Lecture 4: A glimpse of multi-marginal OT and applications

Luca Nenna
Matherials (INRIA) and CERMICS, ENPC, 02/02/2024, Champs sur Marne

(LMO) Université Paris-Saclay and INRIA-Saclay (ParMA)
Overview

1. A crash introduction to (multi-marginal) Optimal Transport
 - Quick recap on classical Optimal transport
 - Multi-marginal optimal transport
 - The real line case
2. Application I: MMOT for computing geodesics in the Wasserstein space
3. Application II: MMOT and the electron-electron repulsion
4. Entropic multi-marginal optimal transport
5. The asymptotics for the MOT\(_\varepsilon\) (with P. Pegon)
 - The upper bound
 - The lower bound
6. Another way to characterise (and solve) MOT\(_\varepsilon\): an ODE approach (with B. Pass)
 - The ODE
 - The algorithm and some numerical results
 - An extension to general (entropic) multi-marginal problem
A crash introduction to (multi-marginal) Optimal Transport
Classical Optimal Transportation Theory

Consider two probability measures μ_i on $X_i \subseteq \mathbb{R}^d$, and c a cost function (e.g. continuous or l.s.c.), the Optimal Transport (OT) problem is defined as follows

$$\text{OT}_0 := \inf \left\{ \int_X c(x_1, x_2) d\gamma(x_1, x_2) \mid \gamma \in \Pi(\mu_1, \mu_2) \right\}$$

(1)

where $\Pi(\mu_1, \mu_2)$ denotes the set of couplings $\gamma(x_1, x_2) \in \mathcal{P}(X)$ having μ_1 and μ_2 as marginals.

- **Solution à la Monge** the transport plan γ is deterministic (or à la Monge) if $\gamma = (Id, T)_{\#}\mu_1$ where $T_{\#}\mu_1 = \mu_2$.

![Diagram](image.png)
Consider two probability measures μ_i on $X_i \subseteq \mathbb{R}^d$, and c a cost function (e.g. continuous or l.s.c.), the Optimal Transport (OT) problem is defined as follows

$$\text{OT}_0 := \inf \left\{ \int_X c(x_1, x_2) d\gamma(x_1, x_2) \mid \gamma \in \Pi(\mu_1, \mu_2) \right\}$$ \hspace{1cm} (1)$$

where $\Pi(\mu_1, \mu_2)$ denotes the set of couplings $\gamma(x_1, x_2) \in P(X)$ having μ_1 and μ_2 as marginals.

- **Solution à la Monge** the transport plan γ is deterministic (or à la Monge) if $\gamma = (\text{Id}, T)_{\#}\mu_1$ where $T_{\#}\mu_1 = \mu_2$.

- **Duality**:

$$\sup \left\{ J(\varphi_1, \varphi_2) \mid (\varphi_1, \varphi_2) \in K \right\}.$$ \hspace{1cm} (2)$$

where $J(\varphi_1, \varphi_2) := \int_{X_1} \varphi_1 d\mu_1 + \int_{X_2} \varphi_2 d\mu_2$ and K is the set of bounded and continuous functions (φ_1, φ_2) such that $\varphi_1(x_1) + \varphi(x_2) \leq c(x_1, x_2)$.

Take (1) \(m \) probability measures \(\mu_i \in \mathcal{P}(X_i) \); (2) \(c \) a cost function. Then the multi-marginal OT problem reads as:
Take (1) \(m \) probability measures \(\mu_i \in \mathcal{P}(X_i) \); (2) \(c \) a cost function. Then the multi-marginal OT problem reads as:

Multi-Marginal Optimal Transport problem

It reads as:

\[
\text{MOT}_0 := \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \int_X c(x_1, \ldots, x_m) d\gamma(x_1, \ldots, x_m)
\]

where \(\Pi(\mu_1, \ldots, \mu_m) \) denotes the set of couplings \(\gamma(x_1, \ldots, x_m) \) having \(\mu_i \) as marginals.
The Multi-Marginal Optimal Transportation

Take (1) m probability measures $\mu_i \in \mathcal{P}(X_i)$; (2) c a cost function. Then the multi-marginal OT problem reads as:

Multi-Marginal Optimal Transport problem

It reads as:

$$\text{MOT}_0 := \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \int_X c(x_1, \ldots, x_m) d\gamma(x_1, \ldots, x_m)$$

where $\Pi(\mu_1, \ldots, \mu_m)$ denotes the set of couplings $\gamma(x_1, \ldots, x_m)$ having μ_i as marginals.

- **Solution à la Monge:** $\gamma = (Id, T_2, \ldots, T_m)_{\#} \mu_1$ where $T_i_{\#} \mu_1 = \mu_i$.

Why is it a difficult problem to treat?

Example: $m = 3$, $d = 1$, $\mu_i = L[0,1] \forall i$ and $c(x_1, x_2, x_3) = |x_1 + x_2 + x_3|^2$.

- **Uniqueness fails** (Simone Di Marino, Gerolin, and Luca Nenna 2017);
- $\exists T_i$ optimal, are not differentiable at any point and they are fractal maps ibid., Thm 4.6
The Multi-Marginal Optimal Transportation

Take (1) m probability measures $\mu_i \in \mathcal{P}(X_i)$; (2) c a cost function. Then the multi-marginal OT problem reads as:

Multi-Marginal Optimal Transport problem

It reads as:

$$
\text{MOT}_0 := \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \int_X c(x_1, \ldots, x_m) d\gamma(x_1, \ldots, x_m)
$$

where $\Pi(\mu_1, \ldots, \mu_m)$ denotes the set of couplings $\gamma(x_1, \ldots, x_m)$ having μ_i as marginals.

- **Solution à la Monge**: $\gamma = (\text{Id}, T_2, \ldots, T_m)\#\mu_1$ where $T_i\#\mu_1 = \mu_i$.
- **Duality**: Both 2 and m marginal OT problems admit a useful dual formulation.
The Multi-Marginal Optimal Transportation

Take (1) \(m \) probability measures \(\mu_i \in \mathcal{P}(X_i) \); (2) \(c \) a cost function. Then the multi-marginal OT problem reads as:

Multi-Marginal Optimal Transport problem

It reads as:

\[
\text{MOT}_0 := \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \int_X c(x_1, \ldots, x_m) d\gamma(x_1, \ldots, x_m)
\]

(3)

where \(\Pi(\mu_1, \ldots, \mu_m) \) denotes the set of couplings \(\gamma(x_1, \ldots, x_m) \) having \(\mu_i \) as marginals.

