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1 Some motivations for studying optimal transport.

• Variational principles for (real) Monge-Ampère equations occurring in geometry (e.g.
Gaussian curvature prescription) or optics.
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• Wasserstein/Monge-Kantorovich distance between clouds of particles µ, ν on e.g.
Rd: how much kinetic energy does one require to move a distribution of particles
described by µ to ν ?
−→ interpretation of some parabolic PDEs as Wasserstein gradient flows, construc-
tion of (weak) solutions, numerics, e.g.

{
∂tρ+ div(ρv) = 0

v = −∇ log ρ
or


∂tρ+ div(ρv) = 0

v = −∇p−∇V
p(1− ρ) = 0

p ⩾ 0, ρ ⩽ 1

(synthetic notion of Ricci curvature for metric spaces), machine learning, inverse
problems, etc.

• Quantum physics: electronic configuration in molecules and atoms.

• Economics : µ is the distribution of men and ν the distribution of women: how can
we match men and women such that everyone has an happy marriage?

• Imaging, Game theory, Mean Field Games, Fluid Dynamics, Cosmology: Optimal
Transport is everywhere!

References.

Introduction to optimal transport, with applications to PDE and/or calculus of variations
can be found in books by Villani [20] and Santambrogio [18]. Villani’s second book [21]
concentrates on the application of optimal transport to geometric questions (e.g. synthetic
definition of Ricci curvature). We also mention Gigli, Ambrosio and Savaré [1] for the
study of gradient flows with respect to the Monge-Kantorovich/Wasserstein metric. On
the Economics side we refer the interested reader to [10] and for the applications in data
sciences we suggest [15].

2 The problems of Monge and Kantorovich

Let us start by giving some notations/remarks/definitions.
Discrete measures: discrete measure with weights a and locations x1, · · · , xn ∈ X ⊂ Rn
reads

µ =
n∑
I=1

aiδxi ,

where δxi is the Dirac at position xi. Such a measure describes a probability measure if,
additionally, a ∈ Σn := {a ∈ Rn+ |

∑n
i=1 ai = 1} and a more generally positive measure if

all the elements of the vector a are nonnegative.
General measures: Let be X a compact subset of Rn; we denote by P(X) the set of
probability measures on X, by M+(X) the set of positive measures on X.
Absolutely continuous measures: a measure µ which is a weighting of another ref-
erence one dx is said to have a density, which is denoted dµ = µdx (in the following we
always assume that dx is the Lebesgue measure), that is,

∀f ∈ C(X),

∫
X
f(x)dµ(x) =

∫
X
f(x)µ(x)dx.
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Definition 2.1 (Push-forward). Given X,Y ⊂ Rn, for T : X → Y , the push-forward
measure ν = T♯µ ∈M+(Y ) of some µ ∈M+(X) satisfies

∀f ∈ C(Y ),

∫
Y
f(y)dν(y) =

∫
X
f(T (x))dµ(x).

Note that T♯ preserves positivity and total mass, that is if µ ∈ P(X) then T♯µ ∈ P(Y ).

Example 2.2. If µ is a discrete measure then

T♯µ :=
∑
i

aiδT (xi).

Example 2.3 (Push-forward for densities). Explicitly doing the change of variable y =
T (x) for measures with densities µ, ν (assuming T is a C1 diffeomorphism), one has for all
f ∈ C(Y )∫

Y
f(y)ν(y)dy =

∫
X
f(T (x))ν(T (x)) det(DT (x))dx =

∫
X
f(T (x))µ(x)dx.

Hence,
µ(x) = ν(T (x)) det(DT (x)).

2.1 The matching problem

Definition 2.4 (Matching problem). Given a cost matrix C ∈ Rn × Rn (we are assum-
ing that the two measures µ and ν are supported on the same number of Diracs with
weights equal to 1/n) the optimal assignment problem seeks for a bijection σ in the set of
permutations of n elements Sn solving

min
σ∈Sn

1

n

n∑
i=1

Ci,σ(i). (2.1)

One can naively evaluate the cost function above by using all permutations in the set Sn.
However, that set has size n!, which is gigantic even for small n!!!. In general an optimal
σ is not unique.

Let us consider now a cost of the form Cij = h(xi − yj) where h : R → R+ is strictly
convex, one has that an optimal σ will satisfy the following inequality: given (xi, yσ(i))
and (xj , yσ(j)) then

h(xi − yσ(i)) + h(xj − yσ(j)) ⩽ h(xi − yσ(j)) + h(xj − yσ(i)).

Otherwise it would be more efficient to move mass from xi to yσ(j) and xj to yσ(i). The
above inequality and the strict convexity of h imply that the optimal σ defines an increasing
map, that is,

∀(i, j) (xi − xj)(yσ(i) − yσ(j)) ⩾ 0.

Thus, the algorithm to compute an optimal transport, i.e. the optimal permutation σ, is
to sort the points: find some pair of permutations σX , σY such that

xσX(1) ⩽ xσX(2) ⩽ · · · and yσY (1) ⩽ yσY (2) ⩽ · · ·

and then an optimal matching is to send xσX(k) to yσY (k), that is, the optimal permutation
is given by σ = σ−1

Y ◦ σX .
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2.2 Monge problem

Definition 2.5 (Monge problem). Consider X,Y ⊆ Rn, two probability measures µ ∈
P(X), ν ∈ P(Y ) and a cost function c : X × Y → R ∪ {+∞}. Monge’s problem is the
following optimization problem

Mc(µ, ν) := inf

{∫
X
c(x, T (x))dµ(x) | T : X → Y and T#µ = ν

}
(2.2)

This problem exhibits several difficulties, one of which is that both the constraint
(T#µ = ν) and the functional are non-convex. For empirical measure with the same
number n = m of points, one retrieves the optimal matching problem.

Example 2.6. There might exist no transport map between µ and ν. For instance,
consider µ = δx for some x ∈ X. Then, T#µ = δT (x). In particular, if ν is not a single
Dirac then there exists no transport map between µ and ν.

In the special case in which c(x, y) = dp(x, y) where d is a distance, we denote

Wp(µ, ν) :=

(
inf

{∫
X
dp(x, T (x))dµ(x) | T : X → Y and T#µ = ν

})1/p

.

If the constraint set is empty, then we set Wp
p = +∞. In particular Wp defines a distance

between probability measures!

Proposition 2.7. Wp is a distance.

Proof. If Wp
p(µ, ν) = 0 then the optimal map is the identity Id which means that µ = ν.

We have now to prove the triangle inequality

W(µ, ν) ⩽ Wp(µ, η) +Wp(η, ν).

If Wp
p(µ, ν) = +∞, then either W

p
p(µ, η) = +∞ or W

p
p(η, ν) = +∞. Indeed, consider two

maps S, T such that S♯µ = η and T♯η = ν then (T ◦ S)♯µ = ν and we have W
p
p(µ, ν) ⩽∫

X d
p(x, T ◦S(x))dµ(x) < +∞. So consider Wp

p(µ, ν) < +∞ and restrict our attention to
the case in which W

p
p(µ, η) < +∞ and W

p
p(η, ν) < +∞, otherwise the inequality is trivial.

