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Entropic Optimal Transport
On Sinkhorn algorithm and the link with Schröfinger problem



Monge-Kantorovich problem and some numerics

𝒦c(μ, ν) := inf {∫X×Y
c(x, y)dγ(x, y) | γ ∈ Π(μ, ν)}

Three main ways to solve numerically this problem:


1) Discrete to Discrete: X and Y are finite set and the measures are supported on 
diracs;


2) Discrete to continuous: one of the measure is a.c. With respect to Lebesgue (see 
Quentin Mérigot’s works);


3) Continuous to continuous: both the measures are ac with respect to Lebesgue: the 
celebrated Benamou-Bernier formulation of Optimal transport. 



Some remarks: 

- Semi-discrete OT works with quadratic cost (or some close variant such as some 
power p distance);


- Continuous OT works if the Monge-Kantorovich problem admits a dynamic 
formulation;


- Other approaches exist: e.g. column generation (Friesecke and Penka), moment 
constraints relaxation (Virginie, Alfonsi et al), solving Monge-Ampére equation for the 
quadratic case  (Benamou, Mirebeau, Froese, Oberman, Duval)

Today we will main focus on discrete optimal and entropic regularization to solve it



Assume X and Y finite sets (with both cardinality N),  

μ = ∑
x∈X

μxδx and ν = ∑
y∈Y

νyδy

Then the problem is formulated as follows

inf ∑
x∈X,y∈Y

c(x, y)γx,y | γ ∈ Π(μ, ν)

N2 unknonws and 2N constraints to verify

O(N3) complexity via standard linear programming



Entropic Optimal Transport: the discrete case

Main idea: penalize the non-negativity of  by means of an entropy term γx,y ≥ 0
Ent(γ) := ∑

x,y

e(γx,y) where

The regularized problem takes the following form





Where  .

𝒦ε
c(μ, ν) := inf ⟨c, γ⟩ + εEnt(γ) | ∑

y

γx,y = μx, ∑
x

γx,y = νy

⟨c, γ⟩ = ∑
x,y

c(x, y)γx,y



Thm:  problem  has a unique solution  which belongs to 𝒦ε
c(μ, ν) γε Π(μ, ν) .

1st good news

2nd good news

Thm[convergence in ]: Consider the sequence of unique solutions , then it 
converges to the optimal solution with the minimal entropy within the set of all optimal 
solution of  that is 

. 

                                                                                                 

ε γε

𝒦c(μ, ν)

γε → argmin{Ent(γ) | γ ∈ Π(μ, ν), ⟨c, γ⟩ = 𝒦c(μ, ν)}





The effect of the regularization

Marginals  and μ ν

Support of the optimal  as γε ε → 0



The matching problem and the regularized counterpart 

(From G. Peyre’s twitter)



Deriving the dual problem. First, consider the Lagrangian associated to the entropic 
problem, that is





Where, as in the unregularized case,  and  are the Lagrange multipliers.


Then,


                                         


ℒ(γ, φ, ψ) := ⟨c, γ⟩ + εEnt(γ) + ∑
x

φ(x)(μx − ∑
y

γx,y) + ∑
y

ψ(y)(νy − ∑
x

γx,y)
φ ψ

𝒦ε
c(μ, ν) = inf

γ
sup
φ,ψ

ℒ(γ, φ, ψ)



Rmk: by KKT (optimality) conditions , we have the following relation 
between primal and dual variables


                                


Which gives the following form of the optimal 


                               


Now, by interchanging  and , as we did last week, we obtain…


 

∂γℒ(γ, φ, ψ) = 0

c(x, y) − φ(x) − ψ(y) + ε log(γx,y) = 0

γ

γx,y = exp( φ(y) + ψ(y) − c(x, y)
ε )

inf sup



                                    


Where





Thm: strong duality holds 

𝒟ε
c(μ, ν) := sup

φ,ψ
Φε(φ, ψ),

Φε(φ, ψ) := ∑
x

φ(x)μx + ∑
y

ψ(y)νy − ε∑
x,y

exp( ϕ(x) + ψ(y) − c(x, y)
ε )

𝒦ε
c(μ, ν) = 𝒟ε

c(μ, ν)



Rmk 1: the optimal coupling can be written as


                                                        


Where  and  are diagonal matrices and 

 is such that . This actually makes our 

problem very similar to a matrix scaling problem.