- **Solution à la Monge**: \(\gamma = (\text{Id}, T_2, \ldots, T_m) \sharp \mu_1 \) where \(T_i \sharp \mu_1 = \mu_i \).
- **Duality**: Both 2 and \(m \) marginal OT problems admit a useful dual formulation

Why is it a difficult problem to treat?

Example: \(m = 3, d = 1, \mu_i = \mathcal{L}_{[0,1]} \forall i \) and \(c(x_1, x_2, x_3) = |x_1 + x_2 + x_3|^2 \).

- Uniqueness fails (Simone Di Marino, Gerolin, and Luca Nenna 2017);
- \(\exists T_i \) optimal, are not differentiable at any point and they are fractal maps *ibid.*, Thm 4.6
Why are we interested in MOT?

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;

- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010));

- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan \(\gamma(x_1, \ldots, x_m) \) returns the probability of finding electrons at position \(x_1, \ldots, x_m \);

- Incompressible Euler Equations (Brenier 1989): \(\gamma(\omega) \) gives "the mass of fluid" which follows a path \(\omega \). See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018);

- Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);

- Risk measures (Ennaji, Mérigot, Luca Nenna, and Pass 2022);

- Martingale transport, etc.
Why are we interested in MOT?

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
Why are we interested in MOT?

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma(x_1, \ldots, x_m)$ returns the probability of finding electrons at position x_1, \ldots, x_m;
Why are we interested in MOT?

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan \(\gamma(x_1, \ldots, x_m) \) returns the probability of finding electrons at position \(x_1, \ldots, x_m \);
- Incompressible Euler Equations (Brenier 1989): \(\gamma(\omega) \) gives “the mass of fluid” which follows a path \(\omega \). See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
Why are we interested in MOT?

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma(x_1,\ldots,x_m)$ returns the probability of finding electrons at position x_1,\ldots,x_m;
- Incompressible Euler Equations (Brenier 1989): $\gamma(\omega)$ gives “the mass of fluid” which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
Why are we interested in MOT?

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma(x_1, \ldots, x_m)$ returns the probability of finding electrons at position x_1, \ldots, x_m;
- Incompressible Euler Equations (Brenier 1989): $\gamma(\omega)$ gives “the mass of fluid” which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
- Risk measures (Ennaji, Mérigot, Luca Nenna, and Pass 2022)
Why are we interested in MOT?

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma(x_1, \ldots, x_m)$ returns the probability of finding electrons at position x_1, \ldots, x_m;
- Incompressible Euler Equations (Brenier 1989): $\gamma(\omega)$ gives “the mass of fluid” which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
- Risk measures (Ennaji, Mérigot, Luca Nenna, and Pass 2022)
- Martingale transport, etc.
The real line case

Given a probability measure $\mu \in \mathcal{P}(\mathbb{R})$, its inverse cumulative function (c.d.f) of as

$$F_{\mu}^{-1}(m) = \inf\{x \in \mathbb{R} \mid F_{\mu}(x) \geq m\}$$

where $F_{\mu}(x) = \mu((\neg \infty, x])$.

Theorem (see (Filippo Santambrogio 2015; Rachev and Rüschendorf 1998))

Let the cost function satisfies the condition

$$c(x', y') - c(x, y') - c(x', y) + c(x, y) \leq 0,$$

for $x' \geq x, y' \geq y$. Then the optimal transport plan γ is of the form $\gamma = (F_{\mu_1}^{-1}, F_{\mu_2}^{-1})_\# \text{Leb}_{[0,1]}$.
The real line case

Given a probability measure \(\mu \in \mathcal{P}(\mathbb{R}) \), its inverse cumulative function (c.d.f) of as

\[
F^{-1}_\mu(m) = \inf\{x \in \mathbb{R} \mid F_\mu(x) \geq m\}
\]

where \(F_\mu(x) = \mu((\mathbb{-\infty,x}]) \).

Theorem (see (Filippo Santambrogio 2015; Rachev and Rüschendorf 1998))

Let the cost function satisfies the condition

\[
c(x', y') - c(x, y') - c(x', y) + c(x, y) \leq 0,
\]

for \(x' \geq x, y' \geq y \). Then the optimal transport plan \(\gamma \) is of the form

\[
\gamma = (F^{-1}_{\mu_1}, F^{-1}_{\mu_2})_\# \text{Leb}_{[0,1]}
\]

- **Question:** can we extend this result to the multi-marginal case?
The real line case

Given a probability measure $\mu \in \mathcal{P}(\mathbb{R})$, its inverse cumulative function (c.d.f) of as

$$F_{\mu}^{-1}(m) = \inf\{x \in \mathbb{R} \mid F_{\mu}(x) \geq m\} \text{ where } F_{\mu}(x) = \mu((-,x]).$$

Theorem (see (Filippo Santambrogio 2015; Rachev and Rüschendorf 1998))

Let the cost function satisfies the condition

$$c(x', y') - c(x, y') - c(x', y) + c(x, y) \leq 0,$$

for $x' \geq x$, $y' \geq y$. Then the optimal transport plan γ is of the form $\gamma = (F_{\mu_1}^{-1}, F_{\mu_2}^{-1})_{\#}\text{Leb}_{[0,1]}$

Question: can we extend this result to the multi-marginal case?

Theorem ((Guillaume Carlier 2003))

Given $c \in C^2(X_1 \times \cdots \times X_m)$ and strict submodular cost, that is $\partial^2_{x_i x_j} c < 0$ for all $i \neq j$. Then the optimal γ is of the form $\gamma = (F_{\mu_1}^{-1}, \cdots, F_{\mu_m}^{-1})_{\#}\text{Leb}_{[0,1]}$
Definition (Compatibility)

We will say that s is compatible if

$$\partial^2_{x_i x_j} c [\partial^2_{x_k x_j} c]^{-1} \partial^2_{x_k x_i} c(x_1, \ldots, x_m) < 0,$$

for each $i, j, k = 1, \ldots, m$ and each $(x_1, \ldots, x_m) \in X_1 \times \cdots \times X_m$.

