Dual problem
Existence, strong duality, optimality condition and transport maps
RECAP

- Monge-Kantorovich Problem

$K_c(\mu, \nu) := \inf \left\{ \int c(x, y) \, d\pi(x, y) \mid \pi \in \Pi(\mu, \nu) \right\}

where $\Pi(\mu, \nu) := \left\{ \pi \in \mathcal{P}(X \times Y) \mid \pi_x \# \mu = \mu \text{ and } \pi_y \# \nu = \nu \right\}$

- Dual Problem

$D_c(\mu, \nu) := \sup \left\{ \int \psi(x) \mu(dx) + \int \varphi(y) \nu(dy) \mid (\psi, \varphi) \in C_b(X) \times C_b(Y) \text{ and } c(x, y) \geq \varphi(x) + \psi(y) \right\}$

AND $c(x, y) = \varphi(x) + \psi(y)$
TODAY PROGRAM

1. EXISTENCE OF AN OPTIMAL \((\Psi, \Phi)\)

2. STRONG DUALITY

 Rmk WEAK DUALITY \((K) \geq (D)\) SO FAR

3. OPTIMALITY CONDITIONS

4. CHARACTERIZATION OF OPTIMAL TRANSPORT MAPS VIA THE DUAL VARIABLE
EXISTENCE

GOOD TO KNOW: C-TRANSFORM AND C-TRANSFORM

THE C-TRANSFORM (C-TRANSFORM) OF A FUNCTION

\(\Psi: Y \rightarrow \mathbb{R} \cup \{+\infty\} \) \hspace{1cm} (\(\Psi: X \rightarrow \mathbb{R} \cup \{+\infty\} \)) IS

\[\psi_c: x \mapsto \min_y \ c(x,y) - \psi(y) \]

\[\bar{\psi}_c: y \in Y \mapsto \min_x \ c(x,y) - \psi(x) \]

• \(\Psi \) on \(X \) is CAUSAL C-CONCAVE if \(\Psi = \psi_c \) for some \(\psi \)
Properties of C-Transform

Let \(\mu : \mathbb{R}^+ \to \mathbb{R}^+ \) be a modulus of continuity for \(c \in C(x \times y) \) for the distance

\[
d_{x \times y}((x,y), (x',y')) = d_x(x,x') + d_y(y,y')
\]

Then \(\forall \phi \in C(x) \) and \(\forall \psi \in C(y) \)

(i) \(\phi^c \) and \(\psi^c \) also admit \(\mu \) as mod. of continuity

(ii) Given an admissible \((\phi, \psi) \) for \((D_c) \), we can always replace it with \((\phi, \psi^c) \) and then \((\phi^c, \psi^c) \). The constraints are preserved.
There exists a pair \((\psi^c, \psi^c)\) which solves (D).

Sketch: Given a maximizing sequence \((\psi_n, \bar{\psi}_n)\)

- Improve it obtaining \((\psi_n^c, \bar{\psi}_n^c)\)
- \(\psi_n^c\) is cont. on a compact set and hence bounded
- Subtract its min

- \(\psi_n^c\) is equibounded \(0 \leq \psi_n^c \leq \omega\) (\(\text{diam}(Y)\))

- We have also uniform bounds on \(\psi_n^c\)

- Apply Ascoli-Arzela \(\psi_n^c \rightarrow \overline{\psi}, \psi_n^c \rightarrow \overline{\psi}\)
- \(\psi^c > \overline{\psi}^c\)
STRONG DUALITY VIA THE DISCRETE CASE

STEP 1 IF \(\mu \) AND \(\nu \) ARE FINITELY SUPP.

