
Risk-averse stochastic programming and
distributionally robust optimization via operator

splitting

Welington de Oliveira
www.oliveira.mat.br

MINES ParisTech, CMA - Centre de Mathématiques Appliquées

Workshop on robust and stochastic optimization methods
CERMICS, November 19th, 2021

www.oliveira.mat.br

We are interested in convex optimization problems of the form

min
x∈RnS

ρ (f1(x1), . . . , fS(xS)) s.t. x ∈ N (Pbm)

▶ xs ∈ Rn is the decision vector related to scenario s = 1, . . . , S

▶ x = (x1, . . . , xS) ∈ RnS comprises all the decision variables: decision policy

▶ N ⊂ RnS is a linear space of nonanticipative policies

▶ fs : Rn → R ∪+∞ is the scenario cost function, which we assume lsc and
convex (e.g. fs(·) := cs(·) + iXs (·))

▶ ρ : RS → R is a convex and monotonically non-decreasing function, that is,

ρ(λv + (1− λ)v′) ≤ λρ(v) + (1− λ)ρ(v′) ∀v, v′ ∈ RS , λ ∈ [0, 1], and

ρ(v) ≥ ρ(v′) whenever v ≥ v′

1 / 23

▶ Risk-neutral setting: given a probability vector p = (p1, . . . , pS),

ρ (f1(x1), . . . , fS(xS)) = Ep[fs(xs)] =
S∑

s=1

psfs(xs)

▶ Risk-averse setting: ρ is a risk measure. Example: given a regret function
Z : RS → R which is convex, monotone and positively homogeneous

ρ(v) = min
τ∈R

τ + Z(v − τ)

Expectation case: Z(v) =
∑S

s=1 psζ(vs) and ζ : R → R is a convex and
non-decreasing function
▶ Conditional Value-at-Risk: ζ(·) = 1

1−α [·]+ and α ∈ (0, 1)

▶ Log-Exponential: ζ(·) = exp(·) − 1 (⇒ ρ(v) = log(
∑S

s=1 ps[exp(vs)]))

▶ Worst-case scenario (robust optimization):

ρ(v) = max
s=1,...,S

vs

▶ Distributionally robust optimization (fixed support):

ρ(v) = max
p∈P

Ep[v] = max
p∈P

⟨p, v⟩

2 / 23

▶ Risk-neutral setting: given a probability vector p = (p1, . . . , pS),

ρ (f1(x1), . . . , fS(xS)) = Ep[fs(xs)] =
S∑

s=1

psfs(xs)

▶ Risk-averse setting: ρ is a risk measure. Example: given a regret function
Z : RS → R which is convex, monotone and positively homogeneous

ρ(v) = min
τ∈R

τ + Z(v − τ)

Expectation case: Z(v) =
∑S

s=1 psζ(vs) and ζ : R → R is a convex and
non-decreasing function
▶ Conditional Value-at-Risk: ζ(·) = 1

1−α [·]+ and α ∈ (0, 1)

▶ Log-Exponential: ζ(·) = exp(·) − 1 (⇒ ρ(v) = log(
∑S

s=1 ps[exp(vs)]))

▶ Worst-case scenario (robust optimization):

ρ(v) = max
s=1,...,S

vs

▶ Distributionally robust optimization (fixed support):

ρ(v) = max
p∈P

Ep[v] = max
p∈P

⟨p, v⟩

2 / 23

▶ Risk-neutral setting: given a probability vector p = (p1, . . . , pS),

ρ (f1(x1), . . . , fS(xS)) = Ep[fs(xs)] =
S∑

s=1

psfs(xs)

▶ Risk-averse setting: ρ is a risk measure. Example: given a regret function
Z : RS → R which is convex, monotone and positively homogeneous

ρ(v) = min
τ∈R

τ + Z(v − τ)

Expectation case: Z(v) =
∑S

s=1 psζ(vs) and ζ : R → R is a convex and
non-decreasing function
▶ Conditional Value-at-Risk: ζ(·) = 1

1−α [·]+ and α ∈ (0, 1)

▶ Log-Exponential: ζ(·) = exp(·) − 1 (⇒ ρ(v) = log(
∑S

s=1 ps[exp(vs)]))

▶ Worst-case scenario (robust optimization):

ρ(v) = max
s=1,...,S

vs

▶ Distributionally robust optimization (fixed support):

