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Operator Learning

Supervised Learning

Determine Ψ† : U → V from samples

{un,Ψ†(un)}Nn=1, un ∼ µ.

Probability measure µ supported on U .

In standard supervised learning U = Rdx and V = Rdy (regression) or V = {1, · · ·K} (classification).

Supervised Learning Of Operators

Separable Banach spaces U ,V of vector-valued functions:

U = {u : Du → Rdi}, Du ⊆ Rdu

V = {v : Dv → Rdo}, Dv ⊆ Rdv .



Operator Learning

Training

Consider a family of parameterized functions from U into V :

Ψ : U ×Θ 7→ V.

Here Θ ⊆ Rp denotes the parameter space.

µN =
1

N

N∑
n=1

δun , RE(v ,w) =
∥v − w∥V

max{1, ∥v∥V}
,

θ∗ = argminθ∈Θ RN(θ), RN(θ) := Eu∼µN RE
(
Ψ†(u),Ψ(u; θ)

)
.



Example (Porous Medium Flow)

Darcy Law

Mass conservation −∇ · (a∇v) = f , x ∈ D

Boundary condition v = 0, x ∈ ∂D

Operator Of Interest

Parametric Dependence Ψ† : a 7→ v



Example (Porous Medium Flow)

Input-Output

Input: a ∈ L∞(D) (Left),

Output: v ∈ H1
0 (D). (Right),



Example (Porous Medium Flow): Discretize Then Learn

Zhu and Zabaras 2018 [21], Khoo et al [8]

Example (Porous Medium Flow): Learn Then Discretize

Bhattacharya et al 2021 [2]



Examples: (Homogenized Constitutive Models)

Material Properties Dependence

▶ U : material properties A(·).
▶ V : stress σ.

▶ σ = Ψ†(A)
(
∇u +∇u⊤).

▶ Approximate Ψ† ≈ Ψ(·; θ⋆)

History Dependence

▶ U : time histories of strain {∇u}.
▶ V : time histories of stress {σ}.
▶ {σ} = Ψ†({∇u}).
▶ Approximate Ψ† ≈ Ψ(·; θ⋆)
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Finding Latent Structure

In A Picture

GU ◦ FU ≈ Id

GV ◦ FV ≈ Id

GV ◦ φ ◦ FU ≈ Ψ†



PCA-NET

Architecture Bhattacharya, Hosseini, Kovachki and AMS ’19 [2]

ΨPCA(u; θ)(x) =
m∑
j=1

αj(Lu; θ)ψj(x), ∀u ∈ U x ∈ Dv .

Details

▶ {ϕj} are PCA basis functions under µ.

▶ Lu = {⟨ϕj , u⟩} maps to PCA coefficients under µ.

▶ {ψj} are PCA basis functions under (Ψ†)♯µ.

▶ {αj} are finite dimensional neural networks.



DEEPONET Shallow approximation of functionals (Chen and Chen [5]) made deep

Architecture Lu, Jin, Pang, Zhang, and Karniadakis’19 [18]

ΨDEEP(u; θ)(x) =
m∑
j=1

αj(Lu; θα)ψj(y ; θψ), ∀u ∈ U x ∈ Dv .

Details

▶ Lu maps to linear functionals on U .
▶ e.g. PCA coefficients under µ; or pointwise {u(xℓ)}.
▶ {αj , ψj} are finite dimensional neural networks.

▶ θ = (θα, θψ).



Fourier Neural Operator (FNO) DNN (Goodfellow et al [7]) Extended to Operators

Architecture Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, AMS and Anandkumar et al ’20 [16, 11]

U = V Hilbert

ΨFNO(u; θ) = Q ◦ LL ◦ · · · L2 ◦ L1 ◦ R(u), ∀u ∈ U ,
Ll(v)(x ; θ) = σ

(
Wlv(x) + bl +K(v)(x ; γl)

)
,

K(v)(x ; γ) =
M∑

m=1

αm

(
γ(m)

)
⟨fm, v⟩U⊗dc gm(x).

Details

▶ Q,R pointwise NNs or linear transformations.

▶ (Wl , bl) define pointwise affine transformations.

▶ K eg FFT as convolutional integral operator.

▶ θ collects parameters from previous three bullets.
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Universal Approximation (Latent) over compact sets

Definition

A Banach space has the approximation property (AP) if every
compact operator is a limit of finite-rank operators.

Theorem 1 Kovacvhki ’22 [10, 11]

Assume

▶ U , V Banach spaces with the AP.

▶ Ψ† : U → V continuous, K ⊂ U compact.

For any ϵ > 0 ∃ bounded linear FU : U → RdU , GV : RdV → V, and
a continuous map φ ∈ C (RdU ;RdV ) such that

sup
u∈K

∥Ψ†(u)− (GV ◦ φ ◦ FU )(u)∥V ≤ ϵ.