For any ε > 0, we consider ε−minimizers S and T such that(∫
X
dp(x, S(x))dµ(x)

)1/p
⩽ Wp(µ, η) + ε and

(∫
X
dp(x, T (x))dη(x)

)1/p
⩽ Wp(η, ν) + ε.

Take the map T ◦ S, then we have

Wp(µ, ν) ⩽
(∫

X
dp(x, T◦S(x))dµ(x)

)1/p
⩽
(∫

X
(d(x, S(x))+d(S(x), T◦S(x)))pdµ(x)

)1/p
,

And by using the Minkowski inequality we obtain

Wp(µ, ν) ⩽
(∫

X
dp(x, S(x))dµ(x)

)1/p
+
(∫

X
dp(S(x), T ◦ S(x))dµ(x)

)1/p
.

Thus
Wp(µ, ν) ⩽ Wp(µ, η) +Wp(η, ν) + 2ε,

and by letting ε→ 0 we have the desired inequality.
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We consider now the 1−dimensional case: for a measure µ on R we define the cumu-
lative function

∀x ∈ R, Fµ(x) :=
∫ x

−∞
dµ(x),

which is a function Fµ : R → [0, 1] and its pseudo-inverse F−1
µ : [0, 1] → R ∪ {−∞} is

given by
∀s ∈ [0, 1], F−1

µ = min
x
{x ∈ R | Fµ(x) ⩾ s}.

If µ has a density, one can prove that for a strictly convex h, such that h(x− y) = c(x, y),
the optimal transport map is given by T = F−1

ν ◦Fµ. Notice that if c(x, y) = dp(x, y) with
p ⩾ 1, one has

Wp
p(µ, ν) =

∫
X
|x−F−1

ν ◦Fµ(x)|pdµ(x) =
∫ 1

0
|F−1
µ (s)−F−1

ν (s)|pds = ||F−1
µ −F−1

ν ||Lp([0,1]).

This formula shows that, through the map µ 7→ F−1
µ , the Wasserstein distance is isometric

to a linear space equipped with the Lp norm!

2.3 Kantorovich problem

Definition 2.8 (Marginals). The marginals of a measure γ on a product space X × Y
are the measures πX#γ and πY#γ, where πX : X × Y → X and πY : X × Y → Y are
their projection maps, that is

∀(f, g) ∈ C(X)×C(y),
∫
X×Y

f(x)dγ(x, y) =

∫
X
f(x)dµ(x) and

∫
X×Y

g(y)dγ(x, y) =

∫
Y
g(y)dν(y).

Definition 2.9 (Transport plan). A transport plan between two probabily measures µ, ν
on X and Y is a probability measure γ on the product space X × Y whose marginals are
µ and ν. The space of transport plans is denoted Π(µ, ν), i.e.

Π(µ, ν) = {γ ∈ P(X × Y ) | πX#γ = µ, πY#γ = ν} .

Note that Π(µ, ν) is a convex set.

Example 2.10 (Tensor product). Note that the set Π(µ, ν) of transport plans is never
empty, as it contains the measure µ⊗ ν.

Example 2.11 (Transport plan associated with a map). Let T be a transport map be-
tween µ and ν, and define γT = (id, T )#µ. Then, γT is a transport plan between µ and
ν.

Definition 2.12 (Kantorovich problem). Consider two compact subsets X,Y of Rn two
probability measures µ ∈ P(X), ν ∈ P(Y ) and a continuous cost function c : X × Y →
R ∪ {+∞}. Kantorovich’s problem is the following optimization problem

Kc(µ, ν) := inf

{∫
X×Y

c(x, y)dγ(x, y) | γ ∈ Π(µ, ν)

}
. (2.3)

Remark 2.13. The infimum in Kantorovich problem is less than the infimum in Monge
problem. Indeed, consider a transport map satisfying T#µ = ν and the associated trans-
port plan γT . Then, by the change of variable one has∫

X×Y
c(x, y)d(id, T )#µ(x, y) =

∫
X
c(x, T (x))dµ,

thus proving the claim.
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Definition 2.14 (Support). Let Ω be a separable metric space. The support of a non-
negative measure µ is the smallest closed set on which µ is concentrated

spt(µ) :=
⋂
{A ⊆ Ω | A closed and µ(X \A) = 0}.

A point x belongs to spt(µ) iff for every r > 0 one has µ(B(x, r)) > 0.

Theorem 2.15 (Existence). Let X,Y be two compact subspaces, and c : X × Y →
R∪{+∞} be a continuous cost function. Then Kantorovich’s problem admits a minimizer.

Proof. Define F(γ) :=
∫
cdγ, then is l.s.c. for the narrow convergence. We just need to

show that the set Π(µ, ν) is compact for narrow topology. Take a sequence γn ∈ Π(µ, ν),
since they are probability measures then they are bounded in the dual of C(X × Y ).
Hence, usual weak-⋆ compactness in dual spaces guarantees the existence of a converging
subsequence γnk

⇀ γ ∈ P(X × Y ). We need to check that γ ∈ Π(µ, ν). Fix φ ∈ C(X),
then

∫
φ(x)dγnk

=
∫
φdµ and by passing to the limit we have

∫
φ(x)dγ =

∫
φdµ. This

shows that πX#γ = µ. The same may be done for πY , which concludes the proof.

The main question is to establish the equality between the infimum in Monge problem
and the minimum in Kantorovich problem. Then the following result holds.

Theorem 2.16. Let X = Y be a compact subset of Rd, c ∈ C(X × Y ) and µ ∈ P(X),
ν ∈ P(Y ). Assume that µ is atomless. Then,

infMc(µ, ν) = minKc(µ, ν).

3 The dual problem

We now focus on duality theory without enter into details. We firstly find a formal dual
problem by exchanging inf − sup. Let us writing down the constraint γ ∈ Π(µ, ν) as
follows: if γ ∈M+(X × Y ) (we remind that X,Y are compact spaces) we have

Ψ := sup
φ,ψ

∫
X
φdµ+

∫
Y
ψdν −

∫
X×Y

(φ(x) + ψ(y))dγ =

{
0 if γ ∈ Π(µ, ν),

+∞ otherwise,

where the supremum is taken on Cb(X)× Cb(Y ). Thus we can now remove the constraint
on γ in Kc(µ, ν)

inf
γ∈M+(X×Y )

∫
X×Y

cdγ +Ψ

and by interchanging sup and inf we get

sup
φ,ψ

∫
X
φdµ+

∫
Y
ψdν + inf

γ∈M+(X×Y )

∫
X×Y

(c(x, y)− φ(x)− ψ(y))dγ.