ρ(v) = max
p∈P

Ep[v] = max
p∈P

⟨p, v⟩

2 / 23

▶ Risk-neutral setting: given a probability vector p = (p1, . . . , pS),

ρ (f1(x1), . . . , fS(xS)) = Ep[fs(xs)] =
S∑

s=1

psfs(xs)

▶ Risk-averse setting: ρ is a risk measure. Example: given a regret function
Z : RS → R which is convex, monotone and positively homogeneous

ρ(v) = min
τ∈R

τ + Z(v − τ)

Expectation case: Z(v) =
∑S

s=1 psζ(vs) and ζ : R → R is a convex and
non-decreasing function
▶ Conditional Value-at-Risk: ζ(·) = 1

1−α [·]+ and α ∈ (0, 1)

▶ Log-Exponential: ζ(·) = exp(·) − 1 (⇒ ρ(v) = log(
∑S

s=1 ps[exp(vs)]))

▶ Worst-case scenario (robust optimization):

ρ(v) = max
s=1,...,S

vs

▶ Distributionally robust optimization (fixed support):

ρ(v) = max
p∈P

Ep[v] = max
p∈P

⟨p, v⟩

2 / 23

Distributionally robust optimization

ρ(v) = max
p∈P

Ep[v]

▶ If P is a singleton, then we are back to the risk-neutral setting

▶ If the ambiguity set is the simplex, i.e. P = ∆S := {y ∈ RS
+ :

∑S
s=1 ys = 1},

then ρ above boils down to the worst-case scenario setting

▶ The connection between DRO and stochastic programs with coherent-risk
measures is made by the Fenchel conjugate function

ρ(v) = max
y∈Dom(ρ∗)

⟨y, v⟩

▶ For the CVaRα function

ρ(v) = min
τ∈R

τ +
S∑

s=1

ps
1

1− α
[vs − τ]+,

we have that PCVaRα = Dom(ρ∗) =
{
q ∈ RS

+ :
∑S

s=1 qs = 1, q ≤ p
(1−α)

}
and

thus
ρ(v) = max

p∈PCVaRα

Ep[v]

3 / 23

Function ρ is decomposable over scenarios

min
x∈RnS

ρ (f1(x1), . . . , fS(xS)) s.t. x ∈ N (Pbm)

▶ A well-known optimization tool for solving (Pbm) in the risk-neutral setting

ρ(v) = ρ (f1(x1), . . . , fS(xS)) =
S∑

s=1

psfs(xs)

is the Progressive Hedging Algorithm (PHA)1

▶ The PHA has been extended recently to handle risk-averse problems with ρ
fitting the expectation setting2

ρ(v) = min
τ∈R

τ +
S∑

s=1

ps[ζ(vs − τ)]

▶ In these two settings, the objective function of (Pbm) has an additive
structure over scenarios and only the nonanticipativity constraint (x ∈ N)
couples the variables

1Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in optimization under
uncertainty. MOR, 1991

2Rockafellar, R.T.: Solving stochastic programming problems with risk measures by
progressive hedging. SVAA, 2018

4 / 23

General setting

min
x∈RnS

ρ (f1(x1), . . . , fS(xS)) s.t. x ∈ N (Pbm)

▶ If ρ does not have an additive structure over scenarios, then (Pbm) is not only
coupled by the nonanticipativity constraint but also by the objective function

▶ PHA does not apply in such a more general setting...

▶ How can we decompose the problem?

5 / 23

Reformulating the problem

min
x∈RnS

ρ (f1(x1), . . . , fS(xS)) s.t. x ∈ N (Pbm)

▶ With the help of an auxiliary vector u ∈ Rn, let us move the random cost
functions to the constraints

min
x,u

ρ(u)

s.t. fs(xs) ≤ us ∀ s = 1, . . . , S
x ∈ N

This does not help much because us links fs to ρ...

▶ Let us add another auxiliary vector v ∈ Rn
min
x,u,v

ρ(v)

s.t. fs(xs) ≤ us ∀ s = 1, . . . , S
x ∈ N , u = v

6 / 23

Reformulating the problem

min
x∈RnS

ρ (f1(x1), . . . , fS(xS)) s.t. x ∈ N (Pbm)

▶ With the help of an auxiliary vector u ∈ Rn, let us move the random cost
functions to the constraints

min
x,u

ρ(u)

s.t. fs(xs) ≤ us ∀ s = 1, . . . , S
x ∈ N

This does not help much because us links fs to ρ...

