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v

are interested in convex optimization problems of the form

min_ p(fi(z1),....fs(zs)) st. ze€N (Pbm)
zERNS
xs € R™ is the decision vector related to scenario s =1,...,5
z=(z1,...,25) € R™S comprises all the decision variables: decision policy

N C R™5 is a linear space of nonanticipative policies

fs : R™ — R U 400 is the scenario cost function, which we assume lsc and
convex (e.g. fs(-) :==cs(-) +ix, ("))

p: RS — R is a convex and monotonically non-decreasing function, that is,
P+ (1= M)v') < Ap(v) + (1 = Np(v')  Vv,0o' €RY, X €[0,1], and

p(v) > p(v')  whenever v >0’




> Risk-neutral setting: given a probability vector p = (p1,...,ps),

s
p(f1(z1), ... fs(@s)) = Ep[fs(zs)] = ZPSfS(%)

s=1




> Risk-neutral setting: given a probability vector p = (p1,...,ps),

s
p(f1(z1), ... fs(@s)) = Ep[fs(zs)] = ZPSfS(%‘)

s=1

> Risk-averse setting: p is a risk measure. Example: given a regret function
Z : RS — R which is convex, monotone and positively homogeneous

— mi Z(v—
p(v) = min 7+ Z(v — 1)

Expectation case: Z(v) = Zle psC(vs) and ¢ : R — R is a convex and
non-decreasing function

» Conditional Value-at-Risk: ¢(-) = 2= [-]+ and a € (0,1)

> Log-Exponential: ((-) =exp(-) =1 (= p(v) = log(3_, pslexp(vs)]))

ZMA
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> Risk-averse setting: p is a risk measure. Example: given a regret function
Z : RS — R which is convex, monotone and positively homogeneous
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> Risk-neutral setting: given a probability vector p = (p1,...,ps),

S
p(f1(z1), ... fs(@s)) = Ep[fs(zs)] = ZPSfS(IS)

s=1
> Risk-averse setting: p is a risk measure. Example: given a regret function
Z : RS — R which is convex, monotone and positively homogeneous
v)=min 7+ Z(v—1T
p(o) = min 7+ Z(v — 7)
Expectation case: Z(v) = Zle psC(vs) and ¢ : R — R is a convex and
non-decreasing function
» Conditional Value-at-Risk: ¢(-) = 2= [-]+ and a € (0,1)
> Log-Exponential: ((-) =exp(-) =1 (= p(v) = log(3_, pslexp(vs)]))
» Worst-case scenario (robust optimization):

P = I s

> Distributionally robust optimization (fixed support):

p(v) = I;lgang[U] = max (p,v) ZMA
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DISTRIBUTIONALLY ROBUST OPTIMIZATION

v) = max E,[v
p(v) = max By ]
> If P is a singleton, then we are back to the risk-neutral setting

> If the ambiguity set is the simplex, i.e. P =Ag:={y € Ri : Zle ys = 1},
then p above boils down to the worst-case scenario setting

» The connection between DRO and stochastic programs with coherent-risk
measures is made by the Fenchel conjugate function

v) = max ,U
p(v) yepom(p*)@/ )

» TFor the CVaR, function

1

l—-«

S
p(v) = min T+z:1ps [vs — 7]+,
=

we have that Povar, = Dom(p*) = {q € ]Ri : 25:1 gs=1,q< (1504)} and
thus

v) = max [Ep[v
(v) peilax p[v]




FuncrioN p IS DECOMPOSABLE OVER SCENARIOS
mins p(Fi(z1), ..., fs(zg)) s1. €N (Pbm)

zER™

> A well-known optimization tool for solving (Pbm) in the risk-neutral setting

S
p(v) = p(Fa(@1), . Fs(2) = 3 pofol@s)
s=1

is the Progressive Hedging Algorithm (PHA)!

» The PHA has been extended recently to handle risk-averse problems with p
fitting the expectation setting?