Rmk: Note that if c is compatible, the condition above implies that each $\partial^2_{x_i x_j} c \neq 0$ throughout the domain $X_1 \times \cdots \times X_m$; continuity then yields that each $\partial^2_{x_i x_j} c$ is either always positive or always negative. Partition the set $\{1, 2, \ldots, m\} = P^+ \cup P^-$ of indices into disjoint subsets P^+ and P^- such that

- for each $i \neq j$, $\partial^2_{x_i x_j} c < 0$ throughout $X_1 \times \cdots \times X_m$ if either both i and j are in P^- or if both are in P^+;
- $\partial^2_{x_i x_j} c > 0$ throughout $X_1 \times \cdots \times X_m$ otherwise.
Definition (Compatibility)

We will say that \(s \) is compatible if

\[
\partial^2_{x_i x_j} c \left[\partial^2_{x_k x_j} c \right]^{-1} \partial^2_{x_k x_i} c(x_1, \ldots, x_m) < 0,
\]

for each \(i, j, k = 1, \ldots, m \) and each \((x_1, \ldots, x_m) \in X_1 \times \cdots \times X_m \).

Rmk: Note that if \(c \) compatible, the condition above implies that each \(\partial^2_{x_i x_j} c \neq 0 \) throughout the domain \(X_1 \times \ldots \times X_m \); continuity then yields that each \(\partial^2_{x_i x_j} c \) is either always positive or always negative. Partition the set \(\{1, 2, \ldots, m\} = P_+ \cup P_- \) of indices into disjoint subsets \(P_+ \) and \(P_- \) such that

- for each \(i \neq j \), \(\partial^2_{x_i x_j} c < 0 \) throughout \(X_1 \times \cdots \times X_m \) if either both \(i \) and \(j \) are in \(P_- \) or if both are in \(P_+ \);
- \(\partial^2_{x_i x_j} c > 0 \) throughout \(X_1 \times \cdots \times X_m \) otherwise.
Comonotone plan for compatible cost

Definition

For a compatible c, we define the c-comonotone coupling by $\gamma = (G_1, G_2, \ldots, G_m) \# \text{Leb}_{[0,1]}$, where $G_1 = F_{\mu_1}^{-1}$ and for each $i = 1, 2, \ldots, m$

$$G_i(m) = \begin{cases} F_{\mu_i}^{-1}(m) & \text{if } i \in P_-, \\ F_{\mu_i}^{-1}(1 - m) & \text{if } i \in P_. \end{cases}$$ (4)
Comonotone plan for compatible cost

Definition

For a compatible c, we define the c-comonotone coupling by $\gamma = (G_1, G_2, \ldots, G_m) \# \text{Leb}_{[0,1]}$, where $G_1 = F_{\mu_1}^{-1}$ and for each $i = 1, 2, \ldots, m$

$$G_i(m) = \begin{cases}
F_{\mu_i}^{-1}(m) & \text{if } i \in P_-, \\
F_{\mu_i}^{-1}(1 - m) & \text{if } i \in P_+.
\end{cases} \quad (4)$$

and in higher dimension?

For the quadratic cost or under some strong assumptions on the cost (Gangbo and Swiech 1998; Pass 2012; Pass 2011; Pass 2015; Kim and Pass 2013).
Definition

For a compatible c, we define the c-comonotone coupling by $\gamma = (G_1, G_2, \ldots, G_m)_{\#}\text{Leb}[0,1]$, where $G_1 = F^{-1}_{\mu_1}$ and for each $i = 1, 2, \ldots, m$

$$G_i(m) = \begin{cases}
F^{-1}_{\mu_i}(m) & \text{if } i \in P_-, \\
F^{-1}_{\mu_i}(1-m) & \text{if } i \in P_+.
\end{cases}$$

and in higher dimension?

For the quadratic cost or under some strong assumptions on the cost (**Gangbo and Swiech 1998; Pass 2012; Pass 2011; Pass 2015; Kim and Pass 2013**).

Good news: we can estimate the dimension of the support of the optimal plans.
A signature condition on the second mixed derivatives

- Consider (1) m probability measures $\mu_i \in \mathcal{P}(X_i)$ where X_i are C^2 submanifolds of dimension d_i; (2) $c \in C^2(X)$; let (3) P be the set of partitions of $\{1, \ldots, m\}$ into two non empty disjoint subsets: $p := \{p_-, p_+\} \in P$;
A signature condition on the second mixed derivatives

- Consider (1) \(m \) probability measures \(\mu_i \in \mathcal{P}(X_i) \) where \(X_i \) are \(C^2 \) submanifolds of dimension \(d_i \); (2) \(c \in C^2(X) \); let (3) \(P \) be the set of partitions of \(\{1, \ldots, m\} \) into two non empty disjoint subsets: \(p := \{p_-, p_+\} \in P \);
- For each \(p \in P \) we denote by \(g_p \) the bilinear form on \(X \) as

\[
g_p = \sum_{i \in p_-, j \in p_+} D_{x_i, x_j}^2 c + \sum_{i \in p_+, j \in p_-} D_{x_i, x_j}^2 c.
\]
A signature condition on the second mixed derivatives

- Consider (1) m probability measures $\mu_i \in \mathcal{P}(X_i)$ where X_i are C^2 submanifolds of dimension d_i; (2) $c \in C^2(X)$; let (3) P be the set of partitions of \{1, \ldots, m\} into two non empty disjoint subsets: $p := \{p_-, p_+\} \in P$;
- For each $p \in P$ we denote by g_p the bilinear form on X as

\[
g_p = \sum_{i \in p_-, j \in p_+} D_{x_i, x_j}^2 c + \sum_{i \in p_+, j \in p_-} D_{x_i, x_j}^2 c.
\]

- Define $G := \{\sum_{p \in P} t_p g_p \mid (t_p)_{p \in P} \in \Delta_P\}$ to be the convex hull generated by the g_p.
A signature condition on the second mixed derivatives

- Consider (1) m probability measures $\mu_i \in \mathcal{P}(X_i)$ where X_i are C^2 submanifolds of dimension d_i; (2) $c \in C^2(X)$; let (3) P be the set of partitions of $\{1, \ldots, m\}$ into two non empty disjoint subsets: $p := \{p_-, p_+\} \in P$;
- For each $p \in P$ we denote by g_p the bilinear form on X as

$$
 g_p = \sum_{i \in p_-, j \in p_+} D_{x_i, x_j}^2 c + \sum_{i \in p_+, j \in p_-} D_{x_i, x_j}^2 c.
$$

- Define $G := \{ \sum_{p \in P} t_p g_p \mid (t_p)_{p \in P} \in \Delta_P \}$ to be the convex hull generated by the g_p.