▶ Let us add another auxiliary vector v ∈ Rn
min
x,u,v

ρ(v)

s.t. fs(xs) ≤ us ∀ s = 1, . . . , S
x ∈ N , u = v

6 / 23

Reformulating the problem

min
x∈RnS

ρ (f1(x1), . . . , fS(xS)) s.t. x ∈ N (Pbm)

▶ With the help of an auxiliary vector u ∈ Rn, let us move the random cost
functions to the constraints

min
x,u

ρ(u)

s.t. fs(xs) ≤ us ∀ s = 1, . . . , S
x ∈ N

This does not help much because us links fs to ρ...

▶ Let us add another auxiliary vector v ∈ Rn
min
x,u,v

ρ(v)

s.t. (xs, us) ∈ epi fs ∀ s = 1, . . . , S
x ∈ N , u = v

7 / 23

Reformulating the problem

min
x∈RnS

ρ (f1(x1), . . . , fS(xS)) s.t. x ∈ N (Pbm)

By writing (Pbm) as
min
x,u,v

ρ(v)

s.t. (xs, us) ∈ epi fs ∀ s = 1, . . . , S
x ∈ N , u = v,

we can go further and obtain the following equivalent problem

min
x∈L

G(x)

▶ dimension n := (n+ 2)S

▶ x := ((x1, u1), . . . , (xS , uS), v1, . . . , vS) ∈ Rn

▶ L := {x ∈ Rn : x ∈ N , and u = v} is a linear subspace of Rn

▶ G(x) :=
S∑

s=1

iepi fs (xs, us) + ρ(v) is a convex function�� ��The new objective function is now decomposable!

8 / 23

The Douglas-Rachford splitting method

(Pbm) min
x∈N

ρ (f1(x1), . . . , fS(xS)) ≡ min
x∈L

G(x)

Optimality condition (under a constraint qualification)

find x̄ s.t. 0 ∈ ∂G(x̄) + ∂iL(x̄)

▶ Solving (Pbm) amounts to finding a zero of the sum of two maximal monotone
operators

▶ Such a task can be accomplished by the well-known Douglas-Rachford
splitting method (DR)3

▶ Given r > 0 and z0 ∈ Rn, set k = 0 and perform the following steps4:
xk = ProjL(z

k)
x̂k+1 = ProxG

r
(2xk − zk)

zk+1 = zk + [x̂k+1 − xk]

3Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two
and three space variables. Trans. Am. Math. (1956)

4ProjX (y) := argminx∈X ∥x − y∥2 and Proxf (y) := argminx∈Rn f(x) + 1
2
∥x − y∥2

9 / 23

Scenario decomposition with alternating projections - SDAP

Initialization. Let z0x ∈ RnS , z0u ∈ RS , z0v ∈ RS , and r > 0 be given. Set k := 0

Step 1. Define

xk := ProjN (zkx) and uk :=
zku + zkv

2

Step 2. Compute (in parallel) the auxiliary vectors

v̂k+1:= Prox ρ
r
(2uk − zkv)

(x̂k+1
s , ûk+1

s):= Projepi fs

[(
2xk

s − zkxs
, 2uk

s − zkus

)]
∀ s = 1, . . . , S

Step 3. Update

zk+1
x := zkx + x̂k+1 − xk

zk+1
u := zku + ûk+1 − uk

zk+1
v := zkv + v̂k+1 − uk

Set k := k + 1 and go back to Step 1

10 / 23

Comments on SDAP - Step 1

Step 1 computes the projection onto the nonanticipativity space N , which is a
straightforward operation

To see that, let

Λ(s, t) := {j ∈ {1, . . . , S} : ξj
[t]

= ξs[t]}, for all t = 1, . . . , T and s = 1, . . . , S,

be the index set of all scenarios sharing the same history ξ[t] = (ξs1, . . . , ξ
s
t)

Then
xk = (xk

1,1, . . . , x
k
T,1, . . . , x

k
1,S , . . . , x

k
T,S) = ProjN (zkx)

is given by

xk
t,s :=

1

|Λ(s, t)|
∑

j∈Λ(s,t)

zkxt,j
, for all t = 1, . . . , T and s = 1, . . . , S

11 / 23

Comments on SDAP - Step 2

Let the random cost mapping be fs(·) = cs(·) + iXs (·) (convex)