One can now rewrite the inf in γ as constraint on φ and ψ as

inf
γ∈M+(X×Y )

∫
X×Y

(c− φ⊕ ψ)dγ =

{
0 if φ⊕ ψ ⩽ c on X × Y
−∞ otherwise

,

where φ⊕ ψ(x, y) := φ(x) + ψ(y).
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Definition 3.1 (Dual problem). Given µ ∈ P(X), ν ∈ P(Y ) and a cost function c ∈
C(X × Y ). The dual problem is the following optimization problem

Dc(µ, ν) := sup

{∫
X
φdµ+

∫
Y
ψdν | φ ∈ Cb(X), ψ ∈ Cb(Y ), φ⊕ ψ ⩽ c

}
(3.4)

Remark 3.2. One trivially has the weak duality inequality Kc(µ, ν) ⩾ Dc(µ, ν). Indeed,
denoting

L(γ, φ, ψ) =

∫
X×Y

(c− φ⊕ ψ)dγ) +
∫
X
φdµ+

∫
Y
ψdν,

one has for any (φ,ψ, γ) ∈ Cb(X)× Cb(Y )×M+(X × Y ),

inf
γ̃⩾0

L(γ̃, φ, ψ) ⩽ L(γ, φ, ψ) ⩽ sup
φ̃,ψ̃

L(γ, φ̃, ψ̃)

Taking the supremum with respect to (φ,ψ) on the left and the infimum with respect to
γ on the right gives infKc(µ, ν) ⩾ supDc(µ, ν). When supDc(µ, ν) = infKc(µ, ν), one
talks of strong duality. Note that this is independent of whether the infimum and the
supremum are attained.

Remark 3.3. As often, the Lagrange multipliers (or Kantorovich potentials) φ,ψ have an
economic interpretation as prices. For instance, imagine that µ is the distribution of sand
available at quarries, and ν describes the amount of sand required by construction work.
Then, Kc(µ, ν) can be interpreted as finding the cheapest way of transporting the sand
from µ to ν for a construction company. Imagine that this company wants to externalize
the transport, by paying a loading coast φ(x) at a point x (in a quarry) and an unloading
coast ψ(y) at a point y (at a construction place). Then, the constraint φ(x) + ψ(y) ⩽
c(x, y) translates the fact that the construction company would not externalize if its cost
is higher than the cost of transporting the sand by itself. Then, Kantorovich’s dual
problem Dc(µ, ν) describes the problem of a transporting company: maximizing its revenue∫
φdµ+

∫
ψdν under the constraint φ⊕ψ ⩽ c imposed by the construction company. The

economic interpretation of the strong duality Kc(µ, ν) = Dc(µ, ν) is that, in this setting,
externalization has exactly the same cost as doing the transport by oneself.

Existence

We now focus on the existence of a pair (ψ,ψ) which solves Dc(µ, ν).

Definition 3.4 (c-transform and c-transform). Given a function f : x→ R, we define its
c-transform f c : Y → R by

f c(y) = inf
x∈X

c(x, y)− f(x).

We also define the c-transform of g : Y → R by

gc(x) = inf
y∈Y

c(x, y)− g(y).

We also say that a function ψ on Y is c-concave if there exists f such that ψ = f c.
Notice now that if c is continuous on a compact set, and hence uniformly continuous, then
there exists am increasing function ω : R+ → R+ with ω(0) = 0 such that

|c(x, y)− c(x′, y′)| ⩽ ω(dX(x, x
′) + dY (y, y

′)).
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If we consider f c we have that f c(y) = infx f̃x(y) with f̃x(y) = c(x, y) − f(x), and the
functions f̃x satisfy |f̃x(y) − f̃x(y)| ⩽ ω(dY (y, y

′)). This implies that f c actually shares
the same continuity modulus of c. It is now quite easy to see that given an admissible
pair (φ,ψ) in Dc(µ, ν), one can always replace it with (φ,φc) and then (φcc, φc) and
the constraints are preserved and the integrals increased. The underlying idea of these
transformations is actually to improve a maximizing sequence to get a uniform bound on
its continuity.

Theorem 3.5. Suppose that X and Y are compact and c ∈ C(X × Y ). Then there exists
a pair (φcc, φc) which solves Dc(µ, ν).

Proof. Let us first denote by J(φ,ψ) the following functional

J(φ,ψ) =

∫
X
φdµ+

∫
Y
ψdν,

then it is clear that for every constant λ we have J(φ − λ, ψ + λ) = J(φ,ψ). Given now
a maximising sequence (φn, ψn) we can improve it by means of the c- and c-transform
obtaining a new one (φccn , φ

c
n). Notice that by the consideration above the sequences

φccn and φcn are uniformly equicontinuous. Since φcn is continuous on a compact set we
can always subtract its minimum and assume that minY φ

c
n = 0. This implies that the

sequence φcn is also equibounded as 0 ⩽ φcn ⩽ ω(diam(Y )). We also deduce uniform
bounds on φccn as φccn = infY c(x, y) − φc(y). This let us apply Ascoli-Arzela’s theorem
and extract two uniformly converging subsequences φccnk

→ φ and φcnk
→ ψ where the

pair (φ,ψ) satisfies the inequality constraint. Moreover, since (φccn , φ
c
n) is a maximising

sequence we get that the pair (φ,ψ) is optimal. now one can apply again the c- and
c-transforms obtaining an optimal pair of the form (φcc, φc).

3.1 Duality via the discrete case

The case of discrete optimal transport

We start with the case of finite discrete probability measures, which is important because:

• It often comes up in applications (e.g. optimal matching in economy);

• Numerical methods for the continuous case often resort to discretization;

• It is a convenient way to study the general case, through density arguments.

Proposition 3.6 (Duality, discrete case). If µ and ν are finitely supported, then Dc(µ, ν) =
Kc(µ, ν).

Proof. Let us write µ =
∑m

i=1 µiδxi and ν =
∑n

j=1 νjδyj where all µi and νj are strictly
positive. Consider the linear program

Lc(µ, ν) := min
{∑

i,j

c(xi, yj)γi,j | γi,j ⩾ 0,
∑
j

γi,j = µi,
∑
i

γi,j = νj

}
.

which admits a solution that we denote γ. By linear programming duality (which is
standard in the finite dimensional case, see e.g. [4, Sec. 5.2] or [16, Sec. 37.3]), we have
strong duality

Lc(µ, ν) = max
{∑

i

φiµi +
∑
j

ψjνj | φi + ψj ⩽ c(xi, yj)
}
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and at optimality γi,j(ci,j − φi − ψj) = 0 (the complementary slackness in Karush-Kuhn-
Tucker theorem). Let us now build a pair (φ,ψ) of functions which is feasible for the dual
problem and that takes the value (φi, ψj) at (xi, yj). For this purpose, we introduce

ψ(y) =

{
ψi if y = yi,

−∞ otherwise,

and let φ = ψc ∈ C(X). For i0 ∈ [n], there exists j0 ∈ [n] such that γi0,j0 > 0 and thus,
by complementary slackness, φi0 + ψj0 = c(xi0 , yj0) and thus

φ(xi0) = inf
y∈Y

(
c(xi0 , y)− ψ(y)

)
= min

j∈[n]

(
c(xi0 , yj)− ψj

)
= c(xi0 , yj0)− ψj0 = φi0 .

Similarly, one can show that φc(yj) = ψj for all j ∈ [n]. Finally, we define γ =∑
i,j γi,jδ(xi,yj) ∈ Π(µ, ν). Since we have built admissible primal γ and dual (φ,ψ) vari-

ables for which the primal and dual objective agree, this concludes the proof.

Density of discrete measures

In order the prove the general case, we will use the density of discrete measures for the
weak topology and a stability property of optimal dual and primal solutions.

Lemma 3.7 (Density of discrete measures). Let X be a compact space and µ ∈ P(X).
Then, there exists a sequence of finitely supported probability measures weakly converging
to µ.

