidean space.

• Reduction from the partition problem for items a_1, a_2, \ldots, a_n

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- All intervals built around 0
- Intervals length is larger than K >> a_i

Theorem ROBUST- Δ -SP is \mathcal{NP} -hard, even when (\mathcal{M}, d) is the 1-dimensional Euclidean space.

• Reduction from the partition problem for items a_1, a_2, \ldots, a_n

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

- All intervals built around 0
- Intervals length is larger than K >> a_i

Theorem ROBUST- Δ -SP is \mathcal{NP} -hard, even when (\mathcal{M}, d) is the 1-dimensional Euclidean space.

• Reduction from the partition problem for items a_1, a_2, \ldots, a_n

- All intervals built around 0
- Intervals length is larger than K >> a_i

Theorem ROBUST- Δ -SP is \mathcal{NP} -hard, even when (\mathcal{M}, d) is the 1-dimensional Euclidean space.

\Rightarrow equivalent to the robust shortest path with 2 scenarios

- Reduction from the partition problem for items a_1, a_2, \ldots, a_n
- All intervals built around 0
- Intervals length is larger than K >> a_i

Theorem

ROBUST- Δ -SP is \mathcal{NP} -hard, even when (\mathcal{M}, d) is the 1-dimensional Euclidean space.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Similar result for the spanning tree problem.

Exact solution

Relaxed Master Problem Let $\widetilde{\mathcal{U}} \subseteq \mathcal{U}$.

 $\begin{array}{ll} \min \ \boldsymbol{\omega} \\ \text{s.t.} \ \boldsymbol{\omega} \geq \sum_{\{i,j\} \in E} \boldsymbol{x}_{ij} d(\boldsymbol{u}_i, \boldsymbol{u}_j), \quad \forall \boldsymbol{u} \in \widetilde{\mathcal{U}} \\ \boldsymbol{x} \in \mathcal{X} \end{array}$

This is a Mixed-Integer Linear Program.

Adversarial Separation Problem (EVAL-C)

$$\max_{\boldsymbol{u}\in\mathcal{U}}\sum_{\{i,j\}\in\boldsymbol{E}}\boldsymbol{x}_{ij}d(\boldsymbol{u}_i,\boldsymbol{u}_j) = \max_{\boldsymbol{u}\in\mathcal{U}}\sum_{\{i,j\}\in\boldsymbol{F}}d(\boldsymbol{u}_i,\boldsymbol{u}_j)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Adversarial separation problem: complexity results

Theorem

Even when $|\mathcal{M}| = 2$, there is no \mathcal{PTAS} for EVAL-C unless $\mathcal{P} = \mathcal{NP}$.

Theorem EVAL-C/tw + σ is \mathcal{FPT} .

Adversarial separation problem: ILP

We want to solve

$$\max_{\boldsymbol{u} \in \mathcal{U}} \sum_{\{i,j\} \in \boldsymbol{E}} \boldsymbol{x}_{ij} d(\boldsymbol{u}_i, \boldsymbol{u}_j)$$

We use binary variables

$$oldsymbol{y}_{oldsymbol{i}}^{oldsymbol{k}}=1 \Leftrightarrow oldsymbol{u}_{oldsymbol{i}}=u_{oldsymbol{i}}^{oldsymbol{k}}$$

We obtain a quadratic assignment problem

$$\begin{split} \max \sum_{\{i,j\}\in E} \mathbf{x}_{ij} \sum_{k=1}^{|\mathcal{U}_i|} \sum_{\ell=1}^{|\mathcal{U}_j|} d(u_i^k, u_j^\ell) \mathbf{y}_i^k \mathbf{y}_j^\ell \\ \text{s.t.} \sum_{k=1}^{|\mathcal{U}_i|} \mathbf{y}_i^k &= 1, \quad \forall i \in V \\ \mathbf{y}_i \in \{0, 1\}^{|\mathcal{U}_i|}, \quad \forall i \in V \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The barycenter does not work

1

 0ϵ

-1

 $\mathcal{F} = E(G) \implies \text{the problem amounts to choosing one edge}$ $\mathcal{U}_3 = \{-1, 1\} \implies u_3^{bc} = 0$ $\mathcal{U}_2 = \{0\} \implies u_2^{bc} = 0$ $\mathcal{U}_1 = \{\epsilon\} \implies u_1^{bc} = \epsilon$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

