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Monge-Kantorovich problem and some numerics

K (1, v) == 1nf [ c(x, y)dy(x,y) | y € I1(u, )
XXY

Three main ways to solve numerically this problem:

1) Discrete to Discrete: X and Y are finite set and the measures are supported on
diracs;

2) Discrete to continuous: one of the measure is a.c. With respect to Lebesgue (see
Quentin Mérigot’s works);

3) Continuous to continuous: both the measures are ac with respect to Lebesgue: the
celebrated Benamou-Bernier formulation of Optimal transport.



Some remarks:

- Semi-discrete OT works with quadratic cost (or some close variant such as some
power p distance);

- Continuous OT works if the Monge-Kantorovich problem admits a dynamic
formulation;

- Other approaches exist: e.g. column generation (Friesecke and Penka), moment
constraints relaxation (Virginie, Alfonsi et al), solving Monge-Ampére equation for the
quadratic case (Benamou, Mirebeau, Froese, Oberman, Duval)

Today we will main focus on discrete optimal and entropic regularization to solve it



Assume X and Y finite sets (with both cardinality N),

U= Zﬂx5x and v = Zuyéy

xeX yeY

Then the problem is formulated as follows

infy ), e, |7y €M)
xeX,yeY

N? unknonws and 2N constraints to verify

O(N?) complexity via standard linear programming



Entropic Optimal Transport: the discrete case

Main idea: penalize the non-negativity of Y.y > () by means of an entropy term

Ent(y) := Z e(yx.y) Where

X,y
r(logr—1) ifr >0
elr) = {O if r=20
+00 if r <0

The regularized problem takes the following form
HE(u,v) = inf § (C.7) + €Ent() | D 1oy =t D Ty =2y
Yy X

Where (c,y) = Z (X, Y)Vx.y
X,y



1st good news

Thm: problem & (u,v) has a unique solution y, which belongs to 11(u, v) .
2nd good news

Thm[convergence in €]: Consider the sequence of unique solutions y,, then it
converges to the optimal solution with the minimal entropy within the set of all optimal

solution of & (u, V) that is c

—

y. — argmin{Ent(y) | y € II(u,v), (C,y) = F .(u,V)}.




Swekc

ThLE & S.t. &w—° ANp RENOTE Y TAE

_ R Taco
QoWTIN WITH ¢ .5,

. W(rv ) 15 poUndSd AND Gose Ex‘\m‘_”y@"é?(}‘“’x

_Tiee g Punac Ton K (pv)

O € <P, e> — <, e g & (Tln) B0 )



The effect of the regularization

|
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Marginals 1 and v

Support of the optimal y,.as ¢ = 0




The matching problem and the regularized counterpart

(From G. Peyre’s twitter)



Deriving the dual problem. First, consider the Lagranglan assomated to the entroplc
problem, that is e — e ——————————————

Ly, . y) = {c,y) + eEnt(y) + |

Where, as in the unregularized case, ¢ and y are the Lagrange multipliers.

Then,

K (u,v) =1t sup Z(y, ¢, y)
R



Rmk: by KKT (optimality) conditions d,Z(y, @, ) = 0, we have the following relation
between primal and dual variables

c(x,y) — px) —w(y) + elog(y,,) =0

Which gives the following form of the optimal ¥

p(y) + w(y) — c(x,y) )

yx,y — eXP( o

Now, by interchanging inf and sup, as we did last week, we obtain...



Di(pv) = sup D (¢, y),
QY

Where

O, y) = Z (X, + Z w(y)v, — € Z exp <M>
A y

E
X,y

Thm: strong duality holds F (u,v) = D(u, )



Rmk 1: the optimal coupling can be written as

vy =D,KD,

Where D , = diag(¢/¢) and D,, = diag(y/ 8() are) diagonal matrices and
—c(x,y

E
problem very similar to a matrix scaling problem.

K € RY x RV is such that Ky, = exp( ) This actually makes our

Def (matrix scaling problem): Given a matrix K with positive coefficients find
(D,, D,,) such that D KD, is doubly stochastic.

|
Rmk 2: Notice that if (D(p, Dw) is a solution then (CD¢, —DW) for any c.