Universal Approximation (Latent) Bochner integration

Theorem 2 Kovacvhki ’22 [10, 11]

Assume

▶ U Banach space with AP, V separable Hilbert space.

▶ µ probability measure on U .
▶ Ψ† ∈ Lpµ(U ;V) for 1 ≤ p <∞.

For any ϵ > 0 ∃ bounded linear FU : U → RdU , GV : RdV → V, and
a continuous map φ ∈ C (RdU ;RdV ) such that

∥Ψ† − GV ◦ φ ◦ FU∥Lpµ(U ;V) ≤ ϵ.

Lanthaler, Mishra and Karniadakis ’21 [14] (DeepONet and complexity, NSE)

Lanthaler ’23 [12] (PCA-Net and complexity, Darcy and NSE)

Marcati and Schwab ’23 [19] (Complexity estimates, Darcy)

Lanthaler and AMS ’23 [15] (Complexity estimates, Hamilton-Jacobi)



Universal Approximation (FNO)

Theorem 3 Lanthaler, Li and AMS ’23 [13]

Assume

▶ U = C (D,Rd).

▶ V = C (D,Rd ′
).

▶ Ψ† : U → V continuous, K ⊂ U compact.

For any L,M > 0 and any ϵ > 0 ∃ an FNO Ψ(·; θ⋆) : U → V such
that

sup
u∈K

∥Ψ†(u)−Ψ(u; θ)∥V ≤ ϵ.

Kovachki, Lanthaler and Mishra ’21 [9] (Complexity, FNO)
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Multiscale Problem

Canonical Elliptic Multiscale Problem

−∇ · (Aϵ∇uϵ) = f , x ∈ Ω

uϵ = 0, x ∈ ∂Ω

Aϵ(x) = A
(x
ϵ

)
, A ∈ U := L∞(Td ,Rd×d).

Standing Asssumption on A

PDα,β ={A ∈ L∞(Td ;Rd×d) :

∀(y , ξ) ∈ Td × Rd , α|ξ|2 ≤ ⟨ξ,A(y)ξ⟩ ≤ β|ξ|2}.



Operator Learning

Homogenized Elliptic Problem; u0 ≈ uϵ

−∇ · (A0∇u0) = f , x ∈ Ω

u0 = 0, x ∈ ∂Ω

A0(x) = A0, constant.

Constitutive Model Bensoussan, Lions, Papanicolaou ’78 [1], Pavliotis and AMS ’08 [20][Ch12]

A0 determined by χ ∈ V := H1
per(Td ,Rd)

−∇y · (∇yχA) = ∇y · A, y ∈ Td ,

A0 =

∫
Td

(
A(y) + A(y)∇χ(y)T

)
dy .



Universal Approximation (Cell Problem Solution Operator)

Goal: Supervised Learning (FNO)
Bhattacharya, Kovachki, Rajan, AMS, Trautner ’23 [3]

▶ Learn map A(·) ∈ U 7→ χ(·) ∈ V = H1
per(Td ,Rd).

▶ How to choose U?

Theorem 4 Bhattacharya, Kovachki, Rajan, AMS, Trautner ’23 [3]

Define the mapping Ψ† : PDα,β → Ḣ1(Td ;Rd) from the solution
map A 7→ χ given by

−∇y · (∇yχA) = ∇y · A, y ∈ Td .

Then, for any ϵ > 0 and K ⊂ PDα,β compact in L2(Td ;Rd×d),
there exists an FNO Ψ(·; θ∗) : K → Ḣ1(Td ;Rd) such that

sup
A∈K

∥Ψd(A)−Ψ(A; θ⋆)∥Ḣ1 < ϵ.



Varying Microstructures

K ⊂ BV(Td ;Rd×d) ∩ PDα,β ⋐ L2(Td ;Rd×d).



Learning Error for Voronoi Microstructure



Test Error versus Data Size



Test Error versus Model Size
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Big Picture

Multiscale Problem Pavliotis and AMS ’08 [20][Ch12]

Displacement uϵ(x , t), stress σϵ(x , t), 0 < ϵ≪ 1. F=MA:

ρ ∂2t u
ϵ = ∇ · (σϵ) + f , σϵ = Ψϵ

(
{∇uϵ}, x

ϵ

)
.

Homogenized Problem Bensoussan, Lions, Papanicolaou [1]

Approximate uϵ = u0 + ϵu1 + ϵ2u2 + . . .

Determine map Ψ, so that small scales are removed in u0. F=MA:

ρ ∂2t u0 = ∇ · (σ) + f , σ = Ψ({∇u0}).

