

Lecture 4: A glimpse of multi-marginal OT and applications

Luca Nenna Matherials (INRIA) and CERMICS, ENPC, 02/02/2024, Champs sur Marne

(LMO) Université Paris-Saclay and INRIA-Saclay (ParMA)

Overview

1. A crash introduction to (multi-marginal) Optimal Transport

Quick recap on classical Optimal transport

Multi-marginal optimal transport

The real line case

- 2. Application I: MMOT for computing geodesics in the Wasserstein space
- 3. Application II: MMOT and the electron-electron repulsion
- 4. Entropic multi-marginal optimal transport
- 5. The asymptotics for the MOT_{ε} (with P. Pegon)

The upper bound

The lower bound

6. Another way to characterise (and solve) $\mathsf{MOT}_\varepsilon:$ an ODE approach (with B. Pass)

The ODE

The algorithm and some numerical results

An extension to general (entropic) multi-marginal problem

A crash introduction to (multi-marginal) Optimal Transport

Classical Optimal Transportation Theory

Consider two probability measures μ_i on $X_i \subseteq \mathbb{R}^d$, and *c* a cost function (e.g. continuous or l.s.c.), the Optimal Transport (OT) problem is defined as follows

$$\mathsf{DT}_{\mathbf{0}} \coloneqq \inf \left\{ \int_{\mathbf{X}} c(x_1, x_2) \mathrm{d}\gamma(x_1, x_2) \mid \gamma \in \Pi(\mu_1, \mu_2) \right\}$$
(1)

where $\Pi(\mu_1, \mu_2)$ denotes the set of couplings $\gamma(x_1, x_2) \in \mathcal{P}(\mathbf{X})$ having μ_1 and μ_2 as marginals.

• Solution à la Monge the transport plan γ is deterministic (or à la Monge) if $\gamma = (Id, T)_{\sharp}\mu_1$ where $T_{\sharp}\mu_1 = \mu_2$.

Classical Optimal Transportation Theory

Consider two probability measures μ_i on $X_i \subseteq \mathbb{R}^d$, and *c* a cost function (e.g. continuous or l.s.c.), the Optimal Transport (OT) problem is defined as follows

$$\mathsf{OT}_{\mathbf{0}} \coloneqq \inf \left\{ \int_{\mathbf{X}} c(x_1, x_2) \mathrm{d}\gamma(x_1, x_2) \mid \gamma \in \Pi(\mu_1, \mu_2) \right\}$$
(1)

where $\Pi(\mu_1, \mu_2)$ denotes the set of couplings $\gamma(x_1, x_2) \in \mathcal{P}(X)$ having μ_1 and μ_2 as marginals.

• Solution à la Monge the transport plan γ is deterministic (or à la Monge) if $\gamma = (Id, T)_{\sharp} \mu_1$ where $T_{\sharp} \mu_1 = \mu_2$.

• Duality:

$$\sup \left\{ \mathcal{J}(\varphi_1,\varphi_2) \mid (\varphi_1,\varphi_2) \in \mathcal{K} \right\}.$$
 (2)

where

$$\mathcal{J}(\varphi_1, \varphi_2) := \int_{X_1} \varphi_1 \mathrm{d}\mu_1 + \int_{X_2} \varphi_2 \mathrm{d}\mu_2$$

and \mathcal{K} is the set of bounded and continuous functions (φ_1, φ_2) such that $\varphi_1(x_1) + \varphi(x_2) \leq c(x_1, x_2)$.

The Multi-Marginal Optimal Transportation

Take (1) *m* probability measures $\mu_i \in \mathcal{P}(X_i)$; (2) *c* a cost function. Then the multi-marginal OT problem reads as:

Multi-Marginal Optimal Transport problem

It reads as:

$$MOT_{0} \coloneqq \inf_{\gamma \in \Pi(\mu_{1}, \dots, \mu_{m})} \int_{\boldsymbol{X}} c(x_{1}, \dots, x_{m}) d\gamma(x_{1}, \dots, x_{m})$$
(3)

where $\Pi(\mu_1, \ldots, \mu_m)$ denotes the set of couplings $\gamma(x_1, \ldots, x_m)$ having μ_i as marginals.

Multi-Marginal Optimal Transport problem

It reads as:

$$MOT_{0} \coloneqq \inf_{\gamma \in \Pi(\mu_{1}, \dots, \mu_{m})} \int_{\boldsymbol{X}} c(x_{1}, \dots, x_{m}) d\gamma(x_{1}, \dots, x_{m})$$
(3)

where $\Pi(\mu_1, \ldots, \mu_m)$ denotes the set of couplings $\gamma(x_1, \ldots, x_m)$ having μ_i as marginals.

• Solution à la Monge: $\gamma = (Id, T_2, \ldots, T_m)_{\sharp} \mu_1$ where $T_{i\sharp} \mu_1 = \mu_i$.

Multi-Marginal Optimal Transport problem

It reads as:

$$MOT_{0} := \inf_{\gamma \in \Pi(\mu_{1}, \dots, \mu_{m})} \int_{\boldsymbol{X}} c(x_{1}, \dots, x_{m}) d\gamma(x_{1}, \dots, x_{m})$$
(3)

where $\Pi(\mu_1, \ldots, \mu_m)$ denotes the set of couplings $\gamma(x_1, \ldots, x_m)$ having μ_i as marginals.

- Solution à la Monge: $\gamma = (Id, T_2, \dots, T_m)_{\sharp} \mu_1$ where $T_{i\sharp} \mu_1 = \mu_i$.
- Duality: Both 2 and m marginal OT problems admit a useful dual formulation

Multi-Marginal Optimal Transport problem

It reads as:

$$MOT_{0} := \inf_{\gamma \in \Pi(\mu_{1}, \dots, \mu_{m})} \int_{\boldsymbol{X}} c(x_{1}, \dots, x_{m}) d\gamma(x_{1}, \dots, x_{m})$$
(3)

where $\Pi(\mu_1, \ldots, \mu_m)$ denotes the set of couplings $\gamma(x_1, \ldots, x_m)$ having μ_i as marginals.

- Solution à la Monge: $\gamma = (Id, T_2, \dots, T_m)_{\sharp} \mu_1$ where $T_{i\sharp} \mu_1 = \mu_i$.
- Duality: Both 2 and m marginal OT problems admit a useful dual formulation

Why is it a difficult problem to treat?

Example: m = 3, d = 1, $\mu_i = \mathcal{L}_{[0,1]} \forall i$ and $c(x_1, x_2, x_3) = |x_1 + x_2 + x_3|^2$.

- Uniqueness fails (Simone Di Marino, Gerolin, and Luca Nenna 2017);
- \exists T_i optimal, are not differentiable at any point and they are fractal maps ibid., Thm 4.6

• The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan γ(x₁,..., x_m) returns the probability of finding electrons at position x₁,..., x_m;

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan γ(x₁,..., x_m) returns the probability of finding electrons at position x₁,..., x_m;
- Incompressible Euler Equations (Brenier 1989) : $\gamma(\omega)$ gives "the mass of fluid" which follows a path ω . See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan γ(x₁,..., x_m) returns the probability of finding electrons at position x₁,..., x_m;
- Incompressible Euler Equations (Brenier 1989) : $\gamma(\omega)$ gives "the mass of fluid" which follows a path ω . See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan γ(x₁,..., x_m) returns the probability of finding electrons at position x₁,..., x_m;
- Incompressible Euler Equations (Brenier 1989) : $\gamma(\omega)$ gives "the mass of fluid" which follows a path ω . See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
- Risk measures (Ennaji, Mérigot, Luca Nenna, and Pass 2022)

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan γ(x₁,..., x_m) returns the probability of finding electrons at position x₁,..., x_m;
- Incompressible Euler Equations (Brenier 1989) : $\gamma(\omega)$ gives "the mass of fluid" which follows a path ω . See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
- Risk measures (Ennaji, Mérigot, Luca Nenna, and Pass 2022)
- Martingale transport, etc

Given a probability measure $\mu \in \mathcal{P}(\mathbb{R})$, its inverse cumulative function (c.d.f) of as

 $F_{\mu}^{-1}(m) = \inf\{x \in \mathbb{R} \mid F_{\mu}(x) \ge m\}$ where $F_{\mu}(x) = \mu((-\infty, x])$.

Theorem (see (Filippo Santambrogio 2015; Rachev and Rüschendorf 1998))

Let the cost function satisfies the condition

$$c(x',y') - c(x,y') - c(x',y) + c(x,y) \le 0,$$

for $x' \ge x$, $y' \ge y$. Then the optimal transport plan γ is of the form $\gamma = (F_{\mu_1}^{-1}, F_{\mu_2}^{-1})_{\sharp} \text{Leb}_{[0,1]}$

Given a probability measure $\mu \in \mathcal{P}(\mathbb{R})$, its inverse cumulative function (c.d.f) of as

 $F_{\mu}^{-1}(m) = \inf\{x \in \mathbb{R} \mid F_{\mu}(x) \ge m\}$ where $F_{\mu}(x) = \mu((-\infty, x])$.

Theorem (see (Filippo Santambrogio 2015; Rachev and Rüschendorf 1998))

Let the cost function satisfies the condition

$$c(x',y') - c(x,y') - c(x',y) + c(x,y) \le 0,$$

for $x' \ge x$, $y' \ge y$. Then the optimal transport plan γ is of the form $\gamma = (F_{\mu_1}^{-1}, F_{\mu_2}^{-1})_{\sharp} \text{Leb}_{[0,1]}$

• Question: can we extend this result to the multi-marginal case?

Given a probability measure $\mu \in \mathcal{P}(\mathbb{R})$, its inverse cumulative function (c.d.f) of as

 $F_{\mu}^{-1}(m) = \inf\{x \in \mathbb{R} \mid F_{\mu}(x) \geq m\}$ where $F_{\mu}(x) = \mu((-\infty, x])$.

Theorem (see (Filippo Santambrogio 2015; Rachev and Rüschendorf 1998))

Let the cost function satisfies the condition

$$c(x',y') - c(x,y') - c(x',y) + c(x,y) \le 0,$$

for $x' \ge x$, $y' \ge y$. Then the optimal transport plan γ is of the form $\gamma = (F_{\mu_1}^{-1}, F_{\mu_2}^{-1})_{\sharp} \text{Leb}_{[0,1]}$

• Question: can we extend this result to the multi-marginal case?