Def (matrix scaling problem): Given a matrix  with positive coefficients find 
 such that  is doubly stochastic.


Rmk 2: Notice that if  is a solution then  for any .

γ = DφKDψ

Dφ = diag(φ/ε) Dψ = diag(ψ/ε)

K ∈ ℝN × ℝN Kx,y = exp( −c(x, y)
ε )

K
(Dφ, Dψ) DφKDψ

(Dφ, Dψ) (cDφ,
1
c

Dψ) c



Sinkhorn algorithm

Rmk:  can be recasted as a matrix scaling problem by taking 𝒦ε
c



The importance of being sparse: a multi-scale approach. 

In order to reduce the number of grid points used one can apply a multiscale approach 
and refine the mesh where the solution is supported

Figure: support of the optimal for the Coulomb cost. γε



Consider the entropic  with a kernel . Then we can re-write the Sinkhorn iterations on 
log-domain and obtain an iterative methods acting on the dual variable, that is


                                                ,


                                                .


It turns out that   (resp. ) is the soft c-transform of  (resp. 
).


In particular the relations above still hold for the optimal dual variables and we have


 as .

K

φk = ε log(μ)−ε log(KDk
ψ)

ψk = ε log(ν)−ε log(KDk
φ)

−ε log(KDk
ψ) −ε log(KDk

φ) ψ
φ

φ* = ε log(μ)−ε log(KD*ψ ) → min
y

c(x, y) − ψ(y) ε → 0



Convergence of Sinkhorn by using the Hilbert metric 

Def (Hilbert projective metric): the Hilbert projective metric on  is defined as


                     


Where .


ℝn
+,⋆

∀(u, v) ∈ (Rn
+,⋆)2, dH(u, v) := | | log(u) − log(v) | |V

| |x | |V = max
i

xi − min
i

xi [2] Birkhoff, Extensions of 
Jentzsch’s theorem, 
Transaction of the American 
Mathematical Society 85 
(1957), no. 1, 219-227.


[12] Samelson et al, On the 
Perron-Frobenieus theorem, 
The Michigan Mathematical 
Journal 4 (1957), no. 1, 57-59



Thm(Franklin and Lorenz ‘89): One has  and 

                   . 

Moreover,


                                     ,


                                     ,


Where  Last, one has


              .

(Dk
φ, Dk

ψ) → (D*φ , D*ψ )

dH(Dk
φ, D*φ) = O(λ(K)2k), dH(Dk

ψ, D*ψ ) = O(λ(K)2k)

dH(Dk
φ, D*φ) ≤

dH(γk1n, μ)
1 − λ(K)2

dH(Dk
ψ, D*ψ ) ≤

dH(γk,T1n, ν)
1 − λ(K)2

γk = Dk
φKDk

ψ .

| | log(γk) − log(γε) | |∞ ≤ dH(Dk
φ, D*φ) + dH(Dk

ψ, D*ψ )



Sketch of proof: 

First, notice that


Together with the previous theorem, this gives 




Then by using the triangular inequality we have


Where  denotes the element-wise multiplication. ⊙



Rmk (stopping criteria): the bounds  and 

 shows that some error measures on the marginal 

constraints violation, for instance  and , are useful 
stopping criteria to monitor the convergence.   

Rmk: This theorem shows that Sinkhorn algorithm converges linearly, but the rates 
becomes exponentially bad as , since it scales like .

dH(Dk
φ, D*φ) ≤

dH(γk1n, μ)
1 − λ(K)2

dH(Dk
ψ, D*ψ ) ≤

dH(γk,T1n, ν)
1 − λ(K)2

| |γk1n − μ | |1 | |γk,T1n − ν | |1

ε → 0 e−1/ε



Back to the continuous case 

One can easily recast the regularized OT in the continuous framework as follows





Where 





And  are probability measures on the compact sets .

𝒦ε(μ, ν) = inf {∫X×Y
c(x, y)dγ(x, y) + εℋ(γ |μ ⊗ ν) | γ ∈ Π(μ, ν)},

ℋ(ρ |π) = ∫X×Y
(log( dρ(x, y)

dπ(x, y) ) − 1)dρ(x, y), if ρ ≪ π

+∞, otherwise,

μ, ν X and Y



Linear convergence of Sinkhorn for bounded cost 

Consider the following variant of Sinkhorn algorithm








Where .