S
p(v) = min 7+ S;ps [C(vs — 7)]

» In these two settings, the objective function of (Pbm) has an additive
structure over scenarios and only the nonanticipativity constraint (z € N)
couples the variables

uncertainty. MOR, 1991
2R0ckafellar, R.T.: Solving stochastic programming problems with risk measures by
progressive hedging. SVAA, 2018

1Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in optimization under ;/IVIA




GENERAL SETTING

mins p(Fi(z1), ..., fs(zg)) s1. €N (Pbm)

zER™

» If p does not have an additive structure over scenarios, then (Pbm) is not only
coupled by the nonanticipativity constraint but also by the objective function

> PHA does not apply in such a more general setting...

» How can we decompose the problem?

ZMA

[ ———
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REFORMULATING THE PROBLEM

mins p(Fi(z1), ..., fs(zg)) s1. €N (Pbm)

zER™

> With the help of an auxiliary vector u € R™, let us move the random cost
functions to the constraints

min  p(u)
z,u

st. fs(zs) <us Vs=1,...,8
zeN

This does not help much because us links fs to p...




REFORMULATING THE PROBLEM

mvi’ns p(Fi(z1),...,fs(zg)) sT. z €N (Pbm)

x €R

> With the help of an auxiliary vector u € R™, let us move the random cost
functions to the constraints

min  p(u)
z,u

st. fs(zs) <us Vs=1,...,8
zeN

This does not help much because us links fs to p...

P> Let us add another auxiliary vector v € R™

min  p(v)

T,u,v

s.t. fs(xs) < us Vs=1,...,8
zeEN, u=v
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REFORMULATING THE PROBLEM

mins p(Fi(z1),...,fs(zg)) sT. z €N (Pbm)

zER™

> With the help of an auxiliary vector u € R™, let us move the random cost
functions to the constraints
min  p(u)
x,u
st. fs(zs) <us Vs=1,...,8
zEN

This does not help much because us links fs to p...

P> Let us add another auxiliary vector v € R™

min  p(v)
T,u,v

s.t. (zs,us) €Eepifs Vs=1,...,8
zeN, u=1v




REFORMULATING THE PROBLEM

min_ p(f1(21), ..., fs(eg)) sT. @ €N (Pom)
zeRNS

By writing (Pbm) as

min  p(v)
z,u,v

s.t. (zs,us) €Eepifs Vs=1,...,8
zeN, u=nu,

we can go further and obtain the following equivalent problem

in G
g 6
» dimension n := (n + 2)S
>x::((x17u1)7'"7(1:S7us)7v17"'7vs)eRn
> ¢:={x€eR”: z€N, and u = v} is a linear subspace of R®
S
> G(x) = Z fepi fs (Ts,us) + p(v) is a convex function
s=1

{Thc new objective function is now dccomposablo!}




THE DOUGLAS-RACHFORD SPLITTING METHOD

(Pom)  min p(1(21),....fs(zs)) = min G(x)

Optimality condition (under a constraint qualification)

find x s.t. 0€ 9G(X) + Jig(x)
> Solving (Pbm) amounts to finding a zero of the sum of two maximal monotone
operators

» Such a task can be accomplished by the well-known Douglas-Rachford
splitting method (DR)3

» Given r > 0 and z° € R™, set k = 0 and perform the following steps*:

xF = Proja(z*)
%kt = Proxg (2x* — z*)
[ = f&k+1 — x*]

3’DouglaLs J., Rachford, H.H.: On the numerical solution of heat conduction problems in tw;MA
and three space variables. Trans. Am. Math. (1956) e e s it

proj x (y) i= argminge x |z — yl|2 and Proxs(y) := arg mingcpn £(@) + 3o — 3|2
9/23



SCENARIO DECOMPOSITION WITH ALTERNATING PROJECTIONS - SDAP

Initialization.

Step 1.

Step 2.

Step 3.