The projection subproblem in Step 2

(x̂k+1
s , ûk+1

s) := Projepi fs

[(
2xk

s − zkxs
, 2uk

s − zkus

)]
reads as

(SDAP)

 min
xs,us

∥∥∥xs −
(
2xk

s − zkxs

) ∥∥∥2 +
[
us −

(
2uk

s − zkus

)]2
s.t. cs(xs) ≤ us, xs ∈ Xs

For comparison reasons, if the risk function falls into the expectation category
(with ζ : R → R convex and non-decreasing), then the PHA subproblem becomes

(PHA)

 min
xs,us

ζ
(
cs(xs) − us

)
+ us + r

2

∥∥∥xs −
(
xk
s −

zkxs
r

)∥∥∥2
+ r

2

[
us −

(
uk
s −

zkus
r

)]2

s.t. xs ∈ Xs

In contrast with PHA, the SDAP subproblem is independent of the risk function

12 / 23

Comments on SDAP - Step 2

Let the random cost mapping be fs(·) = cs(·) + iXs (·) (convex)

The projection subproblem in Step 2

(x̂k+1
s , ûk+1

s) := Projepi fs

[(
2xk

s − zkxs
, 2uk

s − zkus

)]
reads as

(SDAP)

 min
xs,us

∥∥∥xs −
(
2xk

s − zkxs

) ∥∥∥2 +
[
us −

(
2uk

s − zkus

)]2
s.t. cs(xs) ≤ us, xs ∈ Xs

For comparison reasons, if the risk function falls into the expectation category
(with ζ : R → R convex and non-decreasing), then the PHA subproblem becomes

(PHA)

 min
xs,us

ζ
(
cs(xs) − us

)
+ us + r

2

∥∥∥xs −
(
xk
s −

zkxs
r

)∥∥∥2
+ r

2

[
us −

(
uk
s −

zkus
r

)]2

s.t. xs ∈ Xs

In contrast with PHA, the SDAP subproblem is independent of the risk function

12 / 23

Comments on SDAP - Step 2

▶ SDAP evaluates the proximal mapping v̂k+1 := Prox ρ
r
(2uk − zkv) at every

iteration

▶ This procedure, that is independent of the epi-projections, can be easily
performed depending on ρ

▶ In the setting distributionally robust optimization, computing v̂k+1 amounts
to projecting onto the ambiguity set and performing straightforward
operations

Theorem
Let P ⊂ RS

+ be a convex compact set, and suppose that

ρ(v) = max
p∈P

Ep[v]

Then

Prox ρ
r
(µ) = µ−

1

r
ProjP (rµ)

This result justifies the algorithm’s name: each step involve different kind of
projections

13 / 23

Special setups

▶ Risk-neutral stochastic programs. Suppose that the ambiguity set is a
singleton P = {p}, with p = (p1, . . . , pS). Then Prox ρ

r
(µ) = µ− 1

r
p is a

straightforward operation

▶ Worst-case scenario. Let the ambiguity set be the simplex P = ∆S : then
Prox ρ

r
(µ) results in projecting rµ onto ∆S , an easy task

▶ Conditional value-at-risk. Given a probability vector p ∈ RS , let the
ambiguity set be

PCVaRα =

{
q ∈ RS

+ :

S∑
s=1

qs = 1, q ≤
p

(1− α)

}
,

which is the domain of the conjugate function of ρ(·) = CVaRα(·).
Computing ProxCVaRα

r
(µ) = µ− 1

r
ProjPCVaRα

(rµ) boils down to solving a

strictly convex QP problem of dimension S

14 / 23

Special setups

▶ Wasserstein ambiguity set: the fixed support case. The Wasserstein
ambiguity set Pϵ

W is defined for {ξ1, . . . , ξS} and ϵ > 0 as

Pϵ
W :=

p ∈ RS
+ :

∑S
s=1

∑L
ℓ=1 ηsℓd(ξ

s, ξ̂ℓ) ≤ ϵ∑S
s=1 ηsℓ = p̂ℓ, ℓ = 1, . . . , L∑L
ℓ=1 ηsℓ = ps, s = 1, . . . , S∑S
s=1

∑L
ℓ=1 ηsℓ = 1

η ≥ 0


For the choice ρ(v) = maxp∈Pϵ

W
Ep[v], computing Proj ρ

r
requires solving a

convex quadratic program with variables p ∈ RS and η ∈ RS×L, where L is
the number of given reference scenarios ξ̂ℓ