Theorem ((Guillaume Carlier 2003))

Given $c \in C^2(X_1 \times \cdots \times X_m)$ and strict submodular cost, that is $\partial_{x_i \times j}^2 c < 0$ for all $i \neq j$. Then the optimal γ is of the form $\gamma = (F_{\mu_1}^{-1}, \cdots, F_{\mu_m}^{-1})_{\sharp} Leb_{[0,1]}$

Definition (Compatibility)

We will say that s is compatible if

$$\partial_{x_ix_j}^2 c[\partial_{x_kx_j}^2 c]^{-1} \partial_{x_kx_i}^2 c(x_1,\ldots,x_m) < 0,$$

for each $i, j, k = 1, \ldots, m$ and each $(x_1, \ldots, x_m) \in X_1 \times \cdots \times X_m$.

Definition (Compatibility)

We will say that s is compatible if

$$\partial_{x_ix_j}^2 c[\partial_{x_kx_j}^2 c]^{-1} \partial_{x_kx_i}^2 c(x_1,\ldots,x_m) < 0,$$

for each $i, j, k = 1, \ldots, m$ and each $(x_1, \ldots, x_m) \in X_1 \times \cdots \times X_m$.

Rmk: Note that if *c* compatible, the condition above implies that each $\partial_{x_ix_j}^2 c \neq 0$ throughout the domain $X_1 \times \ldots \times X_m$; continuity then yields that each $\partial_{x_ix_j}^2 c$ is either always positive or always negative. Partition the set $\{1, 2, \ldots m\} = P_+ \cup P_-$ of indices into disjoint subsets P_+ and P_- such that $1 \in P_+$ and

- for each $i \neq j$, $\partial_{x_i x_j}^2 c < 0$ throughout $X_1 \times \cdots \times X_m$ if either both i and j are in P_- or if both are in P_+ ;
- $\partial_{x_i \times i}^2 c > 0$ throughout $X_1 \times \cdots \times X_m$ otherwise.

Definition

For a compatible c, we define the c - comonotone coupling by $\gamma = (G_1, G_2, \ldots, G_m)_{\#} \text{Leb}_{[0,1]}$, where $G_1 = F_{\mu_1}^{-1}$ and for each $i = 1, 2, \ldots, m$

$$G_i(m) = \begin{cases} F_{\mu_i}^{-1}(m) & \text{if } i \in P_-, \\ F_{\mu_i}^{-1}(1-m) & \text{if } i \in P_+. \end{cases}$$
(4)

Definition

For a compatible c, we define the c - comonotone coupling by $\gamma = (G_1, G_2, \ldots, G_m)_{\#} \text{Leb}_{[0,1]}$, where $G_1 = F_{\mu_1}^{-1}$ and for each $i = 1, 2, \ldots, m$

$$G_i(m) = \begin{cases} F_{\mu_i}^{-1}(m) & \text{if } i \in P_-, \\ F_{\mu_i}^{-1}(1-m) & \text{if } i \in P_+. \end{cases}$$
(4)

and in higher dimension?

For the quadratic cost or under some strong assumptions on the cost (Gangbo and Swiech 1998; Pass 2012; Pass 2011; Pass 2015; Kim and Pass 2013).

Definition

For a compatible c, we define the c - comonotone coupling by $\gamma = (G_1, G_2, \ldots, G_m)_{\#} \text{Leb}_{[0,1]}$, where $G_1 = F_{\mu_1}^{-1}$ and for each $i = 1, 2, \ldots, m$

$$G_i(m) = \begin{cases} F_{\mu_i}^{-1}(m) & \text{if } i \in P_-, \\ F_{\mu_i}^{-1}(1-m) & \text{if } i \in P_+. \end{cases}$$
(4)

and in higher dimension?

For the quadratic cost or under some strong assumptions on the cost (Gangbo and Swiech 1998; Pass 2012; Pass 2011; Pass 2015; Kim and Pass 2013).

Good news: we can estimate the dimension of the support of the optimal plans.

• Consider (1) *m* probability measures $\mu_i \in \mathcal{P}(X_i)$ where X_i are \mathcal{C}^2 submanifolds of dimension d_i ; (2) $c \in \mathcal{C}^2(X)$; let (3) *P* be the set of partitions of $\{1, \ldots, m\}$ into two non empty disjoint subsets: $p := \{p_-, p_+\} \in P$;

A signature condition on the second mixed derivatives

• Consider (1) *m* probability measures $\mu_i \in \mathcal{P}(X_i)$ where X_i are \mathcal{C}^2 submanifolds of dimension d_i ; (2) $c \in \mathcal{C}^2(X)$; let (3) *P* be the set of partitions of $\{1, \ldots, m\}$ into two non empty disjoint subsets: $p := \{p_-, p_+\} \in P$;

• For each $p \in P$ we denote by g_p the bilinear form on X as

$$g_{p} = \sum_{i \in p_{-}, j \in p_{+}} D_{x_{i}, x_{j}}^{2} c + \sum_{i \in p_{+}, j \in p_{-}} D_{x_{i}, x_{j}}^{2} c.$$

• Consider (1) *m* probability measures $\mu_i \in \mathcal{P}(X_i)$ where X_i are \mathcal{C}^2 submanifolds of dimension d_i ; (2) $c \in \mathcal{C}^2(X)$; let (3) *P* be the set of partitions of $\{1, \ldots, m\}$ into two non empty disjoint subsets: $p := \{p_-, p_+\} \in P$;

• For each $p \in P$ we denote by g_p the bilinear form on X as

$$g_{p} = \sum_{i \in p_{-}, j \in p_{+}} D^{2}_{x_{i}, x_{j}} c + \sum_{i \in p_{+}, j \in p_{-}} D^{2}_{x_{i}, x_{j}} c.$$

• Define $G := \{\sum_{p \in P} t_p g_p \mid (t_p)_{p \in P} \in \Delta_P\}$ to be the convex hull generated by the g_p .

• Consider (1) *m* probability measures $\mu_i \in \mathcal{P}(X_i)$ where X_i are \mathcal{C}^2 submanifolds of dimension d_i ; (2) $c \in \mathcal{C}^2(X)$; let (3) *P* be the set of partitions of $\{1, \ldots, m\}$ into two non empty disjoint subsets: $p := \{p_-, p_+\} \in P$;

• For each $p \in P$ we denote by g_p the bilinear form on X as

$$g_{p} = \sum_{i \in p_{-}, j \in p_{+}} D^{2}_{x_{i}, x_{j}} c + \sum_{i \in p_{+}, j \in p_{-}} D^{2}_{x_{i}, x_{j}} c.$$

• Define $G := \{\sum_{p \in P} t_p g_p \mid (t_p)_{p \in P} \in \Delta_P\}$ to be the convex hull generated by the g_p .

Theorem (Upper bound on the dimension of the support of the optimal plan (Pass 2011)) Let γ_0 a solution to MOT₀ and suppose that at some point $x \in X$, the signature of some $g \in G$ is $(d^+(g), d^-(g), d^0(g))$. Then, there exists a neighbourhood N_x of x such that $N_x \cap \text{supp}(\gamma_0)$ is contained in a Lipschitz submanifold with dimension no greater than $\sum_i d_i - d^+(g)$. Application I: MMOT for computing geodesics in the Wasserstein space

Three formulations of Optimal Transport problem) with the quadratic cost :

• The static

$$\inf\left\{\int_{X_1\times X_2}\frac{1}{2}|x_1-x_2|^2d\gamma\mid \gamma\in\Pi(\mu_1,\mu_2)\right\}$$

• The dynamic (Lagrangian) ($C = H^1([0,1];X)$ and $e_t:[0,1] \to X)$

$$\inf\left\{\int_C\int_0^1\frac{1}{2}|\dot{\omega}|^2dtdQ(\omega)\mid Q\in \mathcal{P}(C), \ (e_0)_{\sharp}Q=\mu_1, \ (e_1)_{\sharp}Q=\mu_2\right\}$$

• The dynamic (Eulerian), aka the Benamou-Brenier formulation

$$\inf \int \int \frac{1}{2} |v_t|^2 \rho_t dx dt \quad s.t. \ \partial_t \rho_t + \nabla \cdot (\rho_t v_t) = 0$$
$$\rho(0, \cdot) = \mu_1, \ \rho(1, \cdot) = \mu_2$$

Remarks:

• Consider the optimal solutions for the three formulations $\gamma^{\star}, \mathcal{Q}^{\star}, \rho_t^{\star}$ then

$$\pi_t(x,y)_{\sharp}\gamma = (e_t)_{\sharp}Q = \rho_t^{\star}$$

where $\pi_t(x, y) = (1 - t)x + ty$.

• if we discretise in time (let take T + 1 time steps) the Lagrangian formulation and imposing that $\omega(t_i) = x_i$ $(t_i = i\frac{1}{T}$ for $i = 0, \dots, T$) we get the following discrete (in time) MMOT problem

$$\inf \int_{X^T} \frac{1}{2T} \sum_{i=0}^T |x_{i+1} - x_i|^2 d\gamma(x_0, \cdots, x_T) \mathbf{s}.$$
$$\gamma \in \mathcal{P}(X^{T+1}), \ \pi_{0,\sharp}\gamma = \mu_1, \ \pi_{T,\sharp}\gamma = \mu_2$$

Figure 1: t = 0

Figure 15: t = 1

Application II: MMOT and the electron-electron repulsion

Consider now the cost function

$$c(x_1,\cdots,x_m)=\sum_{i\neq j}rac{1}{|x_i-x_j|},$$

and $\mu_1 = \cdots = \mu_m = \rho$ (we refer to ρ as the electronic density) then the MMOT gives the electronic configuration (namely the optimal transport plan γ) which minimises the electron-electron repulsion. **Remarks:**

- Since the cost is symmetric in the marginals then the dual problem reduces to look for only one potential;
- The cost is also radially symmetric which means that when ρ is radially symmetric then the d = 3 pb. reduces to a one dimensional pb;
- Existence of Monge solutions is still an open problem for d > 1;

We take the density $\rho(x) = \frac{m}{10}(1 + \cos(\frac{\pi}{5}x))$ and...