Theorem (Upper bound on the dimension of the support of the optimal plan (Pass 2011))

Let γ_0 a solution to MOT$_0$ and suppose that at some point $x \in X$, the signature of some $g \in G$ is $(d^+(g), d^-(g), d^0(g))$. Then, there exists a neighbourhood N_x of x such that $N_x \cap \text{supp}(\gamma_0)$ is contained in a Lipschitz submanifold with dimension no greater than $\sum_i d_i - d^+(g)$.

Application I: MMOT for computing geodesics in the Wasserstein space
The three formulations of quadratic Optimal Transport

Three formulations of Optimal Transport problem) with the quadratic cost:

- The static
 \[
 \inf \left\{ \int_{X_1 \times X_2} \frac{1}{2} |x_1 - x_2|^2 d\gamma \mid \gamma \in \Pi(\mu_1, \mu_2) \right\}
 \]

- The dynamic (Lagrangian) \((C = H^1([0, 1]; X) \text{ and } e_t : [0, 1] \rightarrow X)\)
 \[
 \inf \left\{ \int_C \int_0^1 \frac{1}{2} |\dot{\omega}|^2 dt dQ(\omega) \mid Q \in \mathcal{P}(C), (e_0)_\# Q = \mu_1, (e_1)_\# Q = \mu_2 \right\}
 \]

- The dynamic (Eulerian), aka the Benamou-Brenier formulation
 \[
 \inf \int \int \frac{1}{2} |v_t|^2 \rho_t dx dt \quad \text{s.t.} \quad \partial_t \rho_t + \nabla \cdot (\rho_t v_t) = 0 \quad \rho(0, \cdot) = \mu_1, \rho(1, \cdot) = \mu_2
 \]
Remarks:

- Consider the optimal solutions for the three formulations γ^*, Q^*, ρ_t^* then

$$\pi_t(x, y) \triangleright \gamma = (e_t) \triangleright Q = \rho_t,$$

where $\pi_t(x, y) = (1 - t)x + ty$.

- If we discretise in time (let take $T + 1$ time steps) the Lagrangian formulation and imposing that $\omega(t_i) = x_i$ ($t_i = i \frac{1}{T}$ for $i = 0, \ldots, T$) we get the following discrete (in time) MMOT problem

$$\inf \int_{x_T} \frac{1}{2T} \sum_{i=0}^{T} |x_{i+1} - x_i|^2 \, d\gamma(x_0, \ldots, x_T) \text{ s.t.}$$

$$\gamma \in \mathcal{P}(X^{T+1}), \, \pi_0, \triangleright \gamma = \mu_1, \, \pi_T, \triangleright \gamma = \mu_2$$
The geodesic in 2D

Figure 1: $t = 0$
The geodesic in 2D

Figure 2: \(t = \frac{1}{14} \)
The geodesic in 2D

Figure 3: $t = \frac{2}{14}$
The geodesic in 2D

Figure 4: \(t = \frac{3}{14} \)
The geodesic in 2D

Figure 5: \(t = \frac{4}{14} \)
The geodesic in 2D

Figure 6: $t = \frac{5}{14}$
The geodesic in 2D

Figure 7: \(t = \frac{6}{14} \)
The geodesic in 2D

Figure 8: $t = \frac{7}{14}$
The geodesic in 2D

Figure 9: $t = \frac{8}{14}$
The geodesic in 2D

Figure 10: $t = \frac{9}{14}$
The geodesic in 2D

Figure 11: $t = \frac{10}{14}$
The geodesic in 2D

Figure 12: \(t = \frac{11}{14} \)
Figure 13: $t = \frac{12}{14}$
The geodesic in 2D

Figure 14: $t = \frac{13}{14}$
The geodesic in 2D

Figure 15: $t = 1$
Application II: MMOT and the electron-electron repulsion
Consider now the cost function
\[c(x_1, \ldots, x_m) = \sum_{i \neq j} \frac{1}{|x_i - x_j|}, \]
and \(\mu_1 = \cdots = \mu_m = \rho \) (we refer to \(\rho \) as the electronic density) then the MMOT gives the electronic configuration (namely the optimal transport plan \(\gamma \)) which minimises the electron-electron repulsion.

Remarks:

- Since the cost is symmetric in the marginals then the dual problem reduces to look for only one potential;
- The cost is also radially symmetric which means that when \(\rho \) is radially symmetric then the \(d = 3 \) pb. reduces to a one dimensional pb;
- Existence of Monge solutions is still an open problem for \(d > 1 \);
Some simulations for $m = 3, 4, 5$ in 1D

We take the density $\rho(x) = \frac{m}{10} (1 + \cos(\frac{\pi}{5}x))$ and...

![Graphs for N = 3, 4, 5](image)

Figure 16: Support of the projected plan $\gamma_{1,2}$
The transition from spread to deterministic plans for $m = 3$ and $d = 3$

Take $\rho_\alpha(r) = \alpha\rho_{Li}(r) + (1 - \alpha)\rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 17: $\alpha = 0$
The transition from spread to deterministic plans for $m = 3$ and $d = 3$

Take $\rho_\alpha(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

\[\rho_\alpha(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r) \]

Figure 18: $\alpha = 0.1429$
The transition from spread to deterministic plans for $m = 3$ and $d = 3$

Take $\rho_\alpha(r) = \alpha \rho_{\text{Li}}(r) + (1 - \alpha) \rho_{\text{exp}}(r)$ and $\alpha \in [0, 1]$ then...