C



Sinkhorn algorithm

Algorithm 1 Sinkhorn-Knopp algorithm for the matrix scaling problem

1: function SINKHORN-KNOPP(K)
2 Dg «— 1y, DS} — 1y

3: for 0 < k < kpax do

4: D5« 1n./(K DY)

5 Dit! « 1n./(KTDE)

6 end for
7: end function

Algorithm 2 Sinkhorn-Knopp algorithm for the regularised optimal transport problem

1: function SINKHORN-KNOPP(K, 1, )
2 Dg «— 1x, ng — 1y

3: for 0 £ k < Kyvse dO

4: DZ;“ — ,u./(KDZ)
5 D;t! « v./(KTDEM)
6 end for
7: end function

Rmk: JZ . can be recasted as a matrix scaling problem by taking



The importance of being sparse: a multi-scale approach.

In order to reduce the number of grid points used one can apply a multiscale approach
and refine the mesh where the solution is supported
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Figure: support of the optimal y_for the Coulomb cost.



Consider the entropic with a kernel K. Then we can re-write the Sinkhorn iterations on
log-domain and obtain an iterative methods acting on the dual variable, that is

p* = elog(u)—elog(KD)),

pk = elog(y)—elog(KDZ;).

It turns out that —¢ log(KD{;) (resp. —& log(KDZ;)) is the soft c-transform of y (resp.
®).

In particular the relations above still hold for the optimal dual variables and we have

P = 810g(//t)—810g(KD$) —> myin c(x,y) —y(y)as e — 0.



Convergence of Sinkhorn by using the Hilbert metric

Def (Hilbert projective metric): the Hilbert projective metric on | ’}r,* IS defined as

V(u,v) € (R} )%, dy(u,v) := | |log(u) — log() ||,

Where || x| |, = max x; — min Xx..
xlly - ! [2] Birkhoff, Extensions of

l l
— A— . . o Jdentzsch’s theorem

Theorem A.2 (|2, 12]). Let K € R, then for (u,v) € (R™ ,)? . ? .

(12, 12]) Ll Jor (u,v) € (RY..) Transaction of the American

dp(Ku, Kv) < A(K)dg(u,v), Mathematical Society 85
ohere y (1957), no. 1, 219-227.
~ Vn(K) -1
M= @1 [12] Samelson et al, On the
o Perron-Frobenieus theorem,
h KK The Michigan Mathematical

1K) =max ¢ Ka Journal 4 (1957), no. 1, 57-59



Thm(Franklin and Lorenz ‘89): One has (DX, Dl’/j) — (D¥*, D;‘j) and
dy (D, D¥) = O(MK)™),  dy(Dy, D) = O(AK)™).

Moreover,

dH(yklna //t)

1 —AK)?

dy(y*"1,,v)
1 — A(K)?

dH(Dka D;g) S

dy(D,, D) <

Where yk — D(’;KD{;. Last, one has

[ [1og(y") —log(r,) | |, < dy(Dy, D) + dy(Dy;, D).



Sketch of proof:

First, notice that

dg(u,v) =dg(u/v,1,) =dg(1,/u, 1, /v).

Together with the previous theorem, this gives

b s I I . Y
dy(D}, DY) = dH(KDi, KD;;,) — dy (KDY, KD}) < A(K)dy(DE, D)



Then by using the triangular inequality we have

du(Dy, DY) < du(DS, D) +du (DS, DY)
< d

H k k 1k
H(KD,{Z , Dw) + )\(K)dH(Dw D¢)

= dp(p, DY © (KDE)) + \(K)*du(DE, D})
= dy (s, Vkln) T )‘(K)de(Df?’ D;)’

Where © denotes the element-wise multiplication.



di(y 1, )

Rmk (stopping criteria): the bounds d (Dk, D*) < —— and
o v P77 — MK)2
i dy(y~"1,,v) |
dy(D,,, Dl;‘j) < ——— shows that some error measures on the marginal
1 — AK)?

constraints violation, for instance | \}/kln — ||, and | \yk’Tln —v||,, are useful
stopping criteria to monitor the convergence.

