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Problem definition

Given
I A graph G = (V ,E )

I A family of admissible subgraphs F
I Finite uncertainty set Ui for each i 2 V

I Distances d(ui ,uj ) for each ui 2 Ui ,uj 2 Uj

Solve

min
F2F

max
u2U

X

{i ,j}2F

d(ui ,uj ) = min
x2X

max
u2U

X

{i ,j}2E

xijd(ui ,uj )
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 Subway network expansion 
 

Exact locations of the stations •
hard to predict




Construction cost proportional •
to lengths




    consists of paths (possibly •
trees)



Motivation





































Data classification




Missing entries replaced •
by intervals




Different distances may •
be relevant 




    consists of unions of •
cliques



Related work I: A�ne decision rules [Zhen et al. (2021)]

They consider the special case

min
x2X

max
u2U

X

{i,j}2E

xijkui � ujk2

1. Replace k · k2 by the maximization over ellipsoid W` ⇢ R`:

min
x2X

max
u2U

X

{i,j}2E

xij max
wij2W`

wT
ij (ui � uj )

= min
x2X

max
w2W

max
u2U

X

{i,j}2E

xijwT
ij (ui � uj )

U={Auc}
= min

x2X
max
w2W

min cT�

s.t. AT
i � = xijwij � xjiwji , i 2 V

� � 0

2. Use A�ne Decision Rules and dualize the robust constraints
































































Related work II: Maximum pairwise distances [Citovsky et

al. (2017)]

dmax
ij = max

ui2Ui ,uj2Uj

d(ui ,uj )

1. Solve the problem min
F2F

P
{i ,j}2F

dmax
ij

2. Return F⇤

They prove that for the traveling salesman problem, the returned
solution cost is not worse than twice the optimal solution cost.
































































Our contributions

1. Prove the NP-hardness of min
F2F

max
u2U

X

{i ,j}2F

d(ui ,uj ).

2. Provide exact solution algorithms.

3. Study extensions of the approximation guarantee of dmax for
more general structures and distances.

4. Provide a FPTAS for the shortest path problem.
































































NP-hardness

Theorem

robust-�-sp is NP-hard, even when (M, d) is the 1-dimensional
Euclidean space.

s t

v1
u�v1

u+v1

w1

u�w1

u+w1

v2
u�v2

u+v2

w2

u�w2

u+w2

vn
u�vn

u+vn

wn

u�wn

u+wn






























































Reduction from the partition problem for items 
•
All intervals built around 0
•
Intervals length is larger than K >> •
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NP-hardness

Theorem

robust-�-sp is NP-hard, even when (M, d) is the 1-dimensional
Euclidean space.
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Similar result for the spanning tree problem.
































































Exact solution

Relaxed Master Problem
Let eU ✓ U .

min !

s.t. ! �
X

{i ,j}2E

xijd(ui ,uj ), 8u 2 eU

x 2 X

This is a Mixed-Integer Linear Program.

Adversarial Separation Problem (eval-c)

max
u2U

X

{i ,j}2E

xijd(ui ,uj ) = max
u2U

X

{i ,j}2F

d(ui ,uj )
































































Adversarial separation problem: complexity results

Theorem
Even when |M| = 2, there is no PT AS for eval-c unless
P = NP .

Theorem
eval-c/tw + � is FPT .
































































Adversarial separation problem: ILP

We want to solve
max
u2U

X

{i ,j}2E

xijd(ui ,uj )

We use binary variables

yk
i = 1 , ui = uki

We obtain a quadratic assignment problem

max
X

{i ,j}2E

xij
|Ui |X

k=1

|Uj |X

`=1

d(uki , u
`
j )yk

i y `
j

s.t.

|Ui |X

k=1

yk
i = 1, 8i 2 V

yi 2 {0, 1}|Ui |, 8i 2 V
































































The barycenter does not work































































The barycenter does not work































































The barycenter does not work






















































 Choosing the cheapest solution according to barycenters can be 
arbitrarily bad



Approximation algorithms based on dmax

Notations

c(F ) = max
u2U

X

{i,j}2F

d(ui ,uj ), cmax(F ) =
X

{i,j}2F

dmax
ijz }| {

max
ui2Ui ,uj2Uj

d(ui ,uj )

Algorithm

I Let Fmax be a solution to min
F2F

cmax(F )

I return Fmax

Theorem
cmax(F )  ⇢ · c(F ) for any F 2 F =) c(Fmax)  ⇢ · opt.

Proof.
I Fmax be the output of the algorithm

I F⇤ be an optimal solution (c(F⇤) = opt)

I c(Fmax)  cmax(Fmax)  cmax(F⇤)  ⇢ · c(F⇤)
































































Example of bound cmax(F )  ⇢2c(F )

Theorem
Let (M, d) be a Ptolemaic metric space. Then, cmax(F )  4 c(F ).

Proof.






























































h

think of it as Euclidean



Example of bound cmax
(F )  ⇢2c(F )
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Define
•



We have•
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Define
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Example of bound cmax
(F )  ⇢2c(F )
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Define
•



We have•

Applying Ptolemy's inequality …  



Example of bound cmax
(F )  ⇢2c(F )



























































2



Example of bound cmax
(F )  ⇢2c(F )
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Example of bound cmax
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Example of bound cmax
(F )  ⇢2c(F )
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Numerical experiment on Steiner Tree Problem

Algorithms

I exact: Cutting-plane algorithm

I adr: A�ne-decision-rule bases heuristic from Zhen et al. 2021

I center: Solving the nominal counterpart based on barycenters

I dmax: Solving the nominal counterpart using dmax

p619, p620, and 621 from steinlib

I 100 nodes, 180 edges, 5 terminals

I d̄ = average distance

I random ⇢i 2 [0, µd̄ ]
































































Numerical experiments: solution times (in seconds)
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Figure: Value of µ.
































































Numerical experiments: solution quality
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(a) P6E, µ = 0.1
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(b) P6E, µ = 0.5
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(c) P6E, µ = 1

Figure: % of instances for which the additional relative cost is less than x .
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