Figure 16: Support of the projected plan $\gamma_{1,2}$

Take $\rho_{\alpha}(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 17: $\alpha = 0$

Take $\rho_{\alpha}(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 18: $\alpha = 0.1429$

Take $\rho_{\alpha}(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 19: $\alpha = 0.2857$

Take $\rho_{\alpha}(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 20: $\alpha = 0.4286$

Take $\rho_{\alpha}(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 21: $\alpha = 0.5714$

Take $\rho_{\alpha}(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 22: $\alpha = 0.7143$

Take $\rho_{\alpha}(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 23: $\alpha = 0.8571$

Take $\rho_{\alpha}(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 24: $\alpha = 1$

Entropic multi-marginal optimal transport

Definition of the problem

Consider

- $m \ge 2$ probability measures μ_i compactly supported on \mathcal{C}^2 submanifolds $X_i \subseteq \mathbb{R}^N$ of dim d_i ;
- a cost function $c: X \to \mathbb{R}_+$ (e.g. continuous or lsc) where $X := \times_i^m X_i$;

Definition of the problem

Consider

- $m \ge 2$ probability measures μ_i compactly supported on \mathcal{C}^2 submanifolds $X_i \subseteq \mathbb{R}^N$ of dim d_i ;
- a cost function $c: \mathsf{X} \to \mathbb{R}_+$ (e.g. continuous or lsc) where $\mathsf{X} := \times_i^m X_i$;

Entropic Multi-Marginal Optimal Transport problem

It reads as:

$$\mathsf{MOT}_{\varepsilon} := \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathsf{X}} c(x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\},\$$

where

- $\Pi(\mu_1, \ldots, \mu_m)$ is the set of *couplings* $\gamma \in \mathfrak{P}(\mathsf{X})$ having μ_i as marginals
- $\operatorname{Ent}(\gamma \mid \pi)$ is the Boltzmann-Shannon entropy, that is

$$\operatorname{Ent}(\gamma \,|\, \pi) = \int \rho \log \rho \mathrm{d}\pi, \ \mathrm{if} \ \gamma = \rho \pi.$$

• $\varepsilon = 0$ and m = 2. Classical Optimal Transport problem. Convex problem, but may have several solutions γ , with or without finite entropy!

- $\varepsilon = 0$ and m = 2. Classical Optimal Transport problem. Convex problem, but may have several solutions γ , with or without finite entropy!
- $\varepsilon > 0$. Strictly convex cost \implies unique solution γ_{ε} with finite entropy.

- $\varepsilon = 0$ and m = 2. Classical Optimal Transport problem. Convex problem, but may have several solutions γ , with or without finite entropy!
- $\varepsilon > 0$. Strictly convex cost \implies unique solution γ_{ε} with finite entropy.
- It admits a dual problem

$$\mathsf{MOT}_{\varepsilon} = \sup\left\{\sum_{i=1}^{m} \int_{X_{i}} \varphi_{i}(x_{i}) \mathrm{d}\mu_{i} - \varepsilon \log\left(\int_{\boldsymbol{X}} e^{\frac{\sum_{i=1}^{m} \varphi_{i}(x_{i}) - \varepsilon(\boldsymbol{X})}{\varepsilon}} \mathrm{d} \otimes_{i=1}^{m} \mu_{i}\right) \mid \varphi_{i} \in \mathfrak{C}_{b}(X_{i})\right\}.$$

- $\varepsilon = 0$ and m = 2. Classical Optimal Transport problem. Convex problem, but may have several solutions γ , with or without finite entropy!
- $\varepsilon > 0$. Strictly convex cost \implies unique solution γ_{ε} with finite entropy.
- It admits a dual problem

$$\mathsf{MOT}_{\varepsilon} = \sup\left\{\sum_{i=1}^{m} \int_{X_{i}} \varphi_{i}(x_{i}) \mathrm{d}\mu_{i} - \varepsilon \log\left(\int_{\boldsymbol{X}} e^{\frac{\sum_{i=1}^{m} \varphi_{i}(x_{i}) - \varepsilon(\boldsymbol{x})}{\varepsilon}} \mathrm{d} \otimes_{i=1}^{m} \mu_{i}\right) \mid \varphi_{i} \in \mathfrak{C}_{b}(X_{i})\right\}.$$

• The solution γ_{ε} is "almost" explicit

$$\gamma_arepsilon = \exp\left(rac{\oplus_{i=1}^m arphi_i^arepsilon - oldsymbol{c}}{arepsilon}
ight) \otimes_{i=1}^m \mu_i.$$

- $\varepsilon = 0$ and m = 2. Classical Optimal Transport problem. Convex problem, but may have several solutions γ , with or without finite entropy!
- $\varepsilon > 0$. Strictly convex cost \implies unique solution γ_{ε} with finite entropy.
- It admits a dual problem

$$\mathsf{MOT}_{\varepsilon} = \sup\left\{\sum_{i=1}^{m} \int_{X_{i}} \varphi_{i}(x_{i}) \mathrm{d}\mu_{i} - \varepsilon \log\left(\int_{\boldsymbol{X}} e^{\frac{\sum_{i=1}^{m} \varphi_{i}(x_{i}) - \varepsilon(\boldsymbol{x})}{\varepsilon}} \mathrm{d} \otimes_{i=1}^{m} \mu_{i}\right) \mid \varphi_{i} \in \mathfrak{C}_{b}(X_{i})\right\}.$$

• The solution γ_{ε} is "almost" explicit

$$\gamma_{\varepsilon} = \exp\left(rac{\oplus_{i=1}^{m} \varphi_{i}^{\varepsilon} - c}{arepsilon}
ight) \otimes_{i=1}^{m} \mu_{i}.$$

• Easy to solve numerically via Sinkhorn (take m = 2 for simplicity)

$$\varphi_1^{k+1} = -\varepsilon \log \left(\int_{X_2} e^{\frac{\varphi_2^k - c}{\varepsilon}} \mathrm{d}\mu_2 \right), \quad \varphi_2^{k+1} = -\varepsilon \log \left(\int_{X_1} e^{\frac{\varphi_1^{k+1} - c}{\varepsilon}} \mathrm{d}\mu_1 \right).$$

The asymptotics for the ${\sf MOT}_{\varepsilon}$ (with P. Pegon)

- the cost MOT_{ε}
- the optimal entropic plan γ_{ε} and optimal Schrödinger potentials $(\varphi_i^{\varepsilon})_{0 \leq i \leq m}$

- the cost MOT_{ε}
- the optimal entropic plan γ_{ε} and optimal Schrödinger potentials $(\varphi_i^{\varepsilon})_{0 \leq i \leq m}$

- the cost MOT_{ε}
- the optimal entropic plan γ_{ε} and optimal Schrödinger potentials $(\varphi_i^{\varepsilon})_{0 \le i \le m}$

First remark: depends heavily on c = c(x) and the marginals μ_i 's.

- the cost MOT_{ε}
- the optimal entropic plan γ_{ε} and optimal Schrödinger potentials $(\varphi_i^{\varepsilon})_{0 \le i \le m}$

First remark: depends heavily on c = c(x) and the marginals μ_i 's. What is known?

- the cost MOT_{ε}
- the optimal entropic plan γ_{ε} and optimal Schrödinger potentials $(\varphi_i^{\varepsilon})_{0 \le i \le m}$

First remark: depends heavily on c = c(x) and the marginals μ_i 's. What is known? Mostly for the m = 2 case.
Asymptotics for $\varepsilon \to 0$ of

- the cost MOT_{ε}
- the optimal entropic plan γ_{ε} and optimal Schrödinger potentials $(\varphi_i^{\varepsilon})_{0 \leq i \leq m}$

First remark: depends heavily on c = c(x) and the marginals μ_i 's. What is known? Mostly for the m = 2 case.

• Convergence rate under strong regularity assumptions (Pal 2019), second-order expansion for dynamical quadratic OT (Conforti and Tamanini 2021)

Asymptotics for $\varepsilon \to 0$ of

- the cost MOT_{ε}
- the optimal entropic plan γ_{ε} and optimal Schrödinger potentials $(\varphi_i^{\varepsilon})_{0 \leq i \leq m}$

First remark: depends heavily on c = c(x) and the marginals μ_i 's. What is known? Mostly for the m = 2 case.

- Convergence rate under strong regularity assumptions (Pal 2019), second-order expansion for dynamical quadratic OT (Conforti and Tamanini 2021)
- Convergence rate for 2-marginal and a general class of C² non-degenerate costs (Guillaume Carlier, Pegon, and Tamanini 2022)

Asymptotics for $\varepsilon \to 0$ of

- the cost $MOT_{\ensuremath{arepsilon}}$
- the optimal entropic plan γ_{ε} and optimal Schrödinger potentials $(\varphi_i^{\varepsilon})_{0 \leq i \leq m}$

First remark: depends heavily on c = c(x) and the marginals μ_i 's. What is known? Mostly for the m = 2 case.

- Convergence rate under strong regularity assumptions (Pal 2019), second-order expansion for dynamical quadratic OT (Conforti and Tamanini 2021)
- Convergence rate for 2-marginal and a general class of C^2 non-degenerate costs (Guillaume Carlier, Pegon, and Tamanini 2022)
- Upper bound for the multi-marginal (Eckstein and Nutz 2022) with a condition on the optimal transport plans in terms of quantization dimension ;

The upper bound

Assumptions

- μ_i are compactly supported measures in $L^{\infty}(X_i)$ where X_i are \mathcal{C}^2 submanifolds of dimension d_i ;
- $c \in \mathcal{C}^{1,1}_{loc}(X)$ or more generally locally semi-concave (also, weaker upper bound $c \in \mathcal{C}^{0,1}(X)$);

Goal: get an upper bound of the form

$$\operatorname{MOT}_{\varepsilon} - \operatorname{MOT}_{\mathbf{0}} \leq \frac{1}{2} \Big(\sum_{1 \leq i \leq m} d_i - \max_i d_i \Big) \varepsilon \log(1/\varepsilon) + O(\varepsilon).$$

The upper bound

Assumptions

- μ_i are compactly supported measures in $L^{\infty}(X_i)$ where X_i are \mathbb{C}^2 submanifolds of dimension d_i ;
- $c \in \mathcal{C}^{1,1}_{loc}(X)$ or more generally locally semi-concave (also, weaker upper bound $c \in \mathcal{C}^{0,1}(X)$);

Goal: get an upper bound of the form

$$\operatorname{MOT}_{\varepsilon} - \operatorname{MOT}_{0} \leq \frac{1}{2} \Big(\sum_{1 \leq i \leq m} d_{i} - \max_{i} d_{i} \Big) \varepsilon \log(1/\varepsilon) + O(\varepsilon).$$

Strategy. Straightforward (almost) generalization of the upper bound in (Guillaume Carlier, Pegon, and Tamanini 2022) on C^2 submanifolds:

• Build a suitable competitor for the entropic (primal) problem

$$\mathsf{MOT}_{\varepsilon} = \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathbf{X}} c(x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \bigotimes_{i=1}^m \mu_i) \right\}.$$

using an optimizer for (MOT_0) and a block-approximation of (Guillaume Carlier, Duval, Peyré, and Schmitzer 2017).