The barycenter does not work

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

The barycenter does not work

Choosing the cheapest solution according to barycenters can be arbitrarily bad

< ロ > < 同 > < E > < E > E の < C</p>

Approximation algorithms based on d^{max}

Notations

$$c(\mathbf{F}) = \max_{\mathbf{u} \in \mathcal{U}} \sum_{\{i,j\} \in \mathbf{F}} d(\mathbf{u}_i, \mathbf{u}_j), \qquad c^{max}(\mathbf{F}) = \sum_{\{i,j\} \in \mathbf{F}} \underbrace{\max_{\mathbf{u}_i \in U_i, \mathbf{u}_j \in U_j} d(\mathbf{u}_i, \mathbf{u}_j)}_{\{i,j\} \in \mathbf{F}} \underbrace{\max_{\mathbf{u}_i \in U_i, \mathbf{u}_j \in U_j} d(\mathbf{u}_i, \mathbf{u}_j)}_{\{i,j\} \in \mathbf{F}}$$

.....

Algorithm

Let
$$\mathbf{F}^{max}$$
 be a solution to $\min_{\mathbf{F}\in\mathcal{F}} c^{max}(\mathbf{F})$

▶ return **F**^{max}

Theorem $c^{max}(\mathbf{F}) \leq \rho \cdot c(\mathbf{F}) \text{ for any } \mathbf{F} \in \mathcal{F} \implies c(\mathbf{F}^{max}) \leq \rho \cdot \text{OPT.}$

Proof.

F^{max} be the output of the algorithm
 F* be an optimal solution (c(F*) = OPT)
 c(F^{max}) ≤ c^{max}(F^{max}) ≤ c^{max}(F*) ≤ ρ ⋅ c(F*)

Theorem

Let (\mathcal{M}, d) be a Ptolemaic metric space. Then, $c^{max}(F) \leq 4 c(F)$. Proof.

Theorem

Let (\mathcal{M}, d) be a Ptolemaic metric space. Then, $c^{max}(F) \leq 4 c(F)$. Proof.

- Define $\tilde{\mathcal{U}} \subseteq \! \mathcal{U}$

• We have
$$\tilde{c}(F) = \max_{u \in \tilde{\mathcal{U}}} \sum_{\{i,j\} \in F} d(u_i, u_j) \ge \mathbb{E} \left[\sum_{\{i,j\} \in F} d(\tilde{u}_i, \tilde{u}_j) \right] = \sum_{\{i,j\} \in F} \mathbb{E} \left[d(\tilde{u}_i, \tilde{u}_j) \right] \ge \sum_{\{i,j\} \in F} \frac{d_{ij}^{max}}{4}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Theorem

Let (\mathcal{M}, d) be a Ptolemaic metric space. Then, $c^{max}(F) \leq 4 c(F)$.

Proof.

• Define $\tilde{\mathcal{U}} \subseteq \mathcal{U}$

• We have
$$\tilde{c}(F) = \max_{u \in \tilde{\mathcal{U}}} \sum_{\{i,j\} \in F} d(u_i, u_j) \ge \mathbb{E} \left[\sum_{\{i,j\} \in F} d(\tilde{u}_i, \tilde{u}_j) \right] = \sum_{\{i,j\} \in F} \mathbb{E} \left[d(\tilde{u}_i, \tilde{u}_j) \right] \ge \sum_{\{i,j\} \in F} \frac{d_{ij}^{max}}{4}$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Theorem

Let (\mathcal{M}, d) be a Ptolemaic metric space. Then, $c^{max}(F) \leq 4 c(F)$. Proof.

- Define $\tilde{\mathcal{U}} \subseteq \mathcal{U}$

• We have
$$\tilde{c}(F) = \max_{u \in \tilde{\mathcal{U}}} \sum_{\{i,j\} \in F} d(u_i, u_j) \ge \mathbb{E} \left[\sum_{\{i,j\} \in F} d(\tilde{u}_i, \tilde{u}_j) \right] = \sum_{\{i,j\} \in F} \mathbb{E} \left[d(\tilde{u}_i, \tilde{u}_j) \right] \ge \sum_{\{i,j\} \in F} \frac{d_{ij}^{max}}{4}$$

 u_i^2

Theorem

.

Let (\mathcal{M}, d) be a Ptolemaic metric space. Then, $c^{max}(F) \leq 4 c(F)$. Proof.

- Define $\tilde{\mathcal{U}} \subseteq \mathcal{U}$

 u_i^2

 $\tilde{\mathcal{U}}_i = \{u_i^1, u_i^2\}$

Theorem

Let (\mathcal{M}, d) be a Ptolemaic metric space. Then, $c^{max}(F) \leq 4 c(F)$. Proof.