Figure 19: $\alpha = 0.2857$
The transition from spread to deterministic plans for $m = 3$ and $d = 3$

Take $\rho_\alpha(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 20: $\alpha = 0.4286$
The transition from spread to deterministic plans for $m = 3$ and $d = 3$

Take $\rho_{\alpha}(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{\exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 21: $\alpha = 0.5714$
The transition from spread to deterministic plans for $m = 3$ and $d = 3$

Take $\rho_\alpha(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 22: $\alpha = 0.7143$
The transition from spread to deterministic plans for $m = 3$ and $d = 3$

Take $\rho_\alpha(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 23: $\alpha = 0.8571$
The transition from spread to deterministic plans for $m = 3$ and $d = 3$

Take $\rho_{\alpha}(r) = \alpha \rho_{Li}(r) + (1 - \alpha) \rho_{exp}(r)$ and $\alpha \in [0, 1]$ then...

Figure 24: $\alpha = 1$
Entropic multi-marginal optimal transport
Consider

- $m \geq 2$ probability measures μ_i compactly supported on C^2 submanifolds $X_i \subseteq \mathbb{R}^N$ of dim d_i;
- a cost function $c : X \to \mathbb{R}_+$ (e.g. continuous or lsc) where $X := \times_i^m X_i$;
Definition of the problem

Consider

- \(m \geq 2 \) probability measures \(\mu_i \) compactly supported on \(C^2 \) submanifolds \(X_i \subseteq \mathbb{R}^N \) of dim \(d_i \);
- a cost function \(c : X \rightarrow \mathbb{R}_+ \) (e.g. continuous or lsc) where \(X := \times_i^m X_i \);

Entropic Multi-Marginal Optimal Transport problem

It reads as:

\[
\text{MOT}_{\varepsilon} := \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) + \varepsilon \operatorname{Ent}(\gamma | \otimes_{i=1}^m \mu_i) \right\},
\]

where

- \(\Pi(\mu_1, \ldots, \mu_m) \) is the set of couplings \(\gamma \in \mathcal{P}(X) \) having \(\mu_i \) as marginals
- \(\operatorname{Ent}(\gamma | \pi) \) is the Boltzmann-Shannon entropy, that is

\[
\operatorname{Ent}(\gamma | \pi) = \int \rho \log \rho \, d\pi, \text{ if } \gamma = \rho \pi.
\]
Some useful remarks

• $\varepsilon = 0$ and $m = 2$. Classical Optimal Transport problem. Convex problem, but may have several solutions γ, with or without finite entropy!
Some useful remarks

- $\varepsilon = 0$ and $m = 2$. Classical Optimal Transport problem. Convex problem, but may have several solutions γ, with or without finite entropy!

- $\varepsilon > 0$. Strictly convex cost \implies unique solution γ_ε with finite entropy.
Some useful remarks

- \(\varepsilon = 0 \) and \(m = 2 \). Classical Optimal Transport problem. Convex problem, but may have several solutions \(\gamma \), with or without finite entropy!
- \(\varepsilon > 0 \). Strictly convex cost \(\Rightarrow \) unique solution \(\gamma_\varepsilon \) with finite entropy.
- It admits a dual problem

\[
\text{MOT}_\varepsilon = \sup \left\{ \sum_{i=1}^{m} \int_{X_i} \varphi_i(x_i) d\mu_i - \varepsilon \log \left(\int_{\mathcal{X}} e^{\frac{\sum_{j=1}^{m} \varphi_j(x_j) - c(x)}{\varepsilon}} d \otimes_{i=1}^{m} \mu_i \right) \mid \varphi_i \in \mathcal{C}_b(X_i) \right\}.
\]
Some useful remarks

- $\varepsilon = 0$ and $m = 2$. Classical Optimal Transport problem. Convex problem, but may have several solutions γ, with or without finite entropy!
- $\varepsilon > 0$. Strictly convex cost \implies unique solution γ_ε with finite entropy.
- It admits a dual problem

$$\text{MOT}_\varepsilon = \sup \left\{ \sum_{i=1}^{m} \int_{X_i} \varphi_i(x_i) d\mu_i - \varepsilon \log \left(\int_{X} \frac{\sum_{i=1}^{m} \varphi_i(x_i) - c(x)}{\varepsilon} d \otimes_{i=1}^{m} \mu_i \right) \mid \varphi_i \in \mathcal{C}_b(X_i) \right\}.$$

- The solution γ_ε is "almost" explicit

$$\gamma_\varepsilon = \exp \left(\bigotimes_{i=1}^{m} \frac{\varphi_i^\varepsilon - c}{\varepsilon} \right) \otimes_{i=1}^{m} \mu_i.$$
Some useful remarks

- $\varepsilon = 0$ and $m = 2$. Classical Optimal Transport problem. Convex problem, but may have several solutions γ, with or without finite entropy!
- $\varepsilon > 0$. Strictly convex cost \implies unique solution γ_ε with finite entropy.
- It admits a dual problem

$$
\text{MOT}_\varepsilon = \sup \left\{ \sum_{i=1}^{m} \int_{X_i} \varphi_i(x_i) d\mu_i - \varepsilon \log \left(\int_{X} \frac{\sum_{i=1}^{m} \varphi_i(x_i) - c(x)}{\varepsilon} d \otimes_{i=1}^{m} \mu_i \right) \mid \varphi_i \in C_b(X_i) \right\}.
$$

- The solution γ_ε is "almost" explicit

$$
\gamma_\varepsilon = \exp \left(\frac{\bigoplus_{i=1}^{m} \varphi_i}{\varepsilon} - c \right) \otimes_{i=1}^{m} \mu_i.
$$

- Easy to solve numerically via Sinkhorn (take $m = 2$ for simplicity)

$$
\varphi_{1}^{k+1} = -\varepsilon \log \left(\int_{X_2} e^{\frac{\varphi_{2}^{k}-c}{\varepsilon}} d\mu_2 \right), \quad \varphi_{2}^{k+1} = -\varepsilon \log \left(\int_{X_1} e^{\frac{\varphi_{1}^{k+1}-c}{\varepsilon}} d\mu_1 \right).
$$
The asymptotics for the MOT_ε (with P. Pegon)
What are we interested in? and what is known...