The upper bound

Assumptions

- μ_i are compactly supported measures in $L^{\infty}(X_i)$ where X_i are \mathbb{C}^2 submanifolds of dimension d_i ;
- $c \in \mathcal{C}^{1,1}_{loc}(X)$ or more generally locally semi-concave (also, weaker upper bound $c \in \mathcal{C}^{0,1}(X)$);

Goal: get an upper bound of the form

$$\mathsf{MOT}_{\varepsilon} - \mathsf{MOT}_{\mathbf{0}} \leq \frac{1}{2} \Big(\sum_{1 \leq i \leq m} d_i - \max_i d_i \Big) \varepsilon \log(1/\varepsilon) + O(\varepsilon).$$

Strategy. Straightforward (almost) generalization of the upper bound in (Guillaume Carlier, Pegon, and Tamanini 2022) on C^2 submanifolds:

• Build a suitable competitor for the entropic (primal) problem

$$\mathsf{MOT}_{\varepsilon} = \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathbf{X}} c(x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \bigotimes_{i=1}^m \mu_i) \right\}.$$

using an optimizer for (MOT_0) and a block-approximation of **(Guillaume Carlier, Duval, Peyré, and Schmitzer 2017)**.

· Show and use some integral variant of Alexandrov theorem on convex functions.

For blocks $\bigsqcup_n A_n = \mathbb{R}^N$ of diameter $\leq \delta$, take as competitor

$$\gamma^{\delta} := \sum_{i,j \in \mathbb{N}} \gamma_{\mathbf{0}}(A_i \times A_j) \frac{\mu_{\mathbf{1}} \bigsqcup A_i}{\mu_{\mathbf{1}}(A_i)} \otimes \frac{\mu_{\mathbf{2}} \bigsqcup A_j}{\mu_{\mathbf{2}}(A_j)}.$$

• Plug this competitor into the primal problem, write $E = c - \varphi \oplus \psi$ the duality gap, then:

$$\mathsf{MOT}_{\varepsilon} \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} c \mathrm{d}\gamma^{\delta} + \varepsilon \mathrm{Ent}(\gamma^{\delta} | \mu_{1} \otimes \mu_{2}) = \mathsf{MOT}_{0} + \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} E \mathrm{d}(\gamma^{\delta} - \gamma^{0}) + \varepsilon \mathrm{Ent}(\gamma^{\delta} | \mu_{1} \otimes \mu_{2})$$

• Plug this competitor into the primal problem, write $E = c - \varphi \oplus \psi$ the duality gap, then:

$$\mathsf{MOT}_{\varepsilon} \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} c \mathrm{d}\gamma^{\delta} + \varepsilon \mathrm{Ent}(\gamma^{\delta} | \mu_{1} \otimes \mu_{2}) = \mathsf{MOT}_{0} + \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} E \mathrm{d}(\gamma^{\delta} - \gamma^{0}) + \varepsilon \mathrm{Ent}(\gamma^{\delta} | \mu_{1} \otimes \mu_{2})$$

• Bound the entropy term, for well-chosen blocks:

$$egin{aligned} &\operatorname{Ent}(\gamma^{\delta} \mid \mu_1 \otimes \mu_2) = \sum_{i,j \in \mathbb{N}} \gamma_0(A_i imes A_j) \log \left(rac{\gamma_0(A_i imes A_j)}{\mu_1(A_i)\mu_2(A_j)}
ight) \ &\leq \sum_{j \in \mathbb{N}} \mu_2(A_j) \log(1/\mu_2(A_j)) = d_2 \log(1/\delta) + O(1). \end{aligned}$$

• Plug this competitor into the primal problem, write $E = c - \varphi \oplus \psi$ the duality gap, then:

$$\mathsf{MOT}_{\varepsilon} \leq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} c \mathrm{d}\gamma^{\delta} + \varepsilon \mathrm{Ent}(\gamma^{\delta} | \mu_{1} \otimes \mu_{2}) = \mathsf{MOT}_{0} + \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} E \mathrm{d}(\gamma^{\delta} - \gamma^{0}) + \varepsilon \mathrm{Ent}(\gamma^{\delta} | \mu_{1} \otimes \mu_{2})$$

• Bound the entropy term, for well-chosen blocks:

$$egin{aligned} &\operatorname{Ent}(\gamma^{\delta} \,|\, \mu_1 \otimes \mu_2) = \sum_{i,j \in \mathbb{N}} \gamma_0(\mathcal{A}_i imes \mathcal{A}_j) \log\left(rac{\gamma_0(\mathcal{A}_i imes \mathcal{A}_j)}{\mu_1(\mathcal{A}_i)\mu_2(\mathcal{A}_j)}
ight) \ &\leq \sum_{j \in \mathbb{N}} \mu_2(\mathcal{A}_j) \log(1/\mu_2(\mathcal{A}_j)) = d_2 \log(1/\delta) + O(1). \end{aligned}$$

• Show that $\int_{\mathbb{R}^d \times \mathbb{R}^d} Ed(\gamma^{\delta} - \gamma^0) = O(\delta^2)$ then take $\varepsilon = \delta^2$ (integral Alexandrov-type estimate):

$$\mathsf{MOT}_{\varepsilon} \leq \mathsf{MOT}_{\mathsf{0}} + O(\delta^2) + d_2 \varepsilon \log(1/\delta) + O(\varepsilon) = \mathsf{MOT}_{\mathsf{0}} + \frac{d^+}{2} \varepsilon \log(1/\varepsilon) + O(\varepsilon).$$

Consider the unregularized problem

$$\mathsf{MOT}_{\mathbf{0}} = \inf_{\gamma \in \Pi(\mu_{\mathbf{1}}, \dots, \mu_m)} \left\{ \int_{\mathbf{X}} c(x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) \right\}.$$

Good news: we can estimate the dimension of the support of the optimal plans.

Consider the unregularized problem

$$\mathsf{MOT}_{0} = \inf_{\gamma \in \Pi(\mu_{1}, \dots, \mu_{m})} \left\{ \int_{\mathsf{X}} c(x_{1}, \dots, x_{m}) \, \mathrm{d}\gamma(x_{1}, \dots, x_{m}) \right\}.$$

Good news: we can estimate the dimension of the support of the optimal plans. • for each $p \in P$ we denote by g_p the bilinear form on X as

$$g_{p} = \sum_{i \in p_{-}, j \in p_{+}} D^{2}_{x_{i}, x_{j}} c + \sum_{i \in p_{+}, j \in p_{-}} D^{2}_{x_{i}, x_{j}} c.$$

Consider the unregularized problem

$$\mathsf{MOT}_{0} = \inf_{\gamma \in \Pi(\mu_{1}, \dots, \mu_{m})} \left\{ \int_{\mathsf{X}} c(x_{1}, \dots, x_{m}) \, \mathrm{d}\gamma(x_{1}, \dots, x_{m}) \right\}.$$

Good news: we can estimate the dimension of the support of the optimal plans. • for each $p \in P$ we denote by g_p the bilinear form on X as

$$g_{p} = \sum_{i \in p_{-}, j \in p_{+}} D^{2}_{x_{i}, x_{j}} c + \sum_{i \in p_{+}, j \in p_{-}} D^{2}_{x_{i}, x_{j}} c.$$

• Define $G := \{\sum_{p \in P} t_p g_p \mid (t_p)_{p \in P} \in \Delta_P\}$ to be the convex hull generated by the g_p .

Consider the unregularized problem

$$\mathsf{MOT}_{0} = \inf_{\gamma \in \Pi(\mu_{1}, \dots, \mu_{m})} \left\{ \int_{\mathsf{X}} c(x_{1}, \dots, x_{m}) \, \mathrm{d}\gamma(x_{1}, \dots, x_{m}) \right\}.$$

Good news: we can estimate the dimension of the support of the optimal plans. • for each $p \in P$ we denote by g_p the bilinear form on X as

$$g_{p} = \sum_{i \in p_{-}, j \in p_{+}} D^{2}_{x_{i}, x_{j}} c + \sum_{i \in p_{+}, j \in p_{-}} D^{2}_{x_{i}, x_{j}} c.$$

• Define $G := \{\sum_{p \in P} t_p g_p \mid (t_p)_{p \in P} \in \Delta_P\}$ to be the convex hull generated by the g_p .

Theorem (Upper bound on the dimension of the support of the optimal plan (Pass 2011)) Let γ_0 a solution to MOT₀ and suppose that at some point $x \in X$, the signature of some $g \in G$ is $(d^+(g), d^-(g), d^0(g))$. Then, there exists a neighbourhood N_x of x such that $N_x \bigcap \text{supp}(\gamma_0)$ is contained in a Lipschitz submanifold with dimension no greater than $\sum_i d_i - d^+(g)$.

Lower bound

- μ_i be compactly supported measures over X_i with L^{∞} densities;
- $c \in \mathcal{C}^2(X)$;
- for every $\mathsf{x} \in \mathsf{X}$, $d^+(g_\mathsf{x}) \geq d^\star;$

Goal: get a lower bound of the form

$$\mathsf{MOT}_arepsilon - \mathsf{MOT}_{\mathsf{0}} \geq rac{d^\star}{2} arepsilon \log(1/arepsilon) - Larepsilon.$$

Lower bound

- μ_i be compactly supported measures over X_i with L^{∞} densities;
- $c \in \mathcal{C}^2(\mathsf{X});$
- for every $\mathsf{x} \in \mathsf{X}$, $d^+(g_\mathsf{x}) \geq d^\star;$

Goal: get a lower bound of the form

$$\mathsf{MOT}_arepsilon - \mathsf{MOT}_0 \geq rac{d^\star}{2} arepsilon \log(1/arepsilon) - Larepsilon.$$

Strategy

- Use the dual regularized problem (in log form):
- Take Kantorovich potentials (solution to un-regularized dual) as competitors and show that the duality gap E = c − ⊕^m_{i=1}φ_i grows enough near Σ = {E = 0}.

Let $p = \{p_-, p_+\} \in P$ we identify $x \in X$ with (x_-, x_+) and write $\varphi_{\pm}(y) = \sum_{i \in p_+} \varphi_i(y_i)$.

Let $p = \{p_-, p_+\} \in P$ we identify $x \in X$ with (x_-, x_+) and write $\varphi_{\pm}(y) = \sum_{i \in p_+} \varphi_i(y_i)$.

• If (φ_i) are c-conjugate, for $x, x' \in X$, we have:

$$\begin{split} E(\mathbf{x}') &= c(x'_{-}, x'_{+}) - \varphi_{-}(\mathbf{x}'_{-}) - \varphi_{+}(\mathbf{x}'_{+}) \\ &\geq c(x'_{-}, x'_{+}) - (c(\mathbf{x}'_{-}, \mathbf{x}_{+}) - \varphi_{+}(\mathbf{x}_{+})) - (c(\mathbf{x}_{-}, \mathbf{x}'_{+}) - \varphi_{-}(\mathbf{x}_{-})) \\ &= c(x'_{-}, x'_{+}) - c(x'_{-}, \mathbf{x}_{+}) - c(\mathbf{x}_{-}, \mathbf{x}'_{+}) + c(\mathbf{x}_{-}, \mathbf{x}_{+}) - E(\mathbf{x}). \end{split}$$

Let $p = \{p_-, p_+\} \in P$ we identify $x \in X$ with (x_-, x_+) and write $\varphi_{\pm}(y) = \sum_{i \in p_+} \varphi_i(y_i)$.