Operator Learning

▶ U histories of strain {∇u0};Vhistoriesofstress{σ}.
▶ Approximate Ψ ≈ ΨNN



Viscoelasticity I Francfort and Suquet ’86 [6]

Quasi-Static Viscoelasticity Multiscale Problem

−∇ · (σϵ) = f , x ∈ Ω

σϵ = νϵ∂t∇uϵ + E ϵ∇uϵ

E ϵ(x) = E
(x
ϵ

)
, νϵ(x) = ν

(x
ϵ

)
, E , ν : Td → R.

Laplace Transform, Homogenize, Invert

−∇ · (σϵ) = f , x ∈ Ω

σϵ = (sνϵ + E ϵ)∇uϵ.

▶ Introduces memory.



Viscoelasticity II Bhattacharya, Liu, AMS, Trautner ’22 [4]

Theorem (Piecewise-Constant Homogenization: Memory)

In piecewise-constant case and in dimension d = 1 homogenized
equation for u0 is Markovian:

−∇ · (σ) = f , x ∈ Ω,

σ = ν ′∂t∇u0 + E ′∇u0 + ⟨1, r⟩
∂trℓ = −αℓrℓ + βℓ∇u0, ℓ ∈ {1, 2, · · · , L},

for some choice of E ′ ∈ R+, ν
′ ∈ R+, α ∈ RL

+, β ∈ RL, L ∈ Z+.

▶ Homogenization introduces memory.

▶ In d = 1 (approximate) Markovian structure.

▶ Dimension d > 1 ?



Viscoelasticity III: Operator Learning

True Solution Map

Let Ψ : U → V be the map such that the homogenized constitutive
relation is

σ = Ψ({∇u0}).

Goal: Supervised Learning (RNO-NET)

Learn map ΨRNO : U → V approximating Ψ with the form

σ = F (∇u0, ∂t∇u0, r)

∂tr = G (r ,∇u0), r(0) = 0.

▶ RNO – Recurrent neural operator.

▶ Dimension of memory variable r has to be learned.



Viscoelasticity IV: Learning the Constitutive Map

Figure: Viscoelasticity: trained model performs well on test samples



Viscoelasticity V:
Choosing the Number of Hidden Variables

Figure: Absolute L2 error of RNNs trained with different numbers of
hidden variables on different piecewise-constant viscoelastic materials.



Viscoelasticity VI: Time Discretization Invariance

Figure: Viscoelasticity models trained with and without access to the
strain rate variable: prefered model exhibits more invariance to time
discretization of test trajectories
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Conclusions

1. Algorithms:

▶ define on function space;
▶ then learn;
▶ leads to models which transfer between discretizations.

2. Analysis:

▶ universal approximation theory well-developed;
▶ complexity (cost verus error) incompletely understood;
▶ what solution is found via optimization?

3. Applications:

▶ cheap surrogates;
▶ scientific discovery;
▶ constitutive laws.
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Plasticity I Liu, Kovachki, Li, Azizzadenesheli, Anandkumar, AMS, Bhattacharya ’22 [17]

Plasticity Multiscale Problem

ρ ∂2t u
ϵ = ∇ · σϵ + f , x ∈ Ω

∂tξ
ϵ = K (ξϵ,∇uϵ), x ∈ Ω

σϵ = Ψϵ
(
∇uϵ, ξϵ,

x

ϵ

)



Plasticity II

Homogenized Plasticity Problem

ρ ∂2t u0 = ∇ · σ0 + f , x ∈ Ω

σ0 = Ψ
(
{∇u0}

)



Plasticity III: Operator Learning

Goal: Supervised Learning (PCA-NET)

Learn map ΨPCA : U → V approximating Ψ.
In particular causality must be learned.

Goal: Supervised Learning (RNO-NET)

Learn map ΨRNO : U → V approximating Ψ with the form

σ = F (∇u0, ∂t∇u0, r)

∂tr = G (r ,∇u0), r(0) = 0.



Plasticity IV: Learning the Constitutive Map

Figure: Viscoplasticity: Trained model performs well on test samples.
Left: Input strains. Right: Output truth and approximation.



Plasticity V:
Choosing the Number of Hidden Variables

Figure: Viscoplasticity: 3D polycrystal (different hidden variable counts)



Plasticity VI: Time Discretization Invariance

Figure: Models with viscoplastic (VP) and elasto-viscoplastic (E-VP)
architecture trained on data from an E-VP material: prefered model
exhibits more time discretization invariance



Learning Error for Varying Microstructures (I)

Smooth Microstructure

TS

Star Inclusion Microstructure



Learning Error for Varying Microstructures (II)

Square Inclusion Microstructure Voronoi Microstructure

TS
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