THEN \((D_t) = (K_t)\)

\(\mu = \sum^m \mu_i S_{x_i} \quad \nu = \sum^n \nu_j S_{y_j}\)

\[\begin{align*}
LP &= \min \left\{ \sum c_{ij} \mu_i \mid \mu_i \geq 0 \quad \sum \mu_{ij} = \mu_i \right\} \\
 &= \max \left\{ \sum \psi_i + \sum \varphi_j \mid \psi_i + \varphi_j \leq c_{ij}\right\}
\end{align*}\]

STANDARD

KKT \(\Rightarrow\) \(\delta_{ij} (C_{ij} - \psi_i - \varphi_j) = 0\)

BUILD FEASIBLE PAIR \((\overline{x}, \overline{y})\)

\[\overline{x} = \{x_i \mid y_i = \overline{y}_i\}\]
\[\tilde{Y} = \sum \gamma_{i,j} S(x_i, y_i) \]

\[(D_2) \sim (K_u) \]

STEP 2

Density of Discrete Measure

If a sequence of finitely supported prob. measures weakly converging to a given \(\mu \in \mathcal{P}(X) \)
STEP 3 THE GENERAL CASE FOR $\nu \in \mathcal{E}(\mathcal{Y})$

- \exists \mu_k \to \mu \text{ with } \mu_k \text{ and } \nu_k \text{ finitely supported}

- \forall k \text{ take } \psi_k \text{ of STEP 1}

ψ_k is supported on $S_k := \left\{ (x,y) \mid \psi_k(x) + \psi_k^c(y) = \mathcal{C}(x,y) \right\}$

AS FOR THE EXISTENCE WE CAN SHOW THAT

$(\psi_k, \psi_k^c) \to (\overline{\mu}, \overline{\nu})$ ADMISSIBLE FOR THE DUAL
By compactness of $\mathcal{B}(x, y) \ x_k \to x$

One can prove that $\forall (x, y) \in \text{supp}(\nu)$

$\exists (x_k, y_k) \in \text{supp}(\nu_k) \ s.t. \ (x_k, y_k) \to (x, y)$

$c(x_k, y_k) = \nu_k(x_k) + \psi_k^n(x_k) \to c(x, y) = \varphi(x) + \psi^n(y)$

$(\kappa_c) \leq \int c \, d\nu = \int (\varphi(x) + \psi^n(y)) \, d\nu = \int \varphi \, d\nu + \int \psi^n \, d\nu \leq (I_2)$
\section*{Consequences of Duality}

- \textbf{Stability} \quad \mu_k \rightarrow \mu \\
 \nu_k \rightarrow \varphi \\
 c_k \rightarrow C

- If y_k is a min for (K) between μ_k and ν_k with cost c_k, then $\nu_k \Rightarrow \varphi$ min for (K) between μ and φ with cost c

- Same for the optimal dual variables
OPTIMALITY CONDITIONS

Let \(\gamma \in \Pi(x, y) \) and \((y, \gamma) \in \mathcal{E}(x) \times \mathcal{E}(y)\)

s.t.

\[
\gamma(x) + \gamma(y) \leq C(x, y) \quad \text{THE FOLLOWING ARE EQUIVALENT}
\]

(i) \[
\gamma(x) + \gamma(y) = C(x, y) \quad \gamma \text{ a.e.}
\]

(ii) \(\gamma \) is a minimizer

\((y, \gamma) \text{ is a maximizer}\)
A set $S \subseteq \mathbb{X} \times \mathbb{Y}$ is said C-cyclically monotone if for all $n \in \mathbb{N}^*$ and $(x_i, y_i)_{i=1}^n \in S$ it holds

$$\sum_{i=1}^{n} c(x_i, y_i) \leq \sum_{i=1}^{n} c(x_i, y_{i+1})$$

$y_{n+1} = y_n$

If γ is the optimal coupling between μ and ν for the cost $c \in C(\mathbb{X} \times \mathbb{Y})$ then $\text{supp}(\gamma)$ is C-cyclically monotone.
Let \((x_i, y_i)_{i=1}^n \) be points in \(\text{supp}(\varphi) \):

\[
\sum \varphi(x_i) \geq \sum (\varphi(x_i) + \varphi(y_{i+1})) - \sum (\varphi(x_i) + \varphi(y_i))
\]