• If (φ_i) are c-conjugate, for $x, x' \in X$, we have:

$$\begin{split} E(\mathbf{x}') &= c(x'_{-}, x'_{+}) - \varphi_{-}(\mathbf{x}'_{-}) - \varphi_{+}(\mathbf{x}'_{+}) \\ &\geq c(x'_{-}, x'_{+}) - (c(\mathbf{x}'_{-}, \mathbf{x}_{+}) - \varphi_{+}(\mathbf{x}_{+})) - (c(\mathbf{x}_{-}, \mathbf{x}'_{+}) - \varphi_{-}(\mathbf{x}_{-})) \\ &= c(x'_{-}, x'_{+}) - c(x'_{-}, \mathbf{x}_{+}) - c(\mathbf{x}_{-}, \mathbf{x}'_{+}) + c(\mathbf{x}_{-}, \mathbf{x}_{+}) - E(\mathbf{x}). \end{split}$$

• By Taylor's integral formula

$$E(\mathbf{x}') + E(\mathbf{x}) \geq \int_0^1 \int_0^1 D_{\rho_- \rho_+}^2 c(\mathbf{x}_{s,t}) (x'_- - x_-, x'_+ - x_+) = \frac{1}{2} g_\rho(\bar{\mathbf{x}}) (\mathbf{x}' - \mathbf{x}) + O_{\bar{\mathbf{x}}} (\|\mathbf{x}' - \mathbf{x}\|^2)$$

Let $p = \{p_-, p_+\} \in P$ we identify $x \in X$ with (x_-, x_+) and write $\varphi_{\pm}(y) = \sum_{i \in p_+} \varphi_i(y_i)$.

• If (φ_i) are c-conjugate, for $x, x' \in X$, we have:

$$\begin{split} E(\mathbf{x}') &= c(x'_{-}, x'_{+}) - \varphi_{-}(\mathbf{x}'_{-}) - \varphi_{+}(\mathbf{x}'_{+}) \\ &\geq c(x'_{-}, x'_{+}) - (c(\mathbf{x}'_{-}, \mathbf{x}_{+}) - \varphi_{+}(\mathbf{x}_{+})) - (c(\mathbf{x}_{-}, \mathbf{x}'_{+}) - \varphi_{-}(\mathbf{x}_{-})) \\ &= c(x'_{-}, x'_{+}) - c(x'_{-}, \mathbf{x}_{+}) - c(\mathbf{x}_{-}, \mathbf{x}'_{+}) + c(\mathbf{x}_{-}, \mathbf{x}_{+}) - E(\mathbf{x}). \end{split}$$

• By Taylor's integral formula

$$E(\mathbf{x}') + E(\mathbf{x}) \geq \int_0^1 \int_0^1 D_{\rho_-\rho_+}^2 c(\mathbf{x}_{s,t}) (x'_- - x_-, x'_+ - x_+) = \frac{1}{2} g_{\rho}(\bar{\mathbf{x}}) (\mathbf{x}' - \mathbf{x}) + O_{\bar{\mathbf{x}}} (\|\mathbf{x}' - \mathbf{x}\|^2)$$

and taking a convex combination $g_{-}=\sum t_{
ho}g_{
ho}$, for diagonalizing coordinates (u^+,u^-,u^0)

$$E(\mathbf{x}') + E(\mathbf{x}) \ge |u^+(\mathbf{x}') - u^+(\mathbf{x})|^2 - |u^-(\mathbf{x}') - u^-(\mathbf{x})|^2 + O(|\mathbf{x}' - \mathbf{x}|^2)$$

 \implies quadratic detachment of the duality gap *E* in $d^+(g) \ge d^*$ dimensions.

Let $p = \{p_-, p_+\} \in P$ we identify $x \in X$ with (x_-, x_+) and write $\varphi_{\pm}(y) = \sum_{i \in p_+} \varphi_i(y_i)$.

• If (φ_i) are c-conjugate, for $x, x' \in X$, we have:

$$\begin{split} E(\mathbf{x}') &= c(x'_{-}, x'_{+}) - \varphi_{-}(\mathbf{x}'_{-}) - \varphi_{+}(\mathbf{x}'_{+}) \\ &\geq c(x'_{-}, x'_{+}) - (c(\mathbf{x}'_{-}, \mathbf{x}_{+}) - \varphi_{+}(\mathbf{x}_{+})) - (c(\mathbf{x}_{-}, \mathbf{x}'_{+}) - \varphi_{-}(\mathbf{x}_{-})) \\ &= c(x'_{-}, x'_{+}) - c(x'_{-}, \mathbf{x}_{+}) - c(\mathbf{x}_{-}, \mathbf{x}'_{+}) + c(\mathbf{x}_{-}, \mathbf{x}_{+}) - E(\mathbf{x}). \end{split}$$

• By Taylor's integral formula

$$E(\mathbf{x}') + E(\mathbf{x}) \geq \int_0^1 \int_0^1 D_{\rho_-\rho_+}^2 c(\mathbf{x}_{s,t})(x'_- - x_-, x'_+ - x_+) = \frac{1}{2}g_{\rho}(\bar{\mathbf{x}})(\mathbf{x}' - \mathbf{x}) + O_{\bar{\mathbf{x}}}(\|\mathbf{x}' - \mathbf{x}\|^2)$$

and taking a convex combination $g_{-}=\sum t_{p}g_{p}$, for diagonalizing coordinates (u^{+},u^{-},u^{0})

$$E(\mathbf{x}') + E(\mathbf{x}) \ge |u^+(\mathbf{x}') - u^+(\mathbf{x})|^2 - |u^-(\mathbf{x}') - u^-(\mathbf{x})|^2 + O(|\mathbf{x}' - \mathbf{x}|^2)$$

 \implies quadratic detachment of the duality gap E in $d^+(g) \ge d^*$ dimensions.

• Taking $(\varphi_i)_{1 \le i \le m}$ as competitor in the dual of the entropic MOT:

$$\mathsf{MOT}_{\varepsilon} \ge \mathsf{MOT}_{0} - \varepsilon \log \left(\int_{\Pi_{1 \le i \le m} X_{i}} e^{-\frac{E}{\varepsilon}} \mathrm{d} \otimes_{1 \le i \le m} \mu_{i} \right) \ge \mathsf{MOT}_{0} + \frac{d^{*}}{2} \varepsilon \log(1/\varepsilon) - O(\varepsilon).$$
21/32

• m = 2 and non-degenerate cost function, then we retrieve the bounds in (Guillaume Carlier, Pegon, and Tamanini 2022);

Consequences and some examples

- m = 2 and non-degenerate cost function, then we retrieve the bounds in (Guillaume Carlier, Pegon, and Tamanini 2022);
- m = 2 and **degenerate** cost function such that $D_{x,y}^2 c$ has rank r then the lower bound is such that $d^* = r$;

Consequences and some examples

- m = 2 and non-degenerate cost function, then we retrieve the bounds in (Guillaume Carlier, Pegon, and Tamanini 2022);
- m = 2 and **degenerate** cost function such that $D_{x,y}^2 c$ has rank r then the lower bound is such that $d^* = r$;
- m=2, $d_2 < d_1$ (aka the unequal dimensional case) and $D^2_{x,y}c$ has full rank d_2 then

$$\mathsf{MOT}_arepsilon = \mathsf{MOT}_\mathsf{0} + rac{d_2}{2}arepsilon\log(1/arepsilon) + O(arepsilon)$$

Consequences and some examples

- m = 2 and non-degenerate cost function, then we retrieve the bounds in (Guillaume Carlier, Pegon, and Tamanini 2022);
- m = 2 and **degenerate** cost function such that $D_{x,y}^2 c$ has rank r then the lower bound is such that $d^* = r$;
- m = 2, $d_2 < d_1$ (aka the unequal dimensional case) and $D^2_{x,y}c$ has full rank d_2 then

$$\mathsf{MOT}_arepsilon = \mathsf{MOT_0} + rac{d_2}{2}arepsilon\log(1/arepsilon) + O(arepsilon)$$

• Consider $d_i = d$ for all i and the cost $c = h(\sum_{i=1}^m x_i)$ with $D^2h < 0$ then $d^* = (m-1)d$ and

$$\mathsf{MOT}_arepsilon = \mathsf{MOT}_{\mathsf{0}} + rac{(m-1)d}{2}arepsilon\log(1/arepsilon) + O(arepsilon).$$

This is the case of Gangbo-Święch cost, that is $\sum_{i < j} |x_i - x_j|^2$ which corresponds to the multi-marginal formulation of the Wasserstein barycenter problem.

Another way to characterise (and solve) MOT_{ε} : an ODE approach (with B. Pass)

We are interested in solving the entropic multi-marginal optimal transport.

We are interested in solving the entropic multi-marginal optimal transport. Main steps of the work:

 Introduce a suitable one parameter family of cost functions c_η, interpolating between the original multi-marginal problem and a simpler one whose complexity scales linearly in the number of marginals;

We are interested in solving the entropic multi-marginal optimal transport. Main steps of the work:

- Introduce a suitable one parameter family of cost functions c_η, interpolating between the original multi-marginal problem and a simpler one whose complexity scales linearly in the number of marginals;
- Differentiate the optimality condition of the dual MOT_ε := sup_φ Φ(φ, η) with respect to η (ε is now fixed);

We are interested in solving the entropic multi-marginal optimal transport. Main steps of the work:

- Introduce a suitable one parameter family of cost functions c_η, interpolating between the original multi-marginal problem and a simpler one whose complexity scales linearly in the number of marginals;
- Differentiate the optimality condition of the dual MOT_ε := sup_φ Φ(φ, η) with respect to η (ε is now fixed);
- 3. The solution of the original multi-marginal problem can be now recovered by solving an **ordinary differential equation** (ODE) whose initial condition is the solution to the simpler problem;

$$\begin{cases} \frac{\mathrm{d}\varphi}{\mathrm{d}\eta}(\eta) = -[D^2_{\varphi,\varphi}\Phi(\varphi(\eta),\eta)]^{-1}\frac{\partial}{\partial\eta}\nabla_{\varphi}\Phi(\varphi(\eta),\eta),\\ \varphi(0) = \varphi_{w}, \end{cases}$$

We are interested in solving the entropic multi-marginal optimal transport. Main steps of the work:

- Introduce a suitable one parameter family of cost functions c_η, interpolating between the original multi-marginal problem and a simpler one whose complexity scales linearly in the number of marginals;
- Differentiate the optimality condition of the dual MOT_ε := sup_φ Φ(φ, η) with respect to η (ε is now fixed);
- 3. The solution of the original multi-marginal problem can be now recovered by solving an **ordinary differential equation** (ODE) whose initial condition is the solution to the simpler problem;

$$\begin{cases} \quad \frac{\mathrm{d}\varphi}{\mathrm{d}\eta}(\eta) = -[D^2_{\varphi,\varphi}\Phi(\varphi(\eta),\eta)]^{-1}\frac{\partial}{\partial\eta}\nabla_{\varphi}\Phi(\varphi(\eta),\eta),\\ \quad \varphi(0) = \varphi_{w}, \end{cases}$$

Remark: This method is actually inspired by the one introduced in (G. Carlier, A. Galichon, and F. Santambrogio 2009/10) to compute the Monge solution of the two marginal problem, starting from the Knothe-Rosenblatt rearrangement.