Proof. By compactness, for any ϵ > 0, there exists N points x1, . . . , xn such that X ⊂⋃
iB(xi, ϵ). We introduce the partition K1, . . . ,Kn of X defined recursively by Ki =

B(xi, ϵ) \K1 ∪ · · · ∪Ki−1 and

µϵ :=
n∑
i=1

µ(Ki)δxi .

To prove weak convergence of µϵ to µ as ϵ → 0, take φ ∈ C(X). By compactness of X,
φ admits a modulus of continuity ω, i.e. an increasing function satisfying limt→0 ω(t) = 0
and |φ(x)− φ(y)| ⩽ ω(dist(x, y)). Using that diam(Ki) ⩽ ϵ, we get∣∣∣ ∫ φdµ−

∫
φdµϵ

∣∣∣ ⩽ n∑
i=1

∫
Ki

|φ(x)− φ(xi)|dµ(x) ⩽ ω(ϵ).

We deduce that µϵ weakly converges to µ (remember that for measures on a compact
space, narrow, weak and weak* topologies are the same).

Note that we even have weak density in P(X) of empirical measures, that is measures of
the form 1

n

∑n
i=1 δxi for n ∈ N∗ and xi ∈ X. Indeed, take x1, . . . , xn independent random

variables with distribution µ. Then the uniform law of large numbers (a.k.a. Varadarajan’s
theorem) states that 1

n

∑n
i=1 δxi weakly converges to µ with probability 1.

Strong duality for the general case

Theorem 3.8 (Duality, general case). Let X,Y be compact metric spaces and c ∈ C(X ×
Y ). Then Kc(µ, ν) = Dc(µ, ν)(µ, ν).
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Proof. By Lemma 3.7, there exists a sequence µk ∈ P(X) (resp. νk ∈ P(Y )) of finitely
supported measures which converge weakly to µ (resp. ν). By Proposition 3.6 and its proof,
there exists for all k, γk and (φk, φ

c
k) with φk c-concave which are optimal primal-dual

solutions to Kc(µk, νk) and such that γk is supported on the set

Sk := {(x, y) ∈ X × Y | φk(x) + φck(y) = c(x, y)}.

Adding a constant if necessary, we can also assume that φk(x0) = 0 for some point
x0 ∈ X. As in the previous lecture, we see that {φk} and {φck} are uniformly continuous
and bounded so that by Ascoli-Arzelà theorem converge uniformly to some (φ,ψ) up to a
subsequence. We easily have that φ⊕ψ ⩽ c, so (φ,ψ) is feasible for the dual problem (in
fact uniform convergence implies that ψ = φc, although we will not use this fact here).

By weak compactness of P(X × Y ), we can assume that the sequence γk weakly con-
verges to γ ∈ Π(µ, ν). Moreover, by Lemma 3.9, every pair (x, y) ∈ spt(γ) can be approx-
imated by a sequence of pairs (xk, yk) ∈ spt(γk) with limk→∞(xk, yk) = (x, y). One has
c(xk, yk) = φk(xk)+φck(yk), which gives at the limit c(x, y) = φ(x)+ψ(y). Thus we have

Kc(µ, ν) ⩽
∫
cdγ =

∫ (
φ(x) + ψ(y)

)
dγ(x, y) =

∫
φdµ+

∫
ψdν ⩽ Dc(µ, ν)

Since we already know that Dc(µ, ν) ⩽ Kc(µ, ν) this is sufficient to conclude.

Lemma 3.9. If µn converges weakly to µ, then for any point x ∈ spt(µ) there exists a
sequence xn ∈ spt(µn) converging to x.

Proof. Consider x ∈ spt(µ). For any k ∈ N, consider the function φk(z) = max{0, 1 −
kdist(x, z)} which is continuous. Then

lim
n→∞

∫
φkdµn = φkdµ > 0.

Thus, there exists nk such that for any n ⩾ nk,
∫
φkdµn > 0. This implies the existence of

a sequence (x
(k)
n )n ∈ X such that x(k)n ∈ spt(µn) and dist(x

(k)
n , x) ⩽ 1/k for n ⩾ nk. By a

diagonal argument, we build the sequence xn = xknn where kn = max{k | k = 0 or n ⩾ nk}.
Since by construction kn →∞, we have xn → x.

3.2 Optimality conditions and transport maps

Let us write down three important properties that follow from our previous results. First,
remark that the proof of Theorem 3.8 can be used to prove the following stability property
(the modifications are left as an exercise).

Proposition 3.10 (Stability). Let X,Y be compact metric spaces. Consider (µk)k∈N
and (νk)k∈N in P(X) and P(Y ) converging weakly to µ and ν respectively and (ck)k∈N in
C(X × Y ) converging uniformly to c.

• If γk is a minimizer for Kck(µk, νk) then, up to subsequences, (γk) converges weakly
to a minimizer for Kc(µ, ν).

• Let (φk, φ
ck
k ) be a maximizer for Dck(µk, νk) and be such that φk is ck-concave and

φk(x0) = 0. Then, up to subsequences, (φk, φ
ck
k ) converges uniformly to (φ,φc) a

maximizer for Dc(µ, ν) with φ c-concave satisfying φ(x0) = 0.

Let us emphasize on the optimality conditions, which are just a continuous version of
complementary slackness.
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Proposition 3.11 (Optimality conditions). For γ ∈ Π(µ, ν) and (φ,ψ) ∈ C(X) × C(Y )
satisfying φ⊕ ψ ⩽ c, the following are equivalent:

(i) φ(x) + ψ(y) = c(x, y) holds γ-almost everywhere.

(ii) γ is a minimizer of Kc(µ, ν), (φ,ψ) is a maximizer of Dc(µ, ν).

Proof. Assuming (i), we have

Kc(µ, ν) ⩽
∫
cdγ =

∫ (
φ(x) + ψ(y)

)
dγ(x, y) =

∫
φdµ+

∫
ψdν ⩽ Dc(µ, ν)

Since we already know that Dc(µ, ν) ⩽ Kc(µ, ν), this implies (ii). To show (ii) ⇒ (i),
notice that Theorem 3.8 and (ii) imply

0 =

∫
c(x, y)dγ(x, y)−

∫
φ(x) + ψ(y)dγ(x, y) =

∫ (
c(x, y)− φ(x)− ψ(y)

)
dγ(x, y).

Since the last integrand is nonnegative, it must vanish γ-almost everywhere.

Another useful notion attached to optimal transport solutions is that of cyclical mono-
tonicity.

Definition 3.12 (Cyclical monotonicity). A set S ⊂ X × Y is said c-cyclically monotone
if for any n ∈ N∗ and (xi, yi)

n
i=1 ∈ Sn, it holds

n∑
i=1

c(xi, yi) ⩽
n∑
i=1

c(xi, yi+1) (3.5)

with the convention yn+1 = y1.

Note that Eq. (3.5) is equivalent to requiring
∑n

i=1 c(xi, yi) ⩽
∑n

i=1 c(xi, yσ(i)) for any
permutation σ of {1, . . . , n}, since one can chose the ordering freely when selecting the n
points (xi, yi)

n
i=1 ∈ Sn.

