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Problem definition

Given
» A graph G = (V,E)
» A family of admissible subgraphs F
» Finite uncertainty set U; for each i € V
> Distances d(u;, u;) for each u; € Uj, u; € U;

Solve
min max d(u:. u. =  min max Z x:-d(u.. u:
FEF ueld < (u;, ;) xEX ueld (v, ;)

{ij}eF {ij}€E



Motivation

Bruxelles | Réseau de métro et future ligne 3
Brussel | Metronetwerk en toekomstige lijn 3

Subway network expansion

« Exact locations of the stations
hard to predict

+ Construction cost proportional
to lengths

- F consists of paths (possibly
trees)

Ligne de métro - Metrolijn
Future ligne 3 - Toekomstige lijn 3
Frontiére régionale - Gewestgrens




Motivation

2D representation of the Cars interval data
T T T T

Data classification

+ Missing entries replaced
by intervals

- Different distances may
be relevant

- F consists of unions of
cliques



Related work I: Affine decision rules [Zhen et al. (2021)]

They consider the special case

minmay 2wl =l

{ij}teE
1. Replace || - ||2 by the maximization over ellipsoid W* C R*:
wT
min max x; max w; (u; — u;)
x€EX ueld w, EW*E
{ijeE

= min max max g x,-J-w,-J-T(u,-—uj)
xeX weWw ucld =
{ij}eE
U={Au<c} . .
= min max min ¢’
xXeX wew

T .
st Aj A = x;w; — x;w, 1€V
A>0

2. Use Affine Decision Rules and dualize the robust constraints



Related work II: Maximum pairwise distances [Citovsky et
al. (2017)]

max
dy

;= max d(u;,u;)

UI-EU,',UJ-GUJ' J

1. Solve the problem min Y d%
FEF (ijrer °

2. Return F*

They prove that for the traveling salesman problem, the returned
solution cost is not worse than twice the optimal solution cost.



Our contributions

1. Prove the NP-hardness of min max Z d(u

FerF uEZ/{
lij}eF
2. Provide exact solution algorithms.
3. Study extensions of the approximation guarantee of d"# for

more general structures and distances.

4. Provide a FPTAS for the shortest path problem.



NP-hardness

Theorem
ROBUST-A-SP is N'P-hard, even when (M, d) is the 1-dimensional
Euclidean space.

* Reduction from the partition problem for items @1, a2, ..., 0n
+ All intervals built around 0O
* Intervals length is larger than K >> aG;
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NP-hardness

Theorem
ROBUST-A-SP is N'P-hard, even when (M, d) is the 1-dimensional
Euclidean space.

= equivalent to the robust shortest path with 2 scenarios

* Reduction from the partition problem for items @1, a2, ..., Qn
+ All intervals built around 0O
* Intervals length is larger than K >> aG;



NP-hardness

Theorem
ROBUST-A-SP is N'P-hard, even when (M, d) is the 1-dimensional
Euclidean space.

Similar result for the spanning tree problem.



Exact solution

Re|a>~<ed Master Problem

Let 4 C U.
min  w
st. w> Z x;d(u;, u;), Vu el
{ij}eE
x e X

This is a Mixed-Integer Linear Program.

Adversarial Separation Problem (EVAL-C)

max x:-d(u-. u. =  max d(u:, u.
max > xgd(u, ) = max S d(uu)
{iJj}eE {iJ}eF



Adversarial separation problem: complexity results

Theorem
Even when |M| = 2, there is no PT AS for EVAL-C unless
P=NP.

Theorem
EVAL-C/tw + o is FPT.



Adversarial separation problem: [LP

We want to solve
max x;;d(u;, uj)
{ij}eE
We use binary variables

yik:]'@ui:ulk

We obtain a quadratic assignment problem

4] 1]

max Z Uzzd i Jy'y.l

{ij}eE  k=1¢=1
U]
sty yf=1 VieV

y; € {0,111 viev



The barycenter does not work

F = E(G) = the problem amounts to choosing one edge

........................... Us={-1,1} = u¥=0
o O

G @ Up={0} = uy’=0

Uy ={e} = ul=¢

-
v
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2,3}) =1
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The barycenter does not work

F = E(G) = the problem amounts to choosing one edge

Q Uy ={0} = ul=0
c({1,2}) = ¢

Uy =1{e} = ulf=c¢

-
v

Choosing the cheapest solution according to barycenters can be
arbitrarily bad



Approximation algorithms based on d™#

Notations

dmax

c(F) = max Z d(u;, u;) c"(F) = Z " max d(u,, 15

ueld u; eu;, u; ey,
{ij}eF {ijteF
Algorithm
» Let F™@ be a solution to min ¢™#(F)
FEF

» return F™Max

Theorem
c"(F)<p-c(F) forany F ¢ F = c(F™) < p-OPT.
Proof.