<table>
<thead>
<tr>
<th>Asymptotics for $\varepsilon \to 0$ of</th>
</tr>
</thead>
<tbody>
<tr>
<td>• the cost MOT_ε</td>
</tr>
<tr>
<td>• the optimal entropic plan γ_ε and optimal Schrödinger potentials $(\varphi_i^\varepsilon)_{0 \leq i \leq m}$</td>
</tr>
</tbody>
</table>
What are we interested in? and what is known...

Asymptotics for $\varepsilon \to 0$ of

- the cost MOT_ε
- the optimal entropic plan γ_ε and optimal Schrödinger potentials $(\varphi_i^\varepsilon)_{0 \leq i \leq m}$

First remark: depends heavily on $c = c(x)$ and the marginals μ_i's.

What is known?
- Mostly for the $m = 2$ case.
- Convergence rate under strong regularity assumptions (Pal 2019)
- Second-order expansion for dynamical quadratic OT (Conforti and Tamanini 2021)
- Convergence rate for 2^m marginal and a general class of C^2 non-degenerate costs (Guillaume Carlier, Pegon, and Tamanini 2022)
- Upper bound for the multi-marginal (Eckstein and Nutz 2022) with a condition on the optimal transport plans in terms of quantization dimension.
What are we interested in? and what is known...

Asymptotics for $\varepsilon \to 0$ of

- the cost MOT_ε
- the optimal entropic plan γ_ε and optimal Schrödinger potentials $(\varphi_i^\varepsilon)_{0 \leq i \leq m}$

First remark: depends heavily on $c = c(x)$ and the marginals μ_i's.
What are we interested in? and what is known...

Asymptotics for $\varepsilon \to 0$ of

- the cost MOT_ε
- the optimal entropic plan γ_ε and optimal Schrödinger potentials $(\varphi_\varepsilon^i)_{0 \leq i \leq m}$

First remark: depends heavily on $c = c(x)$ and the marginals μ_i's.

What is known?

Mostly for the $m = 2$ case.

- Convergence rate under strong regularity assumptions (Pal 2019)
- Second-order expansion for dynamical quadratic OT (Conforti and Tamanini 2021)
- Convergence rate for 2-marginal and a general class of C^2 non-degenerate costs (Guillaume Carlier, Pegon, and Tamanini 2022)
- Upper bound for the multi-marginal (Eckstein and Nutz 2022) with a condition on the optimal transport plans in terms of quantization dimension;
Asymptotics for $\varepsilon \to 0$ of

- the cost MOT_ε
- the optimal entropic plan γ_ε and optimal Schrödinger potentials $(\varphi_i^\varepsilon)_{0 \leq i \leq m}$

First remark: depends heavily on $c = c(x)$ and the marginals μ_i's.

What is known? Mostly for the $m = 2$ case.
What are we interested in? and what is known...

Asymptotics for $\varepsilon \to 0$ of

- the cost MOT_ε
- the optimal entropic plan γ_ε and optimal Schrödinger potentials $(\varphi^\varepsilon_i)_{0 \leq i \leq m}$

First remark: depends heavily on $c = c(x)$ and the marginals μ_i's.

What is known? Mostly for the $m = 2$ case.

- Convergence rate under strong regularity assumptions (Pal 2019), second-order expansion for dynamical quadratic OT (Conforti and Tamanini 2021)
What are we interested in? and what is known...

Asymptotics for $\varepsilon \to 0$ **of**

- the cost MOT_ε
- the optimal entropic plan γ_ε and optimal Schrödinger potentials $(\varphi_i^\varepsilon)_{0 \leq i \leq m}$

First remark: depends heavily on $c = c(x)$ and the marginals μ_i's.

What is known? Mostly for the $m = 2$ case.

- Convergence rate under strong regularity assumptions *(Pal 2019)*, second-order expansion for dynamical quadratic OT *(Conforti and Tamanini 2021)*
- Convergence rate for 2–marginal and a general class of C^2 non-degenerate costs *(Guillaume Carlier, Pegon, and Tamanini 2022)*
What are we interested in? and what is known...

Asymptotics for \(\varepsilon \to 0 \) **of**

- the cost \(\text{MOT}_\varepsilon \)
- the optimal entropic plan \(\gamma_\varepsilon \) and optimal Schrödinger potentials \((\varphi_i^\varepsilon)_{0 \leq i \leq m} \)

First remark: depends heavily on \(c = c(x) \) and the marginals \(\mu_i \)’s.

What is known? Mostly for the \(m = 2 \) case.

- Convergence rate under strong regularity assumptions *(Pal 2019)*, second-order expansion for dynamical quadratic OT *(Conforti and Tamanini 2021)*
- Convergence rate for 2–marginal and a general class of \(C^2 \) non-degenerate costs *(Guillaume Carlier, Pegon, and Tamanini 2022)*
- Upper bound for the multi-marginal *(Eckstein and Nutz 2022)* *with a condition on the optimal transport plans* in terms of quantization dimension ;
The upper bound

Assumptions

- \(\mu_i\) are compactly supported measures in \(L^\infty(X_i)\) where \(X_i\) are \(C^2\) submanifolds of dimension \(d_i\);
- \(c \in C^{1,1}_{\text{loc}}(X)\) or more generally locally semi-concave (also, weaker upper bound \(c \in C^{0,1}(X)\));

Goal: get an upper bound of the form

\[
\text{MOT}_\varepsilon - \text{MOT}_0 \leq \frac{1}{2} \left(\sum_{1 \leq i \leq m} d_i - \max_{i} d_i \right) \varepsilon \log(1/\varepsilon) + O(\varepsilon).
\]
The upper bound

Assumptions

• μ_i are compactly supported measures in $L^\infty(X_i)$ where X_i are C^2 submanifolds of dimension d_i;
• $c \in C^{1,1}_{\text{loc}}(X)$ or more generally locally semi-concave (also, weaker upper bound $c \in C^{0,1}(X)$);