Let 29 € R*S, 20 € RS, 20 € RS, and r > 0 be given. Set k := 0

Define
ak = ProjN—(z’;) and uk = a ; G
Compute (in parallel) the auxiliary vectors
oftl= Proxp (2uF — 2F)
(&ht1 aktly.= Projp; s, [(238’; — z’;S,Qulz — zﬁé)] Vs=1,...,58
Update

k+1 . k| sk+1 k
Zy T i=zy X -
z5+1 = zfj 4okt ok

E+1._ k| sk+1 k
Zy =2z, + 0 —u

Set k := k+ 1 and go back to Step 1




COMMENTS ON SDAP - STEP 1

Step 1 computes the projection onto the nonanticipativity space N, which is a
straightforward operation

To see that, let

A(s,t) :={je{1,...,5}: g[jt] =&yt forall t=1,...,7 and s=1,...,5,

be the index set of all scenarios sharing the same history ;) = (&,...,&)
Then
k k k k k . k
T = (xl,lz EEEEE % S EERREES I PRRR 7xT,S) = PrOJN(Z:v)
is given by
1
k k
Tf g = —————— zy, ., forall t=1,...,7 and s=1,...,S5
BT A, )] 2
JEA(s,t)
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COMMENTS ON SDAP - STEP 2
Let the random cost mapping be §s(-) = ¢s(-) +ix, (-) (convex)
The projection subproblem in Step 2
(@551, 0571) o= Prog, [ (204 — o8, 20t — 28]
reads as

2
(sDAP) min flas = (225 = 25) |7+ [us - ub -2,

s.t. cs(ws) <wus, s € Xg




COMMENTS ON SDAP - STEP 2

Let the random cost mapping be §s(-) = ¢s(-) +ix, (-) (convex)

The projection subproblem in Step 2

~k+1 ~k+1 : k k k k
($5+ 7“5+ ):: Prc’.]ep:lfS [(23:5 _zm572us -z ):|

Us

reads as

2

s.t. cs(ws) <wus, s € Xg

For comparison reasons, if the risk function falls into the expectation category
(with ¢ : R — R convex and non-decreasing), then the PHA subproblem becomes

G S )

(PHA) { min ¢ (es(@s) —us) +us + %‘

s.t. s € Xg

In contrast with PHA, the SDAP subproblem is independent of the risk function
VA

Conte e anématiues opiutes
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COMMENTS ON SDAP - STEP 2

> SDAP evaluates the proximal mapping 1! := Prox, (2u* — 2F) at every

r

iteration

» This procedure, that is independent of the epi-projections, can be easily
performed depending on p

1

» In the setting distributionally robust optimization, computing #**! amounts

to projecting onto the ambiguity set and performing straightforward
operations

THEOREM
Let P C ]Ri be a convex compact set, and suppose that
v) = max Ep[v
p(v) bep p[v]

Then
1 .
Proxs () = 1 — ~Projp(ry)
r r

This result justifies the algorithm’s name: each step involve different kind of

projections ZMA
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SPECIAL SETUPS

» Risk-neutral stochastic programs. Suppose that the ambiguity set is a
singleton P = {p}, with p = (p1,...,ps). Then Prox, (u) = pu — %P is a
T
straightforward operation

> Worst-case scenario. Let the ambiguity set be the simplex P = Ag: then
Proxp (u) results in projecting ru onto Ag, an easy task
T

» Conditional value-at-risk. Given a probability vector p € RS, let the
ambiguity set be

5
p
Povar, =40 E€RY Y g =1,¢< —— 4,
= 1-a)

which is the domain of the conjugate function of p(-) = CVaRa(+).
Computing Prox CVaRa (w)=p— 7Pro_]7,CVaR (rp) boils down to solving a

strictly convex QP problem of dimension S




SPECIAL SETUPS

P> Wasserstein ambiguity set: the fixed support case. The Wasserstein
ambiguity set Py, is defined for {e,...,65} and € > 0 as