Proposition 3.13. Let X,Y be compact metric spaces, c ∈ C(X×Y ) and γ ∈ Π(µ, ν) an
optimal transport plan between µ ∈ P(X) and ν ∈ P(Y ). Then spt(γ) is c-cyclically mono-
tone.

This result is rather direct in the discrete case and can also be proved without duality
in the general case but our duality results lead to a straighforward proof.

Proof. Let (xi, yi)
n
i=1 be n points in spt(γ). By Prop. 3.11, we know that there exists

(φ,ψ) such that φ(xi)+ψ(yj) ⩽ c(xi, yj) for all i, j and such that φ(xi)+ψ(yi) = c(xi, yi)
for all i. Thus∑

i

c(xi, yi+1)−
∑
i

c(xi, yi) ⩾
∑
i

(
φ(xi) + ψ(yi+1)

)
−
∑
i

(
φ(xi) + ψ(yi)

)
= 0.

Remark 3.14. The cautious reader might have noticed that Prop. 3.11 only guarantees
that γ{(x, y) ∈ X×Y ; φ(x)+ψ(y) < c(x, y)} = 0 (*) while we used a different property.
But (*) and the continuity of c, φ and ψ implies that if φ(x) + ψ(y) < c(x, y) then there
exists a nonempty open ball around (x, y) with 0 mass under γ, i.e. (x, y) /∈ spt(γ) thus
φ(x) + ψ(y) = c(x, y) for all (x, y) ∈ spt(γ) (which is the property use above).
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Remark 3.15 (see Thm 5.10 [21]). A stronger property in fact holds: any c-cyclically
monotonous set is contained in a set of the form {(x, y) ∈ X ×Y ;φ(x)+φc(y) = c(x, y)}
for some c-concave function φ. This implies that any γ ∈ Π(µ, ν) such that spt(γ) is
c-cyclically monotone is optimal.

We recall the following characterization of solutions to Monge’s problem.

Lemma 3.16. Let γ ∈ Π(µ, ν) and T : X → Y measurable be such that γ({(x, y) ∈
X × Y | T (x) ̸= y}) = 0. Then, γ = γT := (id, T )#µ.

If γ is a minimizer for Kc(µ, ν) and (φ,φc) is a maximizer for Dc(µ, ν), we know that
φ ⊕ φc = c γ-almost everywhere. To build a solution to Monge’s problem, it is therefore
sufficient to show that the set {φ⊕ φc = c} is contained in the graph of a function. This
will be possible for the following class of costs:

Definition 3.17 (Twisted cost). A cost function c ∈ C1(Rd × Rd) is said to satisfy the
twist condition if

∀x0 ∈ Rd, the map y 7→ ∇xc(x0, y) ∈ Rd is injective

where ∇xc(x0, y) denotes the gradient of x 7→ c(·, y) at x = x0. Given x, v ∈ Rd, we
denote yc(x0, v) the unique point such that ∇xc(x0, yc(x0, v)) = v.

Theorem 3.18. Let c ∈ C1(Rd ×Rd) be a twisted cost, let X,Y ⊂ Rd be compact subsets
and µ ∈ P(X) and ν ∈ P(Y ). Assume that µ is absolutely continuous with respect to the
Lebesgue measure. Then, there exists a c-concave function φ that is differentiable almost
everywhere such that ν = T#µ where T (x) = yc(x,∇φ(x)). Moreover, the only optimal
transport plan between µ and ν is γT .

Proof. Enlarging X if necessary, we may assume that spt(µ) is contained in the interior
of X. First note that by compactness of X × Y and since c is C1, the cost c is Lipschitz
continuous on X×Y . Take (φ,φc) a maximizing pair for Dc(µ, ν) with φ c-concave. Since
φ(x) = miny∈Y c(x, y) − φc(y) we see that φ is Lipschitz. By Rademacher’s theorem1,
φ is thus differentiable Lebesgue almost everywhere and, since µ is assumed absolutely
continuous, it is differentiable on a set B ⊂ spt(µ) with µ(B) = 1.

Consider an optimal transport plan γ ∈ Π(µ, ν). For every pair of points (x0, y0) ∈
spt(γ) ∩ (B × Y ), we have

φc(y0) ⩽ c(x, y0)− φ(x), ∀x ∈ X

with equality at x = x0, so that x0 minimizes the function x 7→ c(x, y0) − φ(x). Since
x0 ∈ spt(µ) and x0 belongs to the interior of X, one necessarily has ∇φ(x0) = ∇xc(x0, y0).
Then, by the twist condition, one necessarily has y0 = yc(x0,∇φ(x0)). This shows that
any optimal transport plan γ is supported on the graph of the map T : x ∈ B 7→
yc(x0,∇φ(x0)), and γ = γT by Lemma 3.16.

4 Back to discret Optimal Transport

We now consider the optimal transport problems between probability measures on two
finite sets X and Y with, for simplicity, both of cardinality N and we set

µ =
∑
x∈X

µxδx ν =
∑
y∈Y

νyδy.

1https://en.wikipedia.org/wiki/Rademacher%27s_theorem
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Definition 4.1 (Discrete OT). The discrete Optimal transport problem between two
given measures µ and ν and a given cost function c : X×Y → R+∪{+∞} is the following
minimization problem

inf

∑
x∈X

∑
y∈Y

γxyc(x, y) | γ ∈ Π(µ, ν)

 , (4.6)

where the set of admissible couplings is now defined as

Π(µ, ν) := {γ ∈ X × Y | γxy ⩾ 0,
∑
y∈Y

γxy = µx ∀x ∈ X,
∑
x∈X

γxy = νy ∀y ∈ Y }.

Unfortunately, this linear programming problem has complexity O(N3) which actually
means that it is infeasible for large N . A way to overcome this difficulty is by means of
the Entropic Regularization which provides an approximation of Optimal Transport
with lower computational complexity and easy implementation.

References: Entropic regularisation of Optimal Transport is a very active research field.
We refer the interested reader to [2, 7, 12, 15, 8] and the citations therein. We also remark
that these notes are inspired by the graduate class on Numerical Optimal Transport given
by F.-X. Vialard [19] as well as the one given by M. Nutz [14].

5 The Entropic Optimal Transport

5.1 The discrete case

We start from the primal formulation of the optimal transport problem, but instead of
imposing the constraints γxy ⩾ 0, we add a term Ent(γ) =

∑
x,y e(γxy), involving the

(opposite of the) entropy

e(r) =


r(log r − 1) if r > 0

0 if r = 0

+∞ if r < 0

More precisely, given a parameter ε > 0 we consider

Kε
c(µ, ν) = inf

⟨γ|c⟩+ εEnt(γ) | γ ∈ X × Y,
∑
y∈Y

γxy = µx,
∑
x∈X

γxy = νy

 , (5.7)

where ⟨γ|c⟩ =
∑

x,y γxyc(x, y) and Ent(γ) =
∑

x,y e(γxy).

Theorem 5.1. The problem Kε
c(µ, ν) has a unique solution γ⋆, which belongs to Π(µ, ν).

Moreover, if min(minx∈X µx,miny∈Y νy) > 0 then

γx,y > 0 ∀(x, y) ∈ X × Y.
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Before introducing the duality, it is important to state the following convergence result
in ε.