Goal: get an upper bound of the form

$$\text{MOT}_\varepsilon - \text{MOT}_0 \leq \frac{1}{2} \left(\sum_{1 \leq i \leq m} d_i - \max_i d_i \right) \varepsilon \log(1/\varepsilon) + O(\varepsilon).$$

Strategy. Straightforward (almost) generalization of the upper bound in (Guillaume Carlier, Pegon, and Tamanini 2022) on C^2 submanifolds:

• Build a suitable competitor for the entropic (primal) problem

$$\text{MOT}_\varepsilon = \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) + \varepsilon \text{Ent}(\gamma | \otimes_{i=1}^m \mu_i) \right\}.$$

using an optimizer for (MOT$_0$) and a block-approximation of (Guillaume Carlier, Duval, Peyré, and Schmitzer 2017).
The upper bound

Assumptions

• \(\mu_i \) are compactly supported measures in \(L^\infty(X_i) \) where \(X_i \) are \(C^2 \) submanifolds of dimension \(d_i \);

• \(c \in C^{1,1}_{\text{loc}}(X) \) or more generally locally semi-concave (also, weaker upper bound \(c \in C^{0,1}(X) \));

Goal: get an upper bound of the form

\[
\text{MOT}_\varepsilon - \text{MOT}_0 \leq \frac{1}{2} \left(\sum_{1 \leq i \leq m} d_i - \max_i d_i \right) \varepsilon \log(1/\varepsilon) + O(\varepsilon).
\]

Strategy. Straightforward (almost) generalization of the upper bound in \{Guillaume Carlier, Pegon, and Tamanini 2022\} on \(C^2 \) submanifolds:

• Build a suitable competitor for the entropic (primal) problem

\[
\text{MOT}_\varepsilon = \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) + \varepsilon \text{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\}.
\]

using an optimizer for \(\text{MOT}_0 \) and a block-approximation of \{Guillaume Carlier, Duval, Peyré, and Schmitzer 2017\}.

• Show and use some integral variant of Alexandrov theorem on convex functions.
Upper bound: some details for $m = 2$, marginals μ_1, μ_2

For blocks $\bigcup_n A_n = \mathbb{R}^N$ of diameter $\leq \delta$, take as competitor

$$
\gamma^\delta := \sum_{i,j \in \mathbb{N}} \gamma_0(A_i \times A_j) \frac{\mu_1 \ll A_i}{\mu_1(A_i)} \otimes \frac{\mu_2 \ll A_j}{\mu_2(A_j)}.
$$
Plug this competitor into the primal problem, write $E = c - \varphi \oplus \psi$ the duality gap, then:

$$\text{MOT}_\varepsilon \leq \int_{\mathbb{R}^d \times \mathbb{R}^d} c d\gamma^\delta + \varepsilon \text{Ent}(\gamma^\delta | \mu_1 \otimes \mu_2) = \text{MOT}_0 + \int_{\mathbb{R}^d \times \mathbb{R}^d} E d(\gamma^\delta - \gamma^0) + \varepsilon \text{Ent}(\gamma^\delta | \mu_1 \otimes \mu_2)$$
• Plug this competitor into the primal problem, write $E = c - \varphi \oplus \psi$ the duality gap, then:

$$\text{MOT}_\varepsilon \leq \int_{\mathbb{R}^d \times \mathbb{R}^d} c d\gamma^\delta + \varepsilon \text{Ent}(\gamma^\delta | \mu_1 \otimes \mu_2) = \text{MOT}_0 + \int_{\mathbb{R}^d \times \mathbb{R}^d} Ed(\gamma^\delta - \gamma^0) + \varepsilon \text{Ent}(\gamma^\delta | \mu_1 \otimes \mu_2)$$

• Bound the entropy term, for well-chosen blocks:

$$\text{Ent}(\gamma^\delta | \mu_1 \otimes \mu_2) = \sum_{i,j \in \mathbb{N}} \gamma_0(A_i \times A_j) \log \left(\frac{\gamma_0(A_i \times A_j)}{\mu_1(A_i) \mu_2(A_j)} \right)$$

$$\leq \sum_{j \in \mathbb{N}} \mu_2(A_j) \log(1/\mu_2(A_j)) = d_2 \log(1/\delta) + O(1).$$
• Plug this competitor into the primal problem, write \(E = c - \varphi \oplus \psi \) the duality gap, then:

\[
\text{MOT}_\varepsilon \leq \int_{\mathbb{R}^d \times \mathbb{R}^d} c d\gamma^\delta + \varepsilon \text{Ent}(\gamma^\delta | \mu_1 \otimes \mu_2) = \text{MOT}_0 + \int_{\mathbb{R}^d \times \mathbb{R}^d} E d(\gamma^\delta - \gamma^0) + \varepsilon \text{Ent}(\gamma^\delta | \mu_1 \otimes \mu_2)
\]

• Bound the entropy term, for well-chosen blocks:

\[
\text{Ent}(\gamma^\delta | \mu_1 \otimes \mu_2) = \sum_{i,j \in \mathbb{N}} \gamma_0(A_i \times A_j) \log \left(\frac{\gamma_0(A_i \times A_j)}{\mu_1(A_i)\mu_2(A_j)} \right) \\
\leq \sum_{j \in \mathbb{N}} \mu_2(A_j) \log(1/\mu_2(A_j)) = d_2 \log(1/\delta) + O(1).
\]

• Show that \(\int_{\mathbb{R}^d \times \mathbb{R}^d} E d(\gamma^\delta - \gamma^0) = O(\delta^2) \) then take \(\varepsilon = \delta^2 \) (integral Alexandrov-type estimate):

\[
\text{MOT}_\varepsilon \leq \text{MOT}_0 + O(\delta^2) + d_2 \varepsilon \log(1/\delta) + O(\varepsilon) = \text{MOT}_0 + \frac{d^+}{2} \varepsilon \log(1/\varepsilon) + O(\varepsilon).
\]
Reminder on multi-marginal optimal transport