S:1 ZZL:1 nsed(ﬁs,g) <e

s Zf:f’]sé =pe, £=1,...,L

Piy i =qpERT: Z(g:lnseL —pe, s=1,...,8
25:1 22:1 Tse =1
n >0

For the choice p(v) = max,epg, Ep [v], computing Proj 2 requires solving a

convex quadratic program with variables p € RS and n 6 RS*L | where L is
the number of given reference scenarios f

> General setting. If no additional assumption on p(-) (other than convexity
and monotonicity) is assumed, then computing

. T 2
Prox = arg min T - —
2(p) = arg min p(z) + Zlly — 4l

can be done by off-the-shelf algorithms or bundle methods




CONVERGENCE ANALYSIS

min_ p (fi(z1),...,fs(zs)) sT. z €N (Pbm)
z€R"S

THEOREM

Suppose p: RS — R is convez and monotonically non-decreasing, and the conves
problem (Pbm) is solvable. Furthermore, assume that at least one of the following
constraint qualifications hold:

i) N NriDom(Y5 | fs) #0 i) N'NDom(35_ | §s) # 0 and §s is polyhedral

Then the SDAP generates a sequence {azk} that converges to a solution T of (Pbm)

RELATED ALGORITHMS

> SDAP is equivalent to applying DR to the operators 0G and Jdig, a primal
approach

> A dual strategy consisting in applying DR to the operators 9[G* o (—I)] and
O(ig)* yields an implementation of ADMM

» In the risk-neutral setting f(z) = Zle psfs(xs), the DR applied to the
operators diag(p)~10f and diag(p) 10ins gives rise to PHA

Conte e stnm
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NUMERICAL EXPERIMENTS

We first compare the numerical performance of SDAP and PHA for risk-neutral,
risk-averse, and worst-case scenario settings of a multistage production/inventory
problem

The optimization problem consists of deciding the volume of production, inventory
and external purchase of nprod = 15 of products to satisfy, at the minimal cost, a
stochastic demand & over T = 4 stages (weeks)

All stages have fixed production, inventory and external supply costs, respectively
given by cf,cj,cf € R®PT°4, The cost mapping is independent of scenarios

T
f(x,€) = lef T af +cf T ay +cf T af
t=1

Deciding on how much of each product types to produce/purchase during a
particular week forms the decision variables. The problem’s constraints are:

» Production capacity: E?.P:“ld x5, < ProdCap, fort =1,...,T

» Inventory capacity: Z;}Zt’f m;f < InvCap, for t =1,...,T

» Demand satisfaction: z271 +ay > & € R for t =1,...,T

» Inventory balance: z! = x + [z} | + a¢ — &], fort =1,...,T

>zl ozl xé >0fort=1,...,T ZMA

17/23



NUMERICAL EXPERIMENTS

> Since we consider nprod = 15 products and T" = 4 stages, the number of
decision variables in the epi-projection subproblem is 181 =4 x 45 + 1

» The considered scenario tree is composed of S = 3000 demand scenarios

» All the solvers ran for 60 minutes

» Numerical experiments were conducted on a PC Intel(R) with 32GB of RAM
under Windows 10, using MATLAB 2020a in a parallel configuration with 4
workers, corresponding to the PC’s 4 cores

» Subproblems were solved by one of the MATLAB’s optimization routines

linprog, quadprog, fmincon and fminunc, depending upon the subproblem’s
structure

Conte e stnm
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SDAP vERSuUs PHA

205

p() = B[]

=——=SDAP-r=0.0001

190
0

220

10 20 30 40 50 60
min
p() = CVaRys[]

10

20 30
min
p(:) = LogExpl]

40 50 60

= SDAP-r:

.0001
SDAP-r=5e-05
— — SDAP-r=1e-05

60

ZMA
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Number of i i in 60 min

200 T T T T
[ SDAP

180 - EPHA
160 - q
140 - q
120 q

100 - 1

Ep[ ] Ep[ ] Ep[ 1 max[-] max[] max[] CVaR[] CVaR[] CVaR[] LogExp[-] LogExp[-] LogExp[]