Theorem 5.2 (Convergence in ε). The unique solution γε to (5.7) converges to the opti-
mal solution with minimal entropy within the set of all optimal solutions of the Optimal
Transport problem, that is

γε −−−→
ε→0

argmin
{
Ent(γ) | γ ∈ Π(µ, ν), ⟨γ|c⟩ = K0

c(µ, ν)
}
, (5.8)

where K0
c(µ, ν) denotes the unregularized problem.

Proof. Consider a sequence (εk)k such that εk → 0 and εk > 0 and denote γk the solution
to (5.7) with ε = εk. Since Π(µ, ν) is bounded and close we can extract a converging
subsequence γk → γ⋆ ∈ Π(µ, ν). Take now any optimal γ for the unregularized problem
then by optimality of γk and γ one has

0 ⩽ ⟨γk|c⟩ − ⟨γ|c⟩ ⩽ εk(Ent(γ)− Ent(γk)). (5.9)

Since Ent(·) is continuous, by taking the limit k → +∞ in (5.9) we get ⟨γ⋆|c⟩ = ⟨γ|c⟩.
Furthermore, dividing by εk and taking the limit we obtain that Ent(γ) ⩾ Ent(γ⋆) showing
that γ⋆ is a solution to the minimization problem in (5.8). By strict convexity of Ent the
optimization problem (5.8) has a unique solution and the whole sequence is converging to
γ⋆.

We want now to derive formally the dual problem. For this purpose we introduce the
Lagrangian associated to (5.7)

L(γ, φ, ψ) :=
∑
x,y

γxyc(x, y) + εe(γxy) +
∑
x∈X

φ(x)

µx −∑
y∈Y

γxy


+
∑
y∈Y

ψ(y)

νy −∑
y∈Y

γxy

 ,

(5.10)

where φ : X → R and ψ : Y → R are the Lagrange multipliers. Then,

Kε
c(µ, ν) = inf

γ
sup
φ,ψ

L(γ, φ, ψ),

and the dual problem is obtained by interchanging the infimum and the supremum :

Dε
c(µ, ν) = sup

φ,ψ
min
γ

∑
x,y

γxy(c(x, y)− ψ(y)− φ(x) + ε(log(γxy)− 1))+∑
x∈X

φ(x)µx +
∑
y∈Y

ψ(y)νy.
(5.11)

Taking the derivative with respect to γxy, we find that for a given φ,ψ, the optimal γ
must satisfy:

c(x, y)− ψ(y)− φ(x) + ε log(γxy) = 0

i.e. γxy = exp
(φ(x) + ψ(y)− c(x, y)

ε

) (5.12)

Putting these values in the definition of Dε
c(µ, ν) gives
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Dε
c(µ, ν) = sup

φ,ψ
Φε(φ,ψ) with (5.13)

Φε(φ,ψ) :=
∑
x∈X

φ(x)µx +
∑
y∈Y

ψ(y)νy −
∑
x,y

ε exp
(φ(x) + ψ(y)− c(x, y)

ε

)

Note that thanks to the relation (5.12), one can recover a solution to the primal
problem from the dual one. This is true because, unlike the original linear programming
formulation of the optimal transport problem, the regularized problem (5.7) is smooth
and strictly convex. The following duality result holds

Theorem 5.3 (Strong duality). Strong duality holds and the maximum in the dual problem
is attained, that is ∃φ,ψ such that

Kε
c(µ, ν) = Dε

c(µ, ν) = Φε(φ,ψ).

Corollary 5.4. If (φ,ψ) is the solution to (5.13), then the solution γ⋆ to (5.7) is given
by

γx,y = exp
(φ(x) + ψ(y)− c(x, y)

ε

)
Notice now that the optimal coupling γ can be written as

γx,y = Dφe
−c(x,y)

ε Dψ,

where Dφ and Dψ are the diagonal matrices associated to eφ/ε and eψ/ε, respectively. The
problem is now similar to a matrix scaling problem

Definition 5.5 (Matrix scaling problem). Let K ∈ RN×N be a matrix with positive
coefficients. Find Dψ and Dψ positive diagonal matrices in K ∈ RN×N such that DφKDψ

is doubly stochastic, that is sum along each row and each column is equal to 1.

Remark 5.6. Uniqueness fails since if (Dφ, Dψ) is a solution then so is (cDφ,
1
cDψ) for

every c ∈ R+.

The matrix scaling problem can be easily solved by using an iterative algorithm, known
as Sinkhorn-Knopp algorithm, which simply alternates updating Dφ and Dψ in order to
match the marginal constraints (a vector 111N of ones in this simple case).

Algorithm 1 Sinkhorn-Knopp algorithm for the matrix scaling problem
1: function Sinkhorn-Knopp(K)
2: D0

φ ← 1N , D
0
ψ ← 1N

3: for 0 ⩽ k < kmax do
4: Dk+1

φ ← 1N ./(KD
k
ψ)

5: Dk+1
ψ ← 1N ./(K

TDk+1
φ )

6: end for
7: end function

where ./ stand for the element-wise division. Denoting by (Kε)x,y = e
−c(x,y)

ε the
algorithm takes the form 2 for the regularized optimal transport problem.
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Algorithm 2 Sinkhorn-Knopp algorithm for the regularised optimal transport problem
1: function Sinkhorn-Knopp(Kε, µ, ν)
2: D0

φ ← 1X , D
0
ψ ← 1Y

3: for 0 ⩽ k < kmax do
4: Dk+1

φ ← µ./(KDk
ψ)

5: Dk+1
ψ ← ν./(KTDk+1

φ )
6: end for
7: end function

Notice that one can recast the regularized OT in the framework of bistochastic ma-
trix scaling by replacing the kernel e

−c(x,y)
ε with (Kε)x,y = diag(µ)e

−c(x,y)
ε diag(ν), where

diag(µ) (diag(ν)) denotes the diagonal matrix with the vector µ (ν) as main diagonal. In
this case the problem (5.7) can be re-written as

Kε
c(µ, ν) = inf

⟨γ|c⟩+ εH(γ|µ⊗ ν) | γ ∈ X × Y,
∑
y∈Y

γxy = µx,
∑
x∈X

γxy = νy

 , (5.14)

where H(ρ|µ) :=
∑

x ρx(log(
ρx
µx

)− 1) is the relative entropy or the Kullback-Leibler diver-
gence.

Good to know: one can easily recast the regularized OT in the continuous
framework as follows

Kε
c(µ, ν) = inf

{∫
X×Y

c(x, y)dγ(x, y) + εH(γ|µ⊗ ν) | γ ∈ Π(µ, ν)

}
, (5.15)

where

H(ρ|π) =


∫
X×Y

(
log
(dρ(x, y)
dπ(x, y)

)
− 1
)
dρ(x, y), if ρ≪ π

+∞, otherwise,

and the marginals µ, ν are probability measures on the compact metric spaces X and
Y , respectively. This problem is often referred to as the static Schrödinger problem
[12] since it was initially considered by Schrödinger in statistical physics. Once again,
under mild assumptions on the cost functions, one can prove that the regularized
problem converges to original one as ε→ 0; see [6, 11].

6 The convergence of Sinkhorn: the discrete setting

We focus now on the global convergence analysis of the Sinkhorn algorithm in the discrete
setting by using the Hilbert projective metric on Rn+,⋆ (positive vectors).