This is equivalent to previous Sinkhorn…I am just fixing a constant.


φk+1(x) = − ε log (∫X
exp( 1

ε
(ψk(y) − c(x, y))dν(y)) + λk

ψk+1(y) = − ε log (∫X
exp( 1

ε
(φk+1(x) − c(x, y))dμ(x)),

λk = ε∫X
log (∫X

exp( 1
ε

(ψk(y) − c(x, y))dν(y)) dμ(x)



The algorithm in the previous slide is equivalent to the following coordinate ascent 
method


                                            


Where 


φk+1 = argmaxφ, ∫ φdμ=0Φε(φ, ψk),

ψk+1 = argmaxψΦε(φk+1, ψ) .

Φε(ϕ, ψ) := ∫X
φ(x)dμ(x) + ∫Y

ψ(y)dν(y)

−ε∫X×Y
exp( ϕ(x) + ψ(y) − c(x, y)

ε )dμ ⊗ dν(x, y) .



Rmk [alternative dual formulation]: one can sho that the dual problem can also re-
written in the following  way


                                                         


Where





To see it just use the variational representation of the relative entropy, that is


                          

sup
φ,ψ

Φ̃ε(φ, ψ),

Φ̃ε(ϕ, ψ) := ∫X
φ(x)dμ(x) + ∫Y

ψ(y)dν(y)

−εlog(∫X×Y
exp( ϕ(x) + ψ(y) − c(x, y)

ε )dμ ⊗ dν(x, y)) .

ℋ(ρ |π) = sup
ϕ (∫ ϕdρ − log(∫ eϕdπ)) .



Lemma: For every  we have 

                       . 

Proof Just compute .


Thm: Let  the unique solution of the dual entropic problem with 

. The iterates of Sinkhorn satisfy 

 

Where  and .

k ≥ 0

| |φk | |∞ ≤ 2 | |c | |∞ and | |ψk | |∞ ≤ 3 | |c | |∞

φk(x1) − φk(x2)

(φ*, ψ*)

∫X
φ*(x)dμ(x) = 0

Φε(φ*, ψ*) − Φε(φk, ψk) ≤ βk(Φε(φ*, ψ*) − Φε(φ0, ψ0)),

| |φ* − φk | |2
L2 + | |ψ* − ψk | |2

L2 ≤ ηβk(Φε(φ*, ψ*) − Φε(φ0, ψ0)),

β := 1 − e−24||c||∞/ε η = 2e6||c||∞/ε



Sketch of proof:


The basic idea is to use strong convexity of the exponential function on an interval 
, that is


 .


Step 1: Given  we have


.


                              

[−α, + ∞)

eb − ea ≥ (b − a)ea +
e−α

2
|b − a |2 , for a, b ∈ [−α, + ∞)

σ = e−6||c||∞/ε

Φε(φk+1, ψk+1) − Φε(φk, ψk) ≥
σ
2

( | |φk+1 − φk | |2
L2 + ψk+1 − ψk | |2

L2 )



Step 2: Given the optimal  we obtain





Where 


                             


(φ*, ψ*)

Φε(φk, ψk) − Φε(φ*, ψ*) ≥ ∫X
∂1Φε(φk, ψk)(x)[φk(x) − φ*(x)]dμ(x)

+∫Y
∂2Φε(φk, ψk)(y)[ψk(y) − ψ*(y)]dν(y)

+
σ
2

( | |φk − φ* | |2
L2 + | |ψk − ψ* | |2

L2 )

∂1Φε(φ, ψ) = 1 − ε∫Y
e

φ + ψ − c
ε dν(y)



Step 3: By exploring the zero mean iterates and Young’s inequality we get





Now by Lipschitz continuity of the exponential and step 1 we have





Taking  the above inequality can be expressed as


                                                    


Iterating we get the result.


Φε(φ*, ψ*) − Φε(φk, ψk) ≤
1
2σ

| |∂1Φε(φk, ψk) − ∂1Φε(φk+1, ψk) | |2
L2 .

Φε(φ*, ψ*) − Φε(φk, ψk) ≤
1
σ4

(Φε(φk+1, ψk+1) − Φε(φk, ψk))

Δk = Φε(φ*, ψ*) − Φε(φk, ψk)

Δk+1 ≤ (1 − σ4)Δk