▶ General setting. If no additional assumption on ρ(·) (other than convexity
and monotonicity) is assumed, then computing

Prox ρ
r
(µ) = arg min

y∈Rn
ρ(x) +

r

2
∥y − µ∥2

can be done by off-the-shelf algorithms or bundle methods

15 / 23

Convergence analysis

min
x∈RnS

ρ (f1(x1), . . . , fS(xS)) s.t. x ∈ N (Pbm)

Theorem
Suppose ρ : RS → R is convex and monotonically non-decreasing, and the convex
problem (Pbm) is solvable. Furthermore, assume that at least one of the following
constraint qualifications hold:

i) N ∩ riDom(
∑S

s=1 fs) ̸= ∅ ii) N ∩Dom(
∑S

s=1 fs) ̸= ∅ and fs is polyhedral

Then the SDAP generates a sequence {xk} that converges to a solution x̄ of (Pbm)

Related algorithms
▶ SDAP is equivalent to applying DR to the operators ∂G and ∂iL, a primal

approach

▶ A dual strategy consisting in applying DR to the operators ∂[G∗ ◦ (−I)] and
∂(iL)

∗ yields an implementation of ADMM

▶ In the risk-neutral setting f(x) =
∑S

s=1 psfs(xs), the DR applied to the
operators diag(p)−1∂f and diag(p)−1∂iN gives rise to PHA

16 / 23

Numerical experiments

We first compare the numerical performance of SDAP and PHA for risk-neutral,
risk-averse, and worst-case scenario settings of a multistage production/inventory
problem

The optimization problem consists of deciding the volume of production, inventory
and external purchase of nprod = 15 of products to satisfy, at the minimal cost, a
stochastic demand ξ over T = 4 stages (weeks)

All stages have fixed production, inventory and external supply costs, respectively
given by cct , c

i
t, c

e
t ∈ Rnprod. The cost mapping is independent of scenarios

f(x, ξ) =
T∑

t=1

[cc⊤t xc
t + ci⊤t xi

t + ce⊤t xe
t]

Deciding on how much of each product types to produce/purchase during a
particular week forms the decision variables. The problem’s constraints are:

▶ Production capacity:
∑nprod

j=1 xc
jt ≤ ProdCap, for t = 1, . . . , T

▶ Inventory capacity:
∑nprod

j=1 xi
jt ≤ InvCap, for t = 1, . . . , T

▶ Demand satisfaction: xi
t−1 + xe

t ≥ ξt ∈ Rnprod, for t = 1, . . . , T

▶ Inventory balance: xi
t = xc

t + [xi
t−1 + xe

t − ξt], for t = 1, . . . , T

▶ xc
t , x

i
t, x

e
t ≥ 0 for t = 1, . . . , T

17 / 23

Numerical experiments

▶ Since we consider nprod = 15 products and T = 4 stages, the number of
decision variables in the epi-projection subproblem is 181 = 4× 45 + 1

▶ The considered scenario tree is composed of S = 3000 demand scenarios

▶ All the solvers ran for 60 minutes

▶ Numerical experiments were conducted on a PC Intel(R) with 32GB of RAM
under Windows 10, using MATLAB 2020a in a parallel configuration with 4
workers, corresponding to the PC’s 4 cores

▶ Subproblems were solved by one of the MATLAB’s optimization routines
linprog, quadprog, fmincon and fminunc, depending upon the subproblem’s
structure

18 / 23

SDAP versus PHA

0 10 20 30 40 50 60
min

190

195

200

205
SDAP-r=0.0001
SDAP-r=5e-05
SDAP-r=1e-05
PHA-r=0.1
PHA-r=0.05
PHA-r=0.01

0 10 20 30 40 50 60
min

180

200

220

240 SDAP-r=0.0001
SDAP-r=5e-05
SDAP-r=1e-05
PHA-r=1
PHA-r=0.5
PHA-r=0.1

0 10 20 30 40 50 60
min

190

200

210

220
SDAP-r=0.0001
SDAP-r=5e-05
SDAP-r=1e-05
PHA-r=0.5
PHA-r=0.1
PHA-r=0.05

0 10 20 30 40 50 60
min

190

200

210

220

230 SDAP-r=0.0001
SDAP-r=5e-05
SDAP-r=1e-05
PHA-r=1
PHA-r=0.5
PHA-r=0.1

19 / 23

▶ Number of iterations performed by SDAP and PHA in 60 min of processing:
four instances, and three different choices for the prox-parameter r > 0