Definition 6.1 (Hilbert projective metric). The Hilbert projective metric on Rn+,⋆ is
defined as

∀(u, v) ∈ (Rn+,⋆)2, dH(u, v) := || log(u)− log(v)||V ,

Where
||x||V = max

i
xi −min

i
xi.
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Before stating the convergence result we need the following fundamental theorem,
which shows that a positive matrix is a strict contraction on the cone of positive vector

Theorem 6.2 ([3, 17]). Let K ∈ Rn×n+,⋆ , then for (u, v) ∈ (Rn+,⋆)2

dH(Ku,Kv) ⩽ λ(K)dH(u, v), (6.16)

where

λ(K) =

√
η(K)− 1√
η(K) + 1

< 1

and
η(K) = max

i,j,kl

KikKjl

KjkKil
.

We have then the following convergence result (we use the same notations as in 2)

Theorem 6.3 ([9]). One has (Dk
φ, D

k
ψ)→ (D⋆

φ, D
⋆
ψ) and

dH(D
k
φ, D

⋆
φ) = O(λ(K)2k), dH(D

k
ψ, D

⋆
ψ) = O(λ(K)2k), (6.17)

where D⋆
φ, D

⋆
ψ are the optimal solutions. Moreover,

dH(D
k
φ, D

⋆
φ) ⩽

dH(γ
k1n, µ)

1− λ(K)2
, (6.18)

dH(D
k
ψ, D

⋆
ψ) ⩽

dH(γ
k1n, ν)

1− λ(K)2
, (6.19)

where γk = diag(Dk
φ)K diag(Dk

ψ). Last, one has

|| log(γk)− log(γ⋆)||∞ ⩽ dH(D
k
φ, D

⋆
φ) + dH(D

k
ψ, D

⋆
ψ). (6.20)

where γ⋆ is the unique solution to (5.7).

Proof. Notice that for any (u, v) ∈ (Rn+,⋆)2, on has

dH(u, v) = dH(u/v,1n) = dH(1n/u,1n/v).

This shows that

dH(D
k
φ, D

⋆
φ) = dH(

µ

KDk
ψ

,
µ

KD⋆
ψ

) = dH(KD
k
ψ,KD

⋆
ψ) ⩽ λ(K)dH(D

k
ψ, D

⋆
ψ),

where we used Theorem 6.2. This shows (6.17). By using triangular inequality we have

dH(D
k
φ, D

⋆
φ) ⩽ dH(D

k+1
φ , Dk

φ) + dH(D
k+1
φ , D⋆

φ)

⩽ dH(
µ

KDk
ψ

, Dk
φ) + λ(K)dH(D

k
φ, D

⋆
φ)

= dH(µ,D
k
φ ⊙ (KDk

ψ)) + λ(K)2dH(D
k
φ, D

⋆
φ)

= dH(µ, γ
k1n) + λ(K)2dH(D

k
φ, D

⋆
φ),

where ⊙ denotes the element wise multiplication. (6.19) can be proved in an analogous
way. (6.20) is trivial.
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6.1 The convergence of Sinkhorn in the continuous setting

As presented in Lecture 1, the existence of Kantorovich potentials for the standard Op-
timal Transport problem can be proven by standard compactness arguments. By using
similar arguments we show existence for the regularized dual problem (and convergence
of Sinkhorn at the same time) in the continuous framework. We firstly recall that a
coordinate ascent algorithm on a fucntion of two variables f(x, y) can written as

yk+1 = argmaxy f(xk, y),

xk+1 = argmaxx f(x, yk+1).

The Sinkhorn algorithm is actually a coordinate ascent algorithm: the main idea is indeed
to maximize Φε(φ,ψ) by maximizing alternatively in φ and ψ. From now on we assume
for simplicity that X = Y are compact and c is a continuous cost function.

Proposition 6.4. The dual problem to (5.15) reads as

Dε
c(µ, ν) = sup{Φε(φ,ψ) | φ,ψ ∈ C0(X)}, (6.21)

where

Φε(φ,ψ) :=

∫
X
φ(x)dµ(x) +

∫
Y
ψ(y)dν(y)

− ε
∫
X×Y

exp
(φ(x) + ψ(y)− c(x, y)

ε

)
dµ⊗ dν(x, y).

It is strictly concave w.r.t. each argument φ and ψ and strictly concave w.r.t. φ(x)+ψ(y).
It is also Fréchet differentiable for the (C0, ∥·∥∞) topology. Furthermore, if a maximizer
exists it is unique up to a constant, that is Φε(φ,ψ) = Φε(φ+C,ψ−C) for every C ∈ R.

Proof. We leave the proof as an exercice.

Proposition 6.5. The maximization of Φε(φ,ψ) w.r.t. each variable can be made explicit,
and the Sinkhorn algorithm can be defined as

φk+1(x) = −ε log
(∫

X
exp

(1
ε
(ψk(y)− c(x, y)

)
dν(y)

)
:= Sν(ψk), (6.22)

ψk+1(y) = −ε log
(∫

X
exp

(1
ε
(φk+1(x)− c(x, y)

)
dµ(x)

)
:= Sµ(φk+1). (6.23)

Moreover, the following properties hold

(i) Φε(φk, ψk) ⩽ Φε(φk+1, ψk) ⩽ Φε(φk+1, ψk+1);

(ii) If c(x, y) is ω−continuous then φk+1, ψk+1 are also ω−continuous ;

(iii) If ψk − C (φk+1 − C) is bounded by M on the support of ν (µ), then so is φk+1

(ψk+1).

Proof. (6.22) and (6.23) follow by writing the first-order necessary condition which gives
us

1− exp

(
φ(x)

ε

)∫
Y
exp

(
− 1

ε
(ψ(y)− c(x, y))

)
dν(y) = 0, x− a.e.

implying the desired formula (and by symmetry, the same result on Sµ holds). Therefore,
Sν(ψ) is the unique maximizer of φ 7→ Φε(φ,ψ).
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By definition of ascent on each coordinate, (i) is obtained directly. More generally one
can prove that the application Sν (Sµ) is ω−continuous. Let x1, x2 ∈ X then

|Sν(ψ)(x1)− Sν(ψ)(x2)| = ε log

(∫
X
e

(
1
ε
(ψ(y)−c(x2,y)

)
dν(y)

)
− ε log

(∫
X
e

(
1
ε
(ψ(y)−c(x1,y)

)
dν(y)

)

= ε log

(∫
X
e

(
1
ε
(ψ(y)−c(x1,y)+c(x1,y)−c(x2,y)

)
dν(y)

)
− ε log

(∫
X
e

(
1
ε
(ψ(y)−c(x1,y)

)
dν(y)

)

⩽ ε log

(
e

ω(d(x1,x2))
ε

∫
X
e

(
1
ε
(ψ(y)−c(x1,y)

)
dν(y)

)
− ε log

(∫
X
e

(
1
ε
(ψ(y)−c(x1,y)

)
dν(y)

)
= ω(d(x1, x2)).

(6.24)

The last point is just a bound on the iterates.

Proposition 6.6. The sequence (φk, ψk) defined by (6.22) and (6.23) converges in (C0, ∥·∥∞)
to the unique (up to a constant) couple of potentials (φ,ψ) which maximizes Φε.