Claim:

\[
\sum \varphi(x_i) \geq \sum \varphi(x_i) + \varphi(y_{i+1}) \quad (x_i, y_{i+1}) \text{ may not be in } \text{supp}(\varphi)
\]

\[
\sum \varphi(x_i) = \sum \varphi(x_i) + \varphi(y_i) \quad (x_i, y_i) \in \text{supp}(\varphi)
\]

\[
\implies 0
\]
CHARACTERIZATION OF OPTIMAL TRANSPORT PLANS

\(X, Y \) COMPACT, \(C \in C(X \times Y) \) \(\mu \in PC(X) \) \(\nu \in PC(Y) \)

THE FOLLOWING STATEMENTS ARE EQUIVALENT:

(i) \(\gamma \) IS AN OPTIMAL PLAN FOR \(\kappa = (\mu, \nu) \)

(ii) \(\text{supp}(\gamma) \) IS C-CYC. MONOTONE

(iii) \(\exists \) C-CONCAVE \(\varphi \) s.t.

\[\text{supp} \gamma \subseteq \{(x, y) \mid \varphi(x) + \varphi^*(y) = \kappa(x, y)\} \]

\(\Rightarrow \) (C-ROCKEFELLAR THM)
Lemma \(\nu \ll (\mu, \nu) \) and \(T : X \to Y \) s.t.
\[
\nu \left(\{(x,y) \mid T(x) \neq y\} \right) = 0 \quad \text{then} \quad \lambda := \lambda_T := (\text{Id}, T) \# \mu
\]

AND SO?

* Given a minimizer \(\gamma \) for \(\mathcal{K}_c(\mu, \nu) \) and a maximizer \((\psi, \psi^c) \) for \(\mathcal{D}_c(\mu, \nu) \) we know

\[
\psi + \psi^c \leq c \quad \lambda - \text{a.e.}
\]

IDEA: SHOW THAT \(\{ \psi + \psi^c = c \} \) IS CONTAINED IN THE GRAPH OF A FUNCTION!!
Def (Twisted Cost) A cost $f(x, z, y)$ is said to be twisted if

\[\forall x_0, y \rightarrow D_x c(x_0, y) \text{ is injective} \]

Thm Assume μ is a.c. with respect to Lebesgue then $\exists y \in C$ concave that is differentiable almost everywhere s.t. $V = T\mu$ where

\[T(x) = D_x^{-1} c(x, \cdot) \cdot D_y (x) \]. Moreover the only optimal transport plan is $\gamma = \delta_{x_0}$
REMARKS

1) [THE QUADRATIC CASE]

\[C(x, y) = |x - y|^2 \]

1.a) THE C-TRANSFORM IS THE LEGENDRE TRANSFORM

1.b) BRENIER'S THM

\[T(x) = \nabla w(x) = \nabla \left(\frac{x^2}{2} - \psi(x) \right) \]

\[w \text{ is a convex potential} \]
1. C) MONGE - AMPÈRE EQ

\[d\mu = \bar{\mu} \, dx \quad \nu = \bar{\nu} \, dy \]

\[\bar{\nabla}(T(x)) \det(DT(x)) = \bar{\mu}(x) \]

\[\bar{\nabla}(\nabla u(x)) \det(D^2u(x)) = \mu(x) \]

ANOTHER WAY TO FIND A SOL. TO OPTIMAL TRANSPORT

2) THIS 1-D CASE

\[d\mu = \bar{\mu} \, dx \]

\[F_\mu(x) = \mu \left((0, x)\right) \]

\[F_\mu^{-1}(x) = \inf \left\{ t \mid F_\mu(t) \leq x \right\} \]

\[T = F_\nu^{-1}(F_\mu(x)) \]