▶ SDAP performed (within 60 min) twice more iterations than PHA in the
challenging Log-Exponential instances

▶ For the other cases, SDAP and PHA performed more or less the same number
of iterations (except for the case r = 1e−5 of the risk-neutral instance, where
SDAP performed fewer iteration due to numerical issues in quadprog)

20 / 23

The Wasserstein DRO setting
SDAP versus randomized SDAP

▶ Thanks to the interpretation of SDAP as a variant of DR, it is not difficult to
design a randomized variant of SDAP

▶ We denote such a randomized variant by RSDAP: M is the number of
subproblems solved per iteration

▶ RSDAP is useful to alleviate the computational burden in Wasserstein DRO
setting

▶ Distributionally robust optimization: results for a tree with S = 1000
scenarios

▶ In a total, L = 250 fixed reference scenarios were employed to construct the
Wasserstein ambiguity set

21 / 23

The Wasserstein DRO setting
SDAP versus randomized SDAP

0 5 10 15 20 25 30
min

200

210

220

0 10 20 30
min

0

2

4
SDAP-r=0.005
RSDAP-r=0.005-M=500
RSDAP-r=0.005-M=250
RSDAP-r=0.005-M=125

0 5 10 15 20 25 30
min

200

210

220

0 10 20 30
min

0

2

4
SDAP-r=0.005
RSDAP-r=0.005-M=500
RSDAP-r=0.005-M=250
RSDAP-r=0.005-M=125

0 5 10 15 20 25 30
min

200

210

220

0 10 20 30
min

0

2

4
SDAP-r=0.005
RSDAP-r=0.005-M=500
RSDAP-r=0.005-M=250
RSDAP-r=0.005-M=125

22 / 23

Concluding remarks

▶ We proposed a new algorithm denoted by SDAP for convex multistage
optimization problems under uncertainty

▶ SDAP handles risk-neutral, distributionally robust, and risk-averse problems
without changing the scenario subproblems’ structure

▶ Such a property has a practical appeal because practitioners can solve
risk-averse and distributionally robust versions of their problems in a single
algorithm

▶ SDAP copes with the risk measure in an independent and dedicated step.
This fact opens the way to deal with risk functions other than those handled
by PHA

▶ Randomized, asynchronous and inexact variants of SDAP follow without
much difficulties from the vast theory on the Douglas-Rachford algorithm

▶ Our randomized variant of SDAP avoids evaluating the risk-function’s
prox-mapping at every iteration

23 / 23

�� ��Thank you!

Reference
▶ W. de Oliveira. Risk-averse stochastic programming and distributionally

robust optimization via operator splitting, Set-Valued and Variational
Analysis, 2021. DOI: 10.1007/s11228-021-00600-5

Contact:

B welington.oliveira@mines-paristech.fr

Ï www.oliveira.mat.br

We would like to acknowledge financial support from PGMO

 welington.oliveira@mines-paristech.fr
www.oliveira.mat.br

Randomized SDAP (RSDAP)

Initialization. Let z0
x ∈ RnS , z0

u ∈ RS , z0
v ∈ RS , and r > 0 be given.

Choose nb ∈ {1, . . . , S} and consider disjoint bundles Bi ̸= ∅ such

that
⋃nb

i=1 Bi = {1, 2, . . . , S + 1}. Set k := 0

Step 1. Define

x := ProjN (z
k
x) and u :=

zk
u + zk

v

2

Step 2. Draw an index i ∈ {1, . . . , nb} with probability πi > 0. For all
sι ∈ Bi, compute (in parallel)

(x̂sι , ûsι) := Projepi fsι

[(
2xsι − z

k
xsι

, 2usι − z
k
usι

)]
if sι < S + 1

v̂ := Prox ρ
r
(2u − z

k
v) if sι = S + 1

Step 3. For all sι ∈ Bi set

z
k+1
xsι

:= z
k
xsι

+ x̂sι − xsι and z
k+1
usι

:= z
k
usι

+ ûsι − usι if sι < S + 1

z
k+1
v := z

k
v + v̂ − u if sι = S + 1

For all the remaining subproblems s ∈ {1, . . . , S + 1}\Bi, set

z
k+1
xs

= z
k
xs

and z
k+1
us

= z
k
us

if s < S + 1

z
k+1
v = z

k
v if s = S + 1

Set k := k + 1 and go back to Step 1

	Motivation

