Optimal Hospital Care Scheduling During the SARS-CoV-2 Pandemic

Josh C. D'Aeth ^{1,2,9}, Shubhechyya Ghosal ^{3,9}, Fiona Grimm ^{4,9}, David Haw^{1,2,9}, Esma Koca ^{3,9}, Krystal Lau ^{5,6,9}, Stefano Moret ^{3,9}, Dheeya Rizmie^{5,6,9}, Sarah R. Deeny⁴, Pablo N. Perez-Guzman^{1,2}, Neil Ferguson^{1,2}, Katharina Hauck ^{1,2}, Peter C. Smith^{5,6,7}, Giovanni Forchini^{1,2,8}, Wolfram Wiesemann³ and Marisa Miraldo ^{5,6 M}

¹MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, School of Public Health, Imperial College London, London, UK. ²Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK. ³Department of Analytics, Marketing and Operations, Imperial College Business School, Imperial College London, London, UK. ⁴The Health Foundation, London, UK. ⁵Department of Economics and Public Policy, Imperial College Business School, Imperial College London, London, UK. ⁶Centre for Health Economics and Policy Innovation, Imperial College Business School, Imperial College London, UK. ⁷Centre for Health Economics, University of York, York, UK. ⁸Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden.

Daily COVID Cases Remain Stubbornly High in the UK

AUIO 500, 10,

Source: GOV.UK

A&E patients are waiting up to 13 **HOURS** for a bed as health bosses warn health service faces toughest winter ever — but NHS England boss says it needs more staff not cash

- Doctors in Newcastle said 'become very normal' to wait 7+ hours for A&E bed
- NHS 'facing toughest winter ever' due to staff shortages, pandemic backlogs
- Amanda Pritchard NHS England boss suggested throwing money won't fix it

By CONNOR BOYD DEPUTY HEALTH EDITOR FOR MAILONLINE **PUBLISHED:** 10:01, 16 November 2021 | **UPDATED:** 10:32, 16 November 2021

The Fallout: A Hopelessly Overstretched NHS

NHS is 'on its knees' even WITHOUT a Covid surge: Heart attack and stroke sufferers face 55 MINUTE ambulance waits with patients 'dying in waiting rooms' because they can't be seen - as backlog for routine treatment in England hits record 5.83million

By John Ely Senior Health Reporter For Mailonline and Emily Craig Health Reporter For Mailonline 07:38, 11 Nov 2021, updated 19:32, 11 Nov 2021

A Silent Killer in the Wait

Source: Edge Health

Not Only are More Waiting, But They are also Waiting for Longer

How to Prioritize COVID vs Non-COVID Patients?

Opinion **UK politics & policy**

Agonising choices in ICUs should be made by society, not individuals

Covid is overwhelming hospitals and forcing clinicians to decide who does and who does not receive care

© Neil Hall/EPA/Shutterstock

Clinical staff in an intensive care unit. There is a shortage of about 40,000 nurses in the NHS. This has affected the Covid response

Weakly Coupled Counting Dynamic Programs

DP model for an individual patient:

Dynamic Programs (DPs): Extensive Model

- Can we combine all patient DPs to one large DP of the overall health system?
 - The state and action spaces satisfy $|\mathcal{S}| = |\mathcal{S}_i|$ and $|\mathcal{A}| = |\mathcal{A}_i|$ $i \in \mathscr{I}$ $i \in \mathcal{I}$
 - In our case: 10m patients à 15 states, 6 actions, $|\mathcal{S}| = 15^{10,000,000}$ and $|\mathcal{A}| = 6^{10,000,000}$

Any policy needs to map $S = 15^{10,000,000}$ to $|A| = 6^{10,000,000}$

Multiple patients of the same group can be modelled by a counting DP: **Counting DP** For *n* iid DPs $(\mathcal{S}, \mathcal{A}, q, p, r)$ over same \mathcal{T} , a DP $(\mathfrak{S}, \mathfrak{A}, \mathfrak{q}, \mathfrak{p}, \mathfrak{r})$ with: * states $\mathfrak{S} = \{ \sigma : \mathcal{S} \to \mathbb{N}_0 \}, \text{ actions } \mathfrak{A} = \{ \alpha : \mathcal{S} \times \mathcal{A} \to \mathbb{N}_0 \}$ * initial prob's $q(\sigma) = \frac{n!}{\prod_{s \in S} \sigma(s)!} \cdot \prod_{s \in S} q(s)^{\sigma(s)}$

transition prob's

$$\mathfrak{p}_{t}(\sigma' \mid \sigma, \alpha) = \sum_{\theta \in \Gamma(\sigma, \alpha, \sigma')} \prod_{s \in \mathcal{S}} \prod_{a \in \mathscr{A}} \left[\frac{\alpha(s, a)!}{\prod_{s' \in \mathcal{S}} \theta(s, a, s')!} \cdot \prod_{s' \in \mathcal{S}} p_{t}(s' \mid s, a)^{\theta(s, a, s')} \right]$$