» Number of iterations performed by SDAP and PHA in 60 min of processing:
four instances, and three different choices for the prox-parameter r > 0

» SDAP performed (within 60 min) twice more iterations than PHA in the
challenging Log-Exponential instances

» For the other cases, SDAP and PHA performed more or less the same number
of iterations (except for the case r = 1e—5 of the risk-neutral instance, where /M A
SDAP performed fewer iteration due to numerical issues in quadprog) Yt s




THE WASSERSTEIN DRO SETTING

SDAP VERSUS RANDOMIZED SDAP

» Thanks to the interpretation of SDAP as a variant of DR, it is not difficult to
design a randomized variant of SDAP

» We denote such a randomized variant by RSDAP: M is the number of
subproblems solved per iteration

> RSDAP is useful to alleviate the computational burden in Wasserstein DRO
setting

> Distributionally robust optimization: results for a tree with S = 1000
scenarios

» In a total, L = 250 fixed reference scenarios were employed to construct the
Wasserstein ambiguity set

ZMA

[ ———
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THE WASSERSTEIN DRO SETTING

SDAP VERSUS RANDOMIZED SDAP

Wasserstein distance with e = 0.3: p(-) = maxpepy, Byl

T 220
&
=210
S
200
0 5 10 15 20 25 3
min

Wasserstein distance with € = 0.45: p(-) = maxyep, B,

1]

0 5 10 15 20 25 30

min

Wasserstein distance with € = 0.6: p() = maxyepy, B

Violation of nonanticipativity constraints

—— SDAP-r=0.005

! - - - RSDAP-1=0.005-M=500
! RSDAP-r=0.005-M=250

P —— RSDAP-1=0.005-M=125

0

0 10 20 30

min
Violation of nonanticipativity constraints

I —— SDAP-r=0.005
4 f RSDAP-r=0.005-M=500
21
d
0
0 10 20 30
min
Violation of nonanticipativity constraints
—— SDAP-r=0.005
4 .005-M=500
.005-M=250
P —— RSDAP-1=0.005-M=125
\ AR it
0
0 10 20 30
min
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CONCLUDING REMARKS

> We proposed a new algorithm denoted by SDAP for convex multistage
optimization problems under uncertainty

» SDAP handles risk-neutral, distributionally robust, and risk-averse problems
without changing the scenario subproblems’ structure

» Such a property has a practical appeal because practitioners can solve
risk-averse and distributionally robust versions of their problems in a single
algorithm

» SDAP copes with the risk measure in an independent and dedicated step.
This fact opens the way to deal with risk functions other than those handled
by PHA

» Randomized, asynchronous and inexact variants of SDAP follow without
much difficulties from the vast theory on the Douglas-Rachford algorithm

» Our randomized variant of SDAP avoids evaluating the risk-function’s
prox-mapping at every iteration




Thank you!
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Ranpomizep SDAP (RSDAP)

Initialization.

Step 1.

Step 2.

Step 3.

Let 20 € R™S, 20 € RS, 20 € RS, and r > 0 be given.

Choose nb € {1,...,S} and consider disjoint bundles B; # @ such
that %, B; = {1,2,...,5 +1}. Set k:=0
Define
k k
h= ProjN(z:) and w = %
Draw an index i € {1,...,nb} with probability m; > 0. For all

s, € B;, compute (in parallel)
L g k k :
(&s,,1s,) 1= Projgy; Iy [(Qxﬂ = Zp, 2Us, — zuSL)] ifs, <S+1
'f/::Proxg(2ufzf) ifs,=8+1
g

For all s, € B; set
k+1 | k

Zyg, T Zgg, t Ts, —Ts, and zﬁ:rbl = zﬁSL +as, —us, ifs, <S4+1
z5+1::25+i}—u ifs, =5+1
For all the remaining subproblems s € {1,...,S + 1}\B;, set

z::l — z:s and zf:l = zﬁs ifs<S+1

zf+1:z§ ifs=85+1

Set k := k 4+ 1 and go back to Step 1
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