How to derive the differential equation

Some assumptions to make it simple:

- 1. (Equal marginals and discrete set) All the marginals are equal $\mu_i = \rho = \sum_{x \in X} \rho_x \delta_x$, where X is a finite subset.
- 2. (Pair-wise cost) $c_{\eta}(x_1, ..., x_m) := \eta \sum_{i=2}^m \sum_{j=i+1}^m w(x_i, x_j) + \sum_{i=2}^m w(x_1, x_i).$
- 3. (Symmetric cost) The two body cost w is symmetric w(x, y) = w(x, y).
- 4. (Finite cost) The two body cost function $w : X \times X \to \mathbb{R}$ is everywhere real-valued.

Some assumptions to make it simple:

- 1. (Equal marginals and discrete set) All the marginals are equal $\mu_i = \rho = \sum_{x \in X} \rho_x \delta_x$, where X is a finite subset.
- 2. (Pair-wise cost) $c_{\eta}(x_1, ..., x_m) := \eta \sum_{i=2}^m \sum_{j=i+1}^m w(x_i, x_j) + \sum_{i=2}^m w(x_1, x_i).$
- 3. (Symmetric cost) The two body cost w is symmetric w(x, y) = w(x, y).
- 4. (Finite cost) The two body cost function $w : X \times X \to \mathbb{R}$ is everywhere real-valued.

Step 1: Consider the dual problem (it is convex!);

$$\inf_{\varphi} \left\{ \Phi(\varphi, \eta) \right\},\tag{5}$$

where

$$\Phi(\varphi,\eta) := -(m-1)\int_{X}\varphi d\rho + \varepsilon \int_{X} \underbrace{\log\left(\int_{X^{m-1}} \exp\left(\frac{\sum_{i=2}^{m}\varphi - c_{\eta}}{\varepsilon}\right) d\otimes^{m-1}\rho\right)}_{\text{Log-Sum-Exp}} d\rho.$$

Step 2: Thanks to convexity we have that the minimizers are characterized by $\nabla_{\varphi} \Phi(\varphi, \eta) = 0$. Then, by differentiate w.r.t. η we obtain

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\eta}(\eta) = -[D^2_{\varphi,\varphi}\Phi(\varphi(\eta),\eta)]^{-1}\frac{\partial}{\partial\eta}\nabla_{\varphi}\Phi(\varphi(\eta),\eta).$$

Step 2: Thanks to convexity we have that the minimizers are characterized by $\nabla_{\varphi} \Phi(\varphi, \eta) = 0$. Then, by differentiate w.r.t. η we obtain

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\eta}(\eta) = -[D^2_{\varphi,\varphi}\Phi(\varphi(\eta),\eta)]^{-1}\frac{\partial}{\partial\eta}\nabla_{\varphi}\Phi(\varphi(\eta),\eta).$$

Step 3: The following well-posedness theorem then holds.

Theorem

Let $\varphi(\eta)$ be the solution to the dual problem above for all $\eta \in [0,1]$. Then $\eta \mapsto \varphi(\eta)$ is \mathbb{C}^1 and is the unique solution to the Cauchy problem with $\varphi(0) = \varphi_w$.

Sketch of the proof:

Step 2: Thanks to convexity we have that the minimizers are characterized by $\nabla_{\varphi} \Phi(\varphi, \eta) = 0$. Then, by differentiate w.r.t. η we obtain

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\eta}(\eta) = -[D_{\varphi,\varphi}^2 \Phi(\varphi(\eta),\eta)]^{-1} \frac{\partial}{\partial \eta} \nabla_{\varphi} \Phi(\varphi(\eta),\eta).$$

Step 3: The following well-posedness theorem then holds.

Theorem

Let $\varphi(\eta)$ be the solution to the dual problem above for all $\eta \in [0,1]$. Then $\eta \mapsto \varphi(\eta)$ is \mathbb{C}^1 and is the unique solution to the Cauchy problem with $\varphi(0) = \varphi_w$.

Sketch of the proof:

• The pure second derivatives with respect to φ as well as the mixed second derivatives with respect to φ and η exist and are Lipschitz;
Step 2: Thanks to convexity we have that the minimizers are characterized by $\nabla_{\varphi} \Phi(\varphi, \eta) = 0$. Then, by differentiate w.r.t. η we obtain

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\eta}(\eta) = -[D_{\varphi,\varphi}^2 \Phi(\varphi(\eta),\eta)]^{-1} \frac{\partial}{\partial \eta} \nabla_{\varphi} \Phi(\varphi(\eta),\eta).$$

Step 3: The following well-posedness theorem then holds.

Theorem

Let $\varphi(\eta)$ be the solution to the dual problem above for all $\eta \in [0,1]$. Then $\eta \mapsto \varphi(\eta)$ is \mathbb{C}^1 and is the unique solution to the Cauchy problem with $\varphi(0) = \varphi_w$.

Sketch of the proof:

- The pure second derivatives with respect to φ as well as the mixed second derivatives with respect to φ and η exist and are Lipschitz;
- The Hessian with respect to φ is invertible: since the cost is bounded then the potentials are bounded too ((carlier2021linear)). So one can restrict the study of the well-posedness of the ODE on the set

$$U := \{ \varphi \mid \varphi_{x_0} = 0, \ ||\varphi||_{\infty} \le C \}.$$

On this set the functional Φ is now **strongly convex**.

The algorithm to compute the ODE solution

- Algorithm to compute the φ via explicit Euler method takes the following form:
- $\begin{array}{ll} \textbf{Require:} \ \varphi(0) = \varphi_w \\ 1: \ \textbf{while} \ ||\varphi^{(k+1)} \varphi^{(k)}|| < \textbf{tol do} \\ 2: \ D^{(k)} := D^2_{\varphi,\varphi} \Phi(\varphi^{(k)}, kh) \\ 3: \ b^{(k)} := -\frac{\partial}{\partial \epsilon} \nabla_{\varphi} \Phi(\varphi^{(k)}, kh) \\ 4: \ \ \textbf{Solve} \ D^{(k)} z = b^{(k)} \\ 5: \ \varphi^{(k+1)} = \varphi^{(k)} + hz \end{array}$
 - 6: end while

The algorithm to compute the ODE solution

- Algorithm to compute the φ via explicit Euler method takes the following form:
- **Require:** $\varphi(0) = \varphi_w$ 1: while $||\varphi^{(k+1)} - \varphi^{(k)}|| < \text{tol do}$ 2: $D^{(k)} := D^2_{\varphi,\varphi} \Phi(\varphi^{(k)}, kh)$ 3: $b^{(k)} := -\frac{\partial}{\partial \epsilon} \nabla_{\varphi} \Phi(\varphi^{(k)}, kh)$ 4: Solve $D^{(k)}z = b^{(k)}$ 5: $\varphi^{(k+1)} = \varphi^{(k)} + hz$ 6: end while

Remarks:

- The Euler scheme converges linearly and the uniform error between the discretized solution obtained via the scheme and the solution to the ODE is O(h);
- Thanks to the regularity of the RHS of the ODE one can apply high order methods.

The algorithm to compute the ODE solution

- \bullet Algorithm to compute the φ via explicit Euler method takes the following form:
- **Require:** $\varphi(0) = \varphi_w$ 1: while $||\varphi^{(k+1)} - \varphi^{(k)}|| < \text{tol do}$ 2: $D^{(k)} := D^2_{\varphi,\varphi} \Phi(\varphi^{(k)}, kh)$ 3: $b^{(k)} := -\frac{\partial}{\partial \epsilon} \nabla_{\varphi} \Phi(\varphi^{(k)}, kh)$ 4: Solve $D^{(k)}z = b^{(k)}$ 5: $\varphi^{(k+1)} = \varphi^{(k)} + hz$ 6: end while

Remarks:

- The Euler scheme converges linearly and the uniform error between the discretized solution obtained via the scheme and the solution to the ODE is O(h);
- Thanks to the regularity of the RHS of the ODE one can apply high order methods.
- At each step k we obtain the solution of the entropic multi-marginal problem with cost c_{kh} !

Consider $\varepsilon = 0.006$, m = 3, the uniform measure on [0, 1] uniformily discretized with 400 gridpoints, the pairwise interaction $w(x, y) = -\log(0.1 + |x - y|)$ and a reference solution φ_{ε} computed via a gradient descent algorithm. Then we have the following comparison between the ODE approach and Sinkhorn in terms of performances

	3rd RK	5th RK	8th RK	Sinkhorn
relative error	$1.47 imes10^{-5}$	$7.8 imes10^{-6}$	$7.62 imes10^{-6}$	$5.46 imes10^{-6}$
iterations	87	87	87	820
CPU time (sec)	72.39	158.9	385.1	102.8

• Log cost and support of the coupling $\gamma_{1,2}^{\eta}$.

• Brenier's relaxed formulation consists in finding a probability measure over absolutely continuous paths which minimizes the average kinetic energy.

- Brenier's relaxed formulation consists in finding a probability measure over absolutely continuous paths which minimizes the average kinetic energy.
- The **incompressibility** at each time *t*, the distribution of position need be uniform.

- Brenier's relaxed formulation consists in finding a probability measure over absolutely continuous paths which minimizes the average kinetic energy.
- The **incompressibility** at each time *t*, the distribution of position need be uniform.
- If we consider a uniform discretization of [0, T] (where T is the final time) with m steps in time, we recover a multi-marginal formulation of the Brenier principle with the specific cost function

$$c(x_1,\ldots,x_m) = rac{m^2}{2T^2} \sum_{i=1}^{m-1} |x_{i+1} - x_i|^2 + \beta |F(x_1) - x_m|^2,$$

where $\beta > 0$ is a penalization parameter in order to enforce the initial-final constraint.