Counting DPs

rewards $\mathbf{r}_t(\sigma, \alpha) = \sum r_t(s, \alpha) \cdot \alpha(s, \alpha)$

 $s \in \mathcal{S} a \in \mathcal{A}$

transition prob's

$$\mathfrak{p}_{t}(\sigma' \mid \sigma, \alpha) = \sum_{\theta \in \Gamma(\sigma, \alpha, \sigma')} \prod_{s \in \mathcal{S}} \prod_{a \in \mathcal{S}} \prod_{a \in \mathcal{S}} \prod_{s \in \mathcal{S}} \prod_{s \in \mathcal{S}} \prod_{a \in \mathcal{S}} \prod_{a \in \mathcal{S}} \prod_{s \in \mathcal{S}} \prod_{a \in \mathcal{S}} \prod_{a \in \mathcal{S}} \prod_{s \in \mathcal{S}} \prod_{a \in \mathcal{S}} \prod_{s \in \mathcal{S}} \prod_{a \in \mathcal{S}} \prod_{s \in \mathcal{S}} \prod_{s \in \mathcal{S}} \prod_{a \in \mathcal{S}} \prod_{s \in \mathcal{S}}$$

 $s \in \mathcal{S} a \in \mathcal{A}$

3,200

3,200 x ♠ 3,200

3,200 x ♠ 3,200

2,562

638

2,310

84

Counting DPs

$2,310 \rightarrow 132 \times GA$ $2,178 \times (3)$

20 x 🞾

Counting DPs

168 \Rightarrow 168 x GA

2,178

Counting DPs

276

20

Counting DPs achieve exponential compression over individual DPs: For *n* patient DPs with *S* states each, the state spaces scale according to

7

Can we combine all patient DPs to one large counting DP?

Counting DPs

- The state and action spaces satisfy $|\mathfrak{S}| \approx |\mathcal{F}|^{|\mathfrak{S}_i|}$ and $|\mathfrak{A}| \approx |\mathcal{F}|^{|\mathfrak{S}_i|\cdot|\mathfrak{A}_i|}$
- In our case: 10m patients à 15 states, 6 actions, $|\mathfrak{S}| \approx 10,000,000^{15}$ and $|\mathfrak{A}| \approx 10,000,000^{15.6}$

Any policy needs to map $\mathfrak{S}| \approx 10,000,000^{15}$ to $|\mathfrak{A}| \approx 10,000,000^{15.6}$

Multiple patients groups can be modelled by a weakly coupled counting DP:

For the J counting DPs ($\mathfrak{S}_i, \mathfrak{A}_i, \mathfrak{q}_i, \mathfrak{p}_i, \mathfrak{r}_i$) with n_i iid DPs each, over same \mathcal{T} , a DP ($\mathfrak{S}, \mathfrak{A}, \mathfrak{q}, \mathfrak{p}, \mathfrak{r}$) with: states $\mathfrak{S} = X_i \mathfrak{S}_i$, actions $\mathfrak{A} = X_i \mathfrak{A}_i$ 米 * $j \in \mathcal{J} s \in \mathcal{S}_i a \in \mathcal{A}_i$ * rewards $\mathfrak{r}_t(\sigma, \alpha) = \sum \mathfrak{r}_{jt}(\sigma_j, \alpha_j)$ *

Weakly Coupled Counting DPs

Weakly Coupled Counting DP

- resource constraints $\sum \sum \sum c_{tlj}(s,a) \cdot \alpha_j(s,a) \le b_{tl} \quad \forall l \in \mathscr{L}, \forall t \in \mathscr{T}$
- initial prob's $q(\sigma) = \prod q_j(\sigma_j)$, transitions $\mathfrak{p}_t(\sigma' | \sigma, \alpha) = \prod \mathfrak{p}_{jt}(\sigma'_j | \sigma_j, \alpha_j)$