Rmk: This theorem shows that Sinkhorn algorithm converges linearly, but the rates
becomes exponentially bad as € — 0, since it scales like e~ /e,



Back to the continuous case

One can easily recast the regularized OT in the continuous framework as follows

K (Y, V) = inf{ J cx,y)dy(x,y) + eZ (y|lp @) | y € I1(§, V)},
XXY

Where

J (1og( dp(X,y)
Hp|lm) =19 Jyuy dz(x,y)

4+ 00, otherwise,

) — l)dp(x, y), ifp<Lnm

And u, v are probability measures on the compact sets X and Y.



Linear convergence of Sinkhorn for bounded cost

Consider the following variant of Sinkhorn algorithm

|
P+ (x) = — elog (J eXp(—(l/f"(y) — c(x, y))du(y)) + A
¥ 5
k+1 Lo
W (y) = — elog (J exp(—((p (x) — c(x, y))d,u(x)),
¥ £

Where 1% = 8[
X

1
log (J eXp(—(l/fk(y) — c(x, y))dv(y)) du(x).
Y E

This is equivalent to previous Sinkhorn...l am just fixing a constant.



The algorithm in the previous slide is equivalent to the following coordinate ascent
method

§0k+1 — argmaxgo,fgﬂd,u:()(pg((pa Wk)a
y' ! = argmax @, (0", y).
Where
D (), ) = J @p(x)dpu(x) +[ w(y)du(y)
X Y

)d,u ® duv(x,y).

J ( d(x) +y(y) — c(x,y)
— € eXp| ———— M
XxY €



Rmk [alternative dual formulation]: one can sho that the dual problem can also re-
written in the following way

sup @ (¢, y).
Q.
Where
D (p,y) := J @(x)du(x) + J w(y)du(y)
X Y
—elog([ gxp(w)dﬂ ® du(x, y)) |
XxY €

To see it just use the variational representation of the relative entropy, that is

H (p|m) = sup (J¢dp — log<Je¢dﬂ)> .
¢



Lemma: For every k > 0 we have
k k
e [, <2|lcll, and [|ly"[| <3|lc|l,

Proof Just compute gpk(xl) — qﬂk(xz).

Thm: Let (@™, y*) the unique solution of the dual entropic problem with

J @™ (x)du(x) = 0. The iterates of Sinkhorn satisfy
X

O (p*, yp*) — O (", y") < KD (¢*, ) — P (9", y)),
% — " 17, + | lw* — y*| 17, < npl@(*, y*) — @ (00 y0)),

Where 3 := 1 — e 21I6ll/€ ang i = 2e0llcll/e,



Sketch of proof:

The basic idea is to use strong convexity of the exponential function on an interval
|—a, + 00), that is

—

2
—6llc|l /e

€

e’ —e? > (b —a)e + \b—a\z, for a,b € |—a,+ ).

Step 1: Giveno = ¢ we have

O
D (", yhth — @ (pF, ") > ~(l | M — k|7, + L — K ]7).



Step 2: Given the optimal (@™, ™) we obtain

D (p*, ") — D (¢*, y*) > [ 0,D (", () [P (x) — p*(x)]du(x)

X — O
+J 0,® (p", l/f")W(y) — w*(y)ldu(y)
Y

9 p) p)
+5(||(p"—<ﬂ*l\p+III/J"—W*HLZ)

Where

QY+y—c
€

01D (p,p) =1 — SJ e du(y)

Y



Step 3: By exploring the zero mean iterates and Young’s inequality we get

1
D, (¢p*, y*) — © (p", ") < ol 0,®,(p", y*) — 0, @ (", ) | |7,

Now by Lipschitz continuity of the exponential and step 1 we have

1
DO (¢*, y*) — © (¢p*, ") < ;((Dg((p"“, yth — @ (o, yh))

- k _ kK k . .
Taking A™ = @ (@™, y*) — O _(¢", ") the above inequality can be expressed as
Ak+1 < (1 . 64)Ak

lterating we get the result.