- Define $\tilde{\mathcal{U}} \subseteq \mathcal{U}$

• We have
$$\tilde{c}(F) = \max_{u \in \tilde{\mathcal{U}}} \sum_{\{i,j\} \in F} d(u_i, u_j) \ge \mathbb{E} \left[\sum_{\{i,j\} \in F} d(\tilde{u}_i, \tilde{u}_j) \right] = \sum_{\{i,j\} \in F} \mathbb{E} \left[d(\tilde{u}_i, \tilde{u}_j) \right] \ge \sum_{\{i,j\} \in F} \frac{d_{ij}^{max}}{4}$$

$$u_i^1 = 1 \quad \text{and } u_i = 1 \quad \text{and }$$

$$\frac{1}{4} \left(d(u_i^1, u_j^1) + d(u_i^1, u_j^2) + d(u_i^2, u_j^1) + d(u_i^2, u_j^2) \right)$$

Applying Ptolemy's inequality ...

$$\geq \frac{d_{ij}^{max}}{4}$$

 $ilde{\mathcal{U}}_i = \{u_i^1, u_i^2\}$

THEOREM 5. For any metric space (\mathcal{M}, d) , $c^{max}(F) \leq 9c(F)$.

PROPOSITION 10. Let F be a clique. Then, $c^{max}(F) \leq 2c(F)$.

COROLLARY 4. Let F be a star. Then, $c^{max}(F) \leq 3c(F)$.

 \mathcal{U}_2

 \mathcal{U}_1

 $\frac{3(n-1)}{n+1}c(F).$

PROPOSITION 13. Let F be a star on n vertices. There is an uncertainty set \mathcal{U} such that $c^{max}(F) =$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

THEOREM 5. For any metric space (\mathcal{M}, d) , $c^{max}(F) \leq 9c(F)$.

PROPOSITION 10. Let F be a clique. Then, $c^{max}(F) \leq 2c(F)$.

COROLLARY 4. Let F be a star. Then, $c^{max}(F) \leq 3c(F)$.

PROPOSITION 13. Let F be a star on n vertices. There is an uncertainty set \mathcal{U} such that $c^{max}(F) =$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

THEOREM 5. For any metric space (\mathcal{M}, d) , $c^{max}(F) \leq 9c(F)$.

PROPOSITION 10. Let F be a clique. Then, $c^{max}(F) \leq 2c(F)$.

COROLLARY 4. Let F be a star. Then, $c^{max}(F) \leq 3c(F)$.

PROPOSITION 13. Let F be a star on n vertices. There is an uncertainty set \mathcal{U} such that $c^{max}(F) =$

THEOREM 5. For any metric space (\mathcal{M}, d) , $c^{max}(F) \leq 9c(F)$.

PROPOSITION 10. Let F be a clique. Then, $c^{max}(F) \leq 2c(F)$.

COROLLARY 4. Let F be a star. Then, $c^{max}(F) \leq 3c(F)$.

PROPOSITION 13. Let F be a star on n vertices. There is an uncertainty set \mathcal{U} such that $c^{max}(F) =$

Numerical experiment on Steiner Tree Problem

Algorithms

- exact: Cutting-plane algorithm
- **adr**: Affine-decision-rule bases heuristic from Zhen et al. 2021
- center: Solving the nominal counterpart based on barycenters
- dmax: Solving the nominal counterpart using d^{max}

p619, p620, and 621 from steinlib • 100 nodes, 180 edges, 5 terminals • \overline{d} = average distance • random $\rho_i \in [0, \mu \overline{d}]$ $\rho_1 = \mathcal{U}_1$ $\mu \overline{d}$

◆□▶ ◆□▶ ★ ミ ▶ ★ ミ ● ● ● ● ●

Numerical experiments: solution times (in seconds)

Numerical experiments: solution quality

Figure: % of instances for which the additional relative cost is less than x.

5900

Open Journal of Mathematical Optimization (OJMO)

With classical publishers, either

papers are behind an (expensive) paywall;

- or authors pay $(\pm 2k)$ for Open Access (the so-called **gold** OA)
- OJMO provides a free OA alternative (thanks to Mersenne)
- Papers have doi, indexed in DBLP, zbMATH, Crossref, ...

Area Editors

- Continuous Optimization David Russell Luke
- Discrete Optimization Sebastian Pokutta
- Optimization under Uncertainty Guzin Bayraksan
- Computational aspects and applications Bernard Gendron

10 papers published already, and one prize!

2021 Beale — Orchard-Hays Prize Citation

Alberto Costa and Giacomo Nannicini

"RBFOpt: an open-source library for black-box optimization with costly function evaluations" Mathematical Programming Computation 10 (2018) 597-629.

"On the implementation of a global optimization method for mixed-variable problems"

Open Journal of Mathematical Optimization 2 (2021).

Visit https://ojmo.centre-mersenne.org/