Proof. Shifting the potentials by an additive constant, one can replace the optimization
set by the couples (φ,ψ) which have uniformly bounded modulus of continuity and such
that φ(x0) = 0 for a given x0 ∈ X. Recall that by proposition 6.4 the maximum of Φ
is achieved at some couple (φ∗, ψ∗) which is unique up to a constant. Then, by prop.
6.5 (φk, ψk) are uniformly bounded and have uniformly modulus of continuity and one
can extract a converging subsequence to (φ,ψ). By continuity of Φ and the monotonicity
of the sequence, Φε(φ, Sµ(φ)) ⩽ Φε(Sν ◦ Sµ(φ), Sµ(φ)) = Φε(φ, Sµ(φ)). Therefore, the
maximizer coordinatewise being unique, one has

Sν(ψ) = φ, (6.25)

Sµ(φ) = ψ. (6.26)

These show that (φ,ψ) is a critical point for Φε, thus being a maximizer.

The proof of convergence relies on some important properties of the log−sum−exp
(LSE) function log

∫
exp which we summarise in the next Lemma. Before that let define

the pseudo-norm ∥·∥◦,∞ of uniform convergence as

∥f∥◦,∞ :=
1

2
(sup f − inf f) = inf

a∈R
∥f + a∥∞ .

Lemma 6.7. The LSE function is convex and

∥Sµ(φ1)− Sµ(φ2)∥◦,∞ ⩽ ∥φ1 − φ2∥◦,∞ . (6.27)

Proof. Convexity is easily verified. We can get the 1−Lipschitz property as follows

|Sµ(φ1)(x)− Sµ(φ2)(x)| =

∣∣∣∣∣
∫ 1

0

d

dt
Sµ(φ2 + t(φ1 − φ2))dt

∣∣∣∣∣
⩽
∫ 1

0

∣∣∣∣∣
∫
X
(φ1 − φ2)

exp(1ε (φ2 + t(φ1 − φ2)− c))∫
X exp(1ε (φ2 + t(φ1 − φ2)− c))dµ

dµ

∣∣∣∣∣
⩽ ∥φ1 − φ2∥∞ .
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Notice that the equality occurs if and only if φ1−φ2 is constant µ−a.e.. In particular we
would have φ1 = φ2+a and Sµ(φ1) = Sµ(φ2)+a. Thus it is natural to consider the set of
continuous functions up to an additive constant C(X)/R endowed with the pseudo-norm
introduced above. Then, since Sµ(φ1 + a) = Sµ(φ1) + a we got the same inequality for
the norm ∥·∥◦,∞.

Lemma 6.8. Let u, v ∈ C(X) and µ ∈ P(X) and denote νu and νv the Gibbs measures
associated to u and v, that is dνu = 1

Zu
eudµ and dνv =

1
Zv
evdµ, where Zu and Zv are the

normalizing constants, then

∥νu − νv∥L1 ⩽ 2(1− e−2∥u−v∥◦,∞).

Proof. Consider a bounded function g on X and define

ηg(t) :=

∫
X
g
etv+(1−t)u

Zt,g
dµ,

where Zt,g =
∫
X e

tv+(1−t)udµ. Differentiating we get

η′g(t) + ηv−u(t)ηg(t) = η(v−u)g(t),

and

e
∫ t
0 ηv−u(s)dsηg(t)− ηg(0) =

∫ t

0
η(v−u)g(s)e

∫ s
0 ηv−u(r)drds.

Observe that

|e
∫ t
0 ηv−u(s)dsηg(t)− ηg(0)| ⩽ ∥g∥∞

∫ t

0
η(u−v)(s)e

∫ s
0 ηu−v(r)drds

⩽ ∥g∥∞
(
e
∫ t
0 ηu−v(s)ds − 1

)
.

Interchanging the role of u and v we have two possible cases: ηg(1) ⩾ ηg(0) ⩾ 0 or
ηg(1) ⩾ 0 ⩾ ηg(0). In the first case one has

|e
∫ t
0 ηu−v(s)ds(ηg(t)− ηg(0))| ⩽ |e

∫ t
0 ηu−v(s)dsηg(t)− ηg(0)| ⩽ ∥g∥∞

(
e
∫ t
0 ηu−v(s)ds − 1

)
.

In the second case there exists t0 ∈ [0, 1] such that ηg(t0) = 0 and we get

|ηg(1)| ⩽ ∥g∥∞
(
1− e

∫ 1
t0
ηu−v(s)ds

)
︸ ︷︷ ︸

:=a1

|ηg(0)| ⩽ ∥g∥∞
(
1− e

∫ t0
0 ηu−v(s)ds

)
︸ ︷︷ ︸

:=a0

.

Thus,
|ηg(1)− ηg(0)| ⩽ |ηg(1)|+ |ηg(0)| ⩽ 2 ∥g∥∞max(a1, a0)

By exploiting the fact that ηu−v(t) ⩽ 2 ∥u− v∥◦,∞ we obtain in both cases that

∥νu − νv∥ ⩽ 2(1− e−2∥u−v∥◦,∞)
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Theorem 6.9. (Convergence of Sinkhorn) The map S = Sν ◦ Sµ is a contraction for
∥·∥◦,∞. In particular the sequence (φk, ψk) defined by the Sinkhorn algorithm linearly
converges to the unique (up to a constant) maximiser of the dual problem.

Proof. We actually have to prove that

∥Sµ(φ1)− Sµ(φ2)∥◦,∞ ⩽ κµ ∥φ1 − φ2∥◦,∞ . (6.28)

Once we have established that Sµ is a contraction then by lemma 6.7 it easily follows
that

∥S(φ1)− S(φ2)∥◦,∞ ⩽ κµ ∥φ1 − φ2∥◦,∞ ,

which would conclude the proof.
In order to prove (6.28) we start by giving an estimation of the oscillations of Sµ

1

2
|Sµ(φ1)(y)−Sµ(φ2)(y)−Sµ(φ1)(x)+Sµ(φ2)(x)| ⩽

1

2

∣∣∣∣∣
∫ 1

0

∫
X
(φ1−φ2)(dηt,y−dηt,x)dt

∣∣∣∣∣,
where dηt,z :=

1
Z e

t(φ1−φ2)+φ2−c(z,·)
ε dµ where Z is the normalising constant. Since dηt,z is a

Gibbs measure we can apply the L1 bound of lemma 6.8 to estimate ∥ηt,y − ηt,x∥L1 and
get

∥Sµ(φ1)− Sµ(φ2)∥◦,∞ ⩽ κµ ∥φ1 − φ2∥◦,∞

with κµ = (1− e−2
∥c∥◦,∞

ε ).

Remark 6.10 (Convergence speed). This theorem shows that the Sinkhorn algorithm
converges linearly, but notice that the contraction constant has a bad dependency in ε.
Denoting C = ∥c∥◦,∞, to get an error of β one needs

(1− e−2C
ε )k ⩽ β

that is
k ⪆ e2C/ε log(1/β).

Remark 6.11. We refer the interested reader to [5, 13] where the convergence of Sinkhorn
algorithm in infinite dimension (and generalized also to the multi-marginal case) is treated.
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