» F™M3 be the output of the algorithm

» F* be an optimal solution (c(F*) = opPT)

> C(Fmax) S CmaX(Fmax) S CmaX(F*) S p. C(F*)



Example of bound ¢™*(F) < p ¢(F)

Theorem

Let (M, d) be a Ptolemaic metric space. Then, c™*(F) < 4 c(F).
Proof. think of it as Euclidean
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Example of bound ¢™*(F) < p ¢(F)

Theorem
Let (M, d) be a Ptolemaic metric space. Then, c™(F) < 4 c(F).

Proof.
. Definel UCU

« We have &(F)=max Z d(u;,uj) >IE|: Z d(u ] Z E[d(t;,a;)] > Z zfl

uweld
{i,j}eF

{i.j}yeF




Example of bound ¢™(F) < p ¢(F)

Theorem
Let (M, d) be a Ptolemaic metric space. Then, c™(F) < 4 c(F).
Proof.
- Define U CU
_ _ d;’}?,al'
+ We have &F)=max Y  d(u,u;)>E| > dli,i,)|= > Eld(i, )] > ) 4
uel S er {i,jreF {igyer {ij}eF

(d(u;,u;) +d(uy,uf) +d(u;, u;) +d(u?,u?))

1) ) 1777 1) 7 17 77

W~ =




Example of bound ¢™*(F) < p ¢(F)

Theorem
Let (M, d) be a Ptolemaic metric space. Then, c™(F) < 4 c(F).

Proof.
. Define U CU
d;na:c
+ We have &F)=max Y  d(u,u;)>E| > dli,i,)|= Y Eld(,i,)] > ) i
uelU i Yer {i,j}eF {i.j}eF {i.j}eF

(al(u1 ur) +d(u;, u?) +d(u?, u;) +d(u?, u?))

1) g

W~ =

Applying Ptolemy's inequality ...

>d£l'7_la£l?
- 4




Example of bound ¢™*(F) < p ¢(F)

THEOREM 5. For any metric space (M,d), ¢™**(F) <9c(F).
PROPOSITION 10. Let F' be a clique. Then, c™**(F) < 2¢(F).

COROLLARY 4. Let F' be a star. Then, ¢c™**(F) <3 c(F).

PROPOSITION 13. Let F' be a star on n vertices. There is an uncertainty set U such that ¢™**(F) =

A=l o(F). Uo
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Example of bound ¢™*(F) < p ¢(F)

THEOREM 5. For any metric space (M,d), ¢™**(F) <9c(F).

PROPOSITION 10. Let F' be a clique. Then, c™**(F) < 2¢(F).
COROLLARY 4. Let F' be a star. Then, ¢c™**(F) <3 c(F).

PROPOSITION 13. Let F' be a star on n vertices. There is an uncertainty set U such that ¢™**(F) =

A=l o(F). Uo

AN & (F) =
. ....... 1 ma 9
Uy 2 e = ° 5 _ 9
3 Z/{3 C (F) 5)



Numerical experiment on Steiner Tree Problem

Algorithms

» exact: Cutting-plane algorithm
» adr: Affine-decision-rule bases heuristic from Zhen et al. 2021
» center: Solving the nominal counterpart based on barycenters

» dmax: Solving the nominal counterpart using d™®

p619, p620, and 621 from steinlib :‘_..-;'_'_:::_'_'.'.'v e
» 100 nodes, 180 edges, 5 terminals A
@

» d = average distance
» random p; € [0, uud]




Numerical experiments: solution times (in seconds)
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Figure: Value of u.



Numerical experiments: solution quality
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Figure: % of instances for which the additional relative cost is less than x.
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» With classical publishers, either

» papers are behind an (expensive) paywall;
» or authors pay (£2k) for Open Access (the so-called gold OA)

» OJMO provides a free OA alternative (thanks to Mersenne)
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