- Brenier's relaxed formulation consists in finding a probability measure over absolutely continuous
 paths which minimizes the average kinetic energy.
- The incompressibility at each time t, the distribution of position need be uniform.
- If we consider a uniform discretization of [0, T] (where T is the final time) with m steps in time, we recover a multi-marginal formulation of the Brenier principle with the specific cost function

$$c(x_1,\ldots,x_m) = \frac{m^2}{2T^2} \sum_{i=1}^{m-1} |x_{i+1} - x_i|^2 + \beta |F(x_1) - x_m|^2,$$

where $\beta > 0$ is a penalization parameter in order to enforce the initial-final constraint.

• If we consider now the ODE setting, we have now to deal with a non symmetric case and so to solve a system, still well posed, of ODEs. In particular we consider the following c_{η} cost

$$c_{\eta}(x_{1},\ldots,x_{m})=\frac{m^{2}}{2T^{2}}|x_{2}-x_{1}|^{2}+\eta\left(\frac{m^{2}}{2T^{2}}\sum_{i=2}^{m-1}|x_{i+1}-x_{i}|^{2}\right)+\beta|F(x_{1})-x_{m}|^{2}.$$

At $\eta = 1$ we plot the coupling $\gamma_{1,i}$ giving the probability of finding a generalized particle initially at x_1 to be at x_i at time *i*.

At $\eta = 1$ we plot the coupling $\gamma_{1,i}$ giving the probability of finding a generalized particle initially at x_1 to be at x_i at time *i*.

•
$$F(x) = 1 - x$$

At $\eta = 1$ we plot the coupling $\gamma_{1,i}$ giving the probability of finding a generalized particle initially at x_1 to be at x_i at time *i*.

•
$$F(x) = 1 - x$$

• $F(x) = (x + 1/2) \mod 1$

Consider the following "1st" generalization

$$\mathsf{MOT}_{\varepsilon} \coloneqq \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathsf{X}} c(\eta, x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\},\$$

where the cost function is not anymore symmetric but such that $c(0, x_1, ..., x_m)$ give a MOT easy to solve:

1. $c(0, x_1, \ldots, x_m) = 0;$

Consider the following "1st" generalization

$$\mathsf{MOT}_{\varepsilon} \coloneqq \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathsf{X}} c(\eta, x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\},\$$

where the cost function is not anymore symmetric but such that $c(0, x_1, ..., x_m)$ give a MOT easy to solve:

- 1. $c(0, x_1, \ldots, x_m) = 0;$
- 2. $c(\eta, x_1, \ldots, x_m)$ is the Euler cost;

Consider the following "1st" generalization

$$\mathsf{MOT}_{\varepsilon} \coloneqq \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathsf{X}} c(\eta, x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\},\$$

where the cost function is not anymore symmetric but such that $c(0, x_1, ..., x_m)$ give a MOT easy to solve:

- 1. $c(0, x_1, \ldots, x_m) = 0;$
- 2. $c(\eta, x_1, \ldots, x_m)$ is the Euler cost;
- 3. $c(\eta, x_1, z, x_2) = (1 \eta)|x_1 z|^2 + \eta |z x_3|^2$, γ is a 3 marginals coupling with only two fixed marginals, μ_1 and μ_2 . Then the z-marginal of γ gives the Wasserstein geodesic at time η .

Consider the following "1st" generalization

$$\mathsf{MOT}_{\varepsilon} := \inf_{\gamma \in \Pi(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathsf{X}} c(\eta, x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\},\$$

where the cost function is not anymore symmetric but such that $c(0, x_1, ..., x_m)$ give a MOT easy to solve:

- 1. $c(0, x_1, \ldots, x_m) = 0;$
- 2. $c(\eta, x_1, \ldots, x_m)$ is the Euler cost;
- 3. $c(\eta, x_1, z, x_2) = (1 \eta)|x_1 z|^2 + \eta |z x_3|^2$, γ is a 3 marginals coupling with only two fixed marginals, μ_1 and μ_2 . Then the z-marginal of γ gives the Wasserstein geodesic at time η .
- c(η, x₁,..., x_m, z) = ∑_{i=1}^m λ_i(η)|x_i z|² such that ∑_{i=1}^m λ_i(η) = 1 for every η and γ is an m + 1 coupling with m fixed marginals. Then at for every η the z-marginal of γ is the Wasserstein barycenter with weights λ_i(η).

Consider the following "2nd" generalization

$$\mathsf{MOT}_{\varepsilon} \coloneqq \inf_{\gamma \in \Pi^{\boldsymbol{\varrho}}(\boldsymbol{\mu}_{1}, \dots, \boldsymbol{\mu}_{m})} \bigg\{ \int_{\mathsf{X}} c(\eta, x_{1}, \dots, x_{m}) \, \mathrm{d}\gamma(x_{1}, \dots, x_{m}) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^{m} \mu_{i}) \bigg\},$$

where $\Pi^{Q}(\mu_{1}, \ldots, \mu_{m})$ is the set of coupling having μ_{1}, \ldots, μ_{m} as marginals and satisfying an additional constraint $\int q d\gamma = 0$ for all $q \in Q$ where Q be a set of bounded continuous function on X.

• Classical case: $Q = \{0\};$

Consider the following "2nd" generalization

$$\mathsf{MOT}_{\varepsilon} \coloneqq \inf_{\gamma \in \Pi^{\boldsymbol{\varrho}}(\boldsymbol{\mu}_{1}, \dots, \boldsymbol{\mu}_{m})} \bigg\{ \int_{\mathsf{X}} c(\eta, x_{1}, \dots, x_{m}) \, \mathrm{d}\gamma(x_{1}, \dots, x_{m}) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^{m} \mu_{i}) \bigg\},$$

where $\Pi^{Q}(\mu_{1}, \ldots, \mu_{m})$ is the set of coupling having μ_{1}, \ldots, μ_{m} as marginals and satisfying an additional constraint $\int q d\gamma = 0$ for all $q \in Q$ where Q be a set of bounded continuous function on X.

- Classical case: $Q = \{0\};$
- Generalized Euler solution: force $\gamma_{1,m} = (Id, F)_{\sharp}\mathcal{L}$;

Consider the following "2nd" generalization

$$\mathsf{MOT}_{\varepsilon} := \inf_{\gamma \in \Pi^{\mathcal{Q}}(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathsf{X}} c(\eta, x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\},\$$

where $\Pi^{Q}(\mu_{1}, \ldots, \mu_{m})$ is the set of coupling having μ_{1}, \ldots, μ_{m} as marginals and satisfying an additional constraint $\int q d\gamma = 0$ for all $q \in Q$ where Q be a set of bounded continuous function on X.

- Classical case: $Q = \{0\};$
- Generalized Euler solution: force $\gamma_{1,m} = (Id, F)_{\sharp}\mathcal{L}$;
- Martingale OT: $\Pi^Q(\mu_1, \mu_2)$ with extra constraint

$$\int q(x_1)(x_2-x_1)\mathrm{d}\gamma=0,\quad\forall q\in \mathfrak{C}_b(X_1).$$

Consider the following "2nd" generalization

$$\mathsf{MOT}_{\varepsilon} := \inf_{\gamma \in \Pi^{\mathcal{Q}}(\mu_1, \dots, \mu_m)} \left\{ \int_{\mathsf{X}} c(\eta, x_1, \dots, x_m) \, \mathrm{d}\gamma(x_1, \dots, x_m) + \varepsilon \mathrm{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\},\$$

where $\Pi^{Q}(\mu_{1}, \ldots, \mu_{m})$ is the set of coupling having μ_{1}, \ldots, μ_{m} as marginals and satisfying an additional constraint $\int q d\gamma = 0$ for all $q \in Q$ where Q be a set of bounded continuous function on X.

- Classical case: $Q = \{0\};$
- Generalized Euler solution: force $\gamma_{1,m} = (Id, F)_{\sharp}\mathcal{L}$;
- Martingale OT: $\Pi^Q(\mu_1, \mu_2)$ with extra constraint

$$\int q(x_1)(x_2-x_1)\mathrm{d}\gamma=0, \quad orall q\in \mathfrak{C}_b(X_1).$$

• Multi-period martingale OT: e.g. 3-period $\Pi^Q(\mu_1, \mu_2, \mu_3)$ with extra constraint

$$\int [q(x_1)(x_2-x_1)+h(x_1,x_2)(x_3-x_2)]\mathrm{d}\gamma=0,\quad\forall q\in \mathfrak{C}_b(X_1),\forall h\in \mathfrak{C}_b(X_1\times X_2).$$

 \bullet Si vous voulez goûter des gourmandises italiennes : soutenance de HDR le 6 mars à 14h30 (à Orsay)! :)

 \bullet Si vous voulez goûter des gourmandises italiennes : soutenance de HDR le 6 mars à 14h30 (à Orsay)! :)

Thank You!!

 \bullet Si vous voulez goûter des gourmandises italiennes : soutenance de HDR le 6 mars à 14h30 (à Orsay)! :)

Thank You!! There are some more slides.

Spectral risk measures and MOT (with H. Ennaji, Q. Mérigot and B. Pass)

We will consider *spectral risk measures* to quantify the risk associated with μ . Given an integrable, non-negative and nondecreasing function $\alpha : [0,1] \to \mathbb{R}_+$ with $\int_0^1 \alpha(t) dt = 1$, the α -risk, is defined as

$$R_{lpha}(\mu) = \int_0^1 F_{\mu}^{-1}(m) \alpha(m) \mathrm{d}m.$$

We will consider *spectral risk measures* to quantify the risk associated with μ . Given an integrable, non-negative and nondecreasing function $\alpha : [0,1] \to \mathbb{R}_+$ with $\int_0^1 \alpha(t) dt = 1$, the α -risk, is defined as

$$\mathcal{R}_{lpha}(\mu) = \int_0^1 \mathcal{F}_{\mu}^{-1}(m) lpha(m) \mathrm{d}m.$$

• Lemma (variational representation): If the function α is non-decreasing, then

$$R_{\alpha}(\mu) = \max_{\gamma \in \Pi(\alpha_{\sharp} \operatorname{Leb}_{[\mathbf{0},\mathbf{1}]},\mu)} \int_{\mathbb{R} \times \mathbb{R}} xy \mathrm{d}\gamma(x,y),$$

the problem is indeed an optimal transport problem with 2 marginals.

We will consider *spectral risk measures* to quantify the risk associated with μ . Given an integrable, non-negative and nondecreasing function $\alpha : [0,1] \to \mathbb{R}_+$ with $\int_0^1 \alpha(t) dt = 1$, the α -risk, is defined as

$$\mathcal{R}_{lpha}(\mu) = \int_0^1 \mathcal{F}_{\mu}^{-1}(m) lpha(m) \mathrm{d}m.$$

• Lemma (variational representation): If the function α is non-decreasing, then

$$R_{\alpha}(\mu) = \max_{\gamma \in \Pi(\alpha_{\sharp} \operatorname{Leb}_{[\mathbf{0},\mathbf{1}]},\mu)} \int_{\mathbb{R} \times \mathbb{R}} xy \mathrm{d}\gamma(x,y),$$

the problem is indeed an optimal transport problem with 2 marginals.

• Lemma: $\mu \mapsto R_{\alpha}(\mu)$ is concave on $\mathcal{P}(\mathbb{R})$.

 $\max_{\eta\in\Pi(\mu_1,\mu_2,\ldots,\mu_m)}R_{\alpha}(b_{\#}\eta).$

$$\max_{\eta\in\Pi(\mu_1,\mu_2,\ldots,\mu_m)}R_{\alpha}(b_{\#}\eta).$$

• $b_{\#}\gamma$ represents the distribution of outputs.

$$\max_{\eta\in\Pi(\mu_1,\mu_2,\ldots,\mu_m)}R_{\alpha}(b_{\#}\eta).$$

• $b_{\#}\gamma$ represents the distribution of outputs.

• Proposition: under some mild assumption on b there exists a solution to the above problem. Moreover, $\eta \mapsto R_{\alpha}(b_{\#}\eta)$ is concave on $\mathcal{P}(\mathbb{R}^{N})$.

$$\max_{\eta\in\Pi(\mu_1,\mu_2,\ldots,\mu_m)}R_{\alpha}(b_{\#}\eta).$$

• $b_{\#}\gamma$ represents the distribution of outputs.

• Proposition: under some mild assumption on *b* there exists a solution to the above problem. Moreover, $\eta \mapsto R_{\alpha}(b_{\#}\eta)$ is concave on $\mathcal{P}(\mathbb{R}^{N})$.

• A double optimization problem:

$$R_{\alpha}(b_{\#}\eta) = \max_{\sigma \in \Pi(\alpha_{\sharp} \operatorname{Leb}_{[0,1]}, b_{\#}\eta)} \int x_{0}y \mathrm{d}\sigma(x_{0}, y).$$

Can we re-formulate it as a multi-marginal problem?

Let $\mu_0 = \alpha_{\sharp} \text{Leb}_{[0,1]}$, the other X_i and μ_i representing the domains and distributions of the underlying variables, respectively, and

$$s(x_0, x_1, \ldots, x_m) = x_0 b(x_1, \ldots, x_m).$$

Then the following result holds

Theorem

A probability measure γ in $\Pi(\mu_0, \mu_1, \ldots, \mu_m)$ is optimal for the MMOT problem with the cost function defined above if and only if its $(1, \ldots, N)$ -marginal is optimal in $\max_{\eta \in \Pi(\mu_1, \mu_2, \ldots, \mu_m)} R_{\alpha}(b_{\#}\eta)$, and $\tau_{\gamma} = ((x_0, x_1, x_2, \ldots, x_m) \mapsto (x_0, b(x_1, x_2, \ldots, x_m)))_{\#} \gamma$ has monotone increasing support.

Stability

We can also establish some stability results with respect to the marginals. Indeed we have

Lemma

If $\alpha \leq M$, then $\mu \in \mathfrak{P}(\mathbb{R}) \mapsto R_{\alpha}(\mu)$ is M-Lipschitz for the 1-Wasserstein distance,

 $|R_{lpha}(\mu) - R_{lpha}(
u)| \leq M \mathcal{W}_1(\mu,
u).$

and for the multi-marginal case

Proposition

Assume that the cost function b is k-Lipschitz with respect to $|| \cdot ||_p$ on \mathbb{R}^d and that α is non-decreasing and bounded by M. Then,

$$|\sup_{\eta\in\Pi(\mu_{\mathbf{1}},...,\mu_m)}R_{lpha}(b_{\#}\eta)-\sup_{\eta\in\Pi(
u_{\mathbf{1}},...,
u_m)}R_{lpha}(b_{\#}\eta)|\leq M\left(k\sum_{i}\mathcal{W}_{p}(\mu_{i},
u_{i})
ight)^{1/p}$$

Solutions for one-dimensional assets and compatible outputs

Suppose that the output function b satisfies the following assumptions

- *b* is weak compatible;
- *b* monotone increasing in each $x_i \in S_+$ and monotone decreasing for each $x_i \in S_-$.

Then one can prove that the s-comonotone $(Id, G_1, \ldots, G_m)_{\#} \text{Leb}_{[0,1]}$ maximizes $\sup_{\eta \in \Pi(\mu_1, \ldots, \mu_m)} R_{\alpha}(b_{\#}\eta)$ and the maximal value is given by

$$\int_0^1 \alpha(t) b(G_1(t), \cdots, G_m(t)) \mathrm{d}t.$$

Solutions for one-dimensional assets and compatible outputs

Suppose that the output function b satisfies the following assumptions

- *b* is weak compatible;
- *b* monotone increasing in each $x_i \in S_+$ and monotone decreasing for each $x_i \in S_-$.

Then one can prove that the s-comonotone $(Id, G_1, \ldots, G_m) # \text{Leb}_{[0,1]}$ maximizes $\sup_{\eta \in \Pi(\mu_1, \ldots, \mu_m)} R_{\alpha}(b_{\#}\eta)$ and the maximal value is given by

$$\int_0^1 \alpha(t) b(G_1(t), \cdots, G_m(t)) \mathrm{d}t.$$

• Example : consider again the output function from (looss and Lemaître 2015)

$$S = Z_{\nu} + \left(rac{Q}{BK_s\sqrt{rac{Z_m-Z_{\nu}}{L}}}
ight)^{0.6} - H_d - C_b,$$

up to a change of variable, it satisfies the assumption above. This implies that we have an explicit solution for this model!
Some extensions

• Suppose now that $X_i \subset \mathbb{R}^d$ with d > 1, $b: X_1 \times \cdots \times X_m \to \mathbb{R}$ and α as before.

- Suppose now that $X_i \subset \mathbb{R}^d$ with d > 1, $b : X_1 \times \cdots \times X_m \to \mathbb{R}$ and α as before.
- We have to deal with MMOT where when the underlying variables lie in more general spaces.

- Suppose now that $X_i \subset \mathbb{R}^d$ with d > 1, $b: X_1 \times \cdots \times X_m \to \mathbb{R}$ and α as before.
- We have to deal with MMOT where when the underlying variables lie in more general spaces.
- Warning: it is generally not possible to derive explicit solutions! But we can still prove that in some cases the solutions are of Monge type.

- Suppose now that $X_i \subset \mathbb{R}^d$ with d > 1, $b: X_1 \times \cdots \times X_m \to \mathbb{R}$ and α as before.
- We have to deal with MMOT where when the underlying variables lie in more general spaces.
- Warning: it is generally not possible to derive explicit solutions! But we can still prove that in some cases the solutions are of Monge type.

Proposition

Suppose that m = 2, μ_1 absolutely continuous with respect to Lebesgue measures and that $x_2 \mapsto D_{x_1}b(x_1, x_2)$ is injective for each fixed x_2 , and that for each $(x_1, x_2) \in X_1 \times X_2$ we have

$$D_{x_2}b(x_1,x_2)[D_{x_1x_2}^2b(x_1,x_2)]^{-1}D_{x_1}b(x_1,x_2)>0.$$

Then the solution of $\sup_{\eta \in \Pi(\mu_1,...,\mu_m)} R_{\alpha}(b_{\#}\eta)$ is concentrated on a graph, aka is of Monge type.

• We consider the framework in (Ekeland, Alfred Galichon, and Henry 2012) in which risk is measured in a multi-dimensional way. We have now a vector valued output function $b: X_1 \times \cdots \times X_m \to \mathbb{R}^d$.

- We consider the framework in (Ekeland, Alfred Galichon, and Henry 2012) in which risk is measured in a multi-dimensional way. We have now a vector valued output function $b: X_1 \times \cdots \times X_m \to \mathbb{R}^d$.
- Define a multi-variate risk measure on the distribution $b_{\#}\eta$ of output variables as in (ibid.) by

$${\sf R}_lpha(b_\#\eta) = \max_{\sigma\in {\sf \Pi}(\mu,
u)}\int z\cdot y\;{
m d}\sigma$$

where $\mu = b_{\sharp}\eta$ and $\nu = \alpha_{\sharp} \text{Leb}$ with $\alpha : [0, 1]^d \to \mathbb{R}^d$, we consider the problem of maximizing $R_{\alpha}(b_{\#}\eta)$ over all $\eta \in \Pi(\mu_1, \ldots, \mu_N)$.

- We consider the framework in (Ekeland, Alfred Galichon, and Henry 2012) in which risk is measured in a multi-dimensional way. We have now a vector valued output function $b: X_1 \times \cdots \times X_m \to \mathbb{R}^d$.
- Define a multi-variate risk measure on the distribution $b_{\#}\eta$ of output variables as in (ibid.) by

$$R_lpha(b_\#\eta) = \max_{\sigma\in \Pi(\mu,
u)}\int z\cdot y\;\mathrm{d}\sigma$$

where $\mu = b_{\sharp}\eta$ and $\nu = \alpha_{\sharp} \text{Leb}$ with $\alpha : [0, 1]^d \to \mathbb{R}^d$, we consider the problem of maximizing $R_{\alpha}(b_{\#}\eta)$ over all $\eta \in \Pi(\mu_1, \ldots, \mu_N)$.

Some results:

• If the underlying variables are one dimensional and *b* is supermodular that the solution is still of Monge type.

- We consider the framework in (Ekeland, Alfred Galichon, and Henry 2012) in which risk is measured in a multi-dimensional way. We have now a vector valued output function $b: X_1 \times \cdots \times X_m \to \mathbb{R}^d$.
- Define a multi-variate risk measure on the distribution $b_{\#}\eta$ of output variables as in (ibid.) by

$$R_lpha(b_\#\eta) = \max_{\sigma\in \Pi(\mu,
u)}\int z\cdot y\;\mathrm{d}\sigma$$

where $\mu = b_{\sharp}\eta$ and $\nu = \alpha_{\sharp} \text{Leb}$ with $\alpha : [0, 1]^d \to \mathbb{R}^d$, we consider the problem of maximizing $R_{\alpha}(b_{\#}\eta)$ over all $\eta \in \Pi(\mu_1, \ldots, \mu_N)$.

Some results:

• If the underlying variables are one dimensional and b is supermodular that the solution is still of Monge type.

• If $\nu \ll \text{Leb}$, $m \le d$ and b is invertible then there exists a unique solution concentrated on a graph of y.