Consider the unregularized problem

\[\text{MOT}_0 = \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) \right\}. \]

Good news: we can estimate the dimension of the support of the optimal plans.
Reminder on multi-marginal optimal transport

Consider the unregularized problem

$$\text{MOT}_0 = \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) \right\}. $$

Good news: we can estimate the dimension of the support of the optimal plans. For each $p \in P$ we denote by g_p the bilinear form on X as

$$g_p = \sum_{i \in p_-, j \in p_+} D_{x_i,x_j}^2 c + \sum_{i \in p_+, j \in p_-} D_{x_i,x_j}^2 c.$$
Consider the unregularized problem

$$\text{MOT}_0 = \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) \right\}.$$

Good news: we can estimate the dimension of the support of the optimal plans. • for each $p \in P$ we denote by g_p the bilinear form on X as

$$g_p = \sum_{i \in p_-, j \in p_+} D_{x_i, x_j}^2 c + \sum_{i \in p_+, j \in p_-} D_{x_i, x_j}^2 c.$$

• Define $G := \{ \sum_{p \in P} t_p g_p \mid (t_p)_{p \in P} \in \Delta_P \}$ to be the convex hull generated by the g_p.

Consider the unregularized problem

$$\text{MOT}_0 = \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) \right\}.$$

Good news: we can estimate the dimension of the support of the optimal plans. • for each $p \in P$ we denote by g_p the bilinear form on X as

$$g_p = \sum_{i \in p \setminus j \in p^+} D_{x_i, x_j}^2 c + \sum_{i \in p^+, j \in p} D_{x_i, x_j}^2 c.$$

• Define $G := \{ \sum_{p \in P} t_pg_p \mid (t_p)_{p \in P} \in \Delta_P \}$ to be the convex hull generated by the g_p.

Theorem (Upper bound on the dimension of the support of the optimal plan (Pass 2011))

Let γ_0 a solution to MOT$_0$ and suppose that at some point $x \in X$, the signature of some $g \in G$ is $(d^+(g), d^-(g), d^0(g))$. Then, there exists a neighbourhood N_x of x such that $N_x \cap \text{supp}(\gamma_0)$ is contained in a Lipschitz submanifold with dimension no greater than $\sum_i d_i - d^+(g)$.
Lower bound

- \(\mu_i \) be compactly supported measures over \(X_i \) with \(L^\infty \) densities;
- \(c \in C^2(X) \);
- for every \(x \in X \), \(d^+(g_x) \geq d^* \);

Goal: get a lower bound of the form

\[
\text{MOT}_\varepsilon - \text{MOT}_0 \geq \frac{d^*}{2} \varepsilon \log(1/\varepsilon) - L\varepsilon.
\]
Lower bound

- μ_i be compactly supported measures over X_i with L^∞ densities;
- $c \in C^2(X)$;
- for every $x \in X$, $d^+(g_x) \geq d^*$;

Goal: get a lower bound of the form

$$\text{MOT}_\varepsilon - \text{MOT}_0 \geq \frac{d^*}{2\varepsilon} \log(1/\varepsilon) - L\varepsilon.$$

Strategy

- Use the dual regularized problem (in log form):
- Take Kantorovich potentials (solution to un-regularized dual) as competitors and show that the duality gap $E := c - \bigoplus_{i=1}^m \varphi_i$ grows enough near $\Sigma = \{E = 0\}$.
Let $p = \{p_-, p_+\} \in P$ we identify $x \in X$ with (x_-, x_+) and write $\varphi_\pm(y) = \sum_{i \in p_\pm} \varphi_i(y_i)$.
Let $p = \{p_-, p_+\} \in P$ we identify $x \in X$ with (x_-, x_+) and write $\varphi_\pm(y) = \sum_{i \in p_\pm} \varphi_i(y_i)$.

- If (φ_i) are c-conjugate, for $x, x' \in X$, we have:

$$E(x') = c(x'_-, x'_+) - \varphi_-(x'_-) - \varphi_+(x'_+)$$

$$\geq c(x'_-, x'_+) - (c(x'_-, x_+) - \varphi_+(x_+)) - (c(x_-, x'_+) - \varphi_-(x_-))$$

$$= c(x'_-, x'_+) - c(x'_-, x_+) - c(x_-, x'_+) + c(x_-, x_+) - E(x).$$
Lower bound: some details

Let \(p = \{p_-, p_+\} \in P \) we identify \(x \in X \) with \((x_-, x_+)\) and write \(\varphi_\pm(y) = \sum_{i \in p_\pm} \varphi_i(y_i) \).

- If \((\varphi_i)\) are c-conjugate, for \(x, x' \in X \), we have:

 \[
 E(x') = c(x'_-, x'_+) - \varphi_-(x'_-) - \varphi_+(x'_+)
 \geq c(x'_-, x'_+) - \left((c(x'_-, x_+) - \varphi_+(x_+)) - \left((c(x_-, x'_+) - \varphi_-(x_-))\right)\right)
 = c(x'_-, x'_+) - c(x'_-, x_+) - c(x_-, x'_+) + c(x_-, x_+) - E(x).
 \]

- By Taylor’s integral formula

 \[
 E(x') + E(x) \geq \int_0^1 \int_0^1 D_{p_-, p_+}^2 c(x_-, t)(x'_- - x_-, x'_+ - x_+) = \frac{1}{2}g_p(\bar{x})(x' - x) + O_x(\|x' - x\|^2)
 \]
Let \(p = \{p_-, p_+\} \in P \) we identify \(x \in X \) with \((x_-, x_+)\) and write \(\varphi_\pm(y) = \sum_{i \in p_\pm} \varphi_i(y_i) \).

- If \((\varphi_i)\) are c-conjugate, for \(x, x' \in X \), we have:
 \[
 E(x') = c(x'_-, x'_+) - \varphi_-(x'_+) - \varphi_+(x'_+)
 \]
 \[
 \geq c(x'_-, x'_+) - (c(x'_-, x_+) - \varphi_+(x_+)) - (c(x_-, x'_+) - \varphi_-(x_-))
 \]
 \[
 = c(x'_-, x'_+) - c(x'_-, x_+) - c(x_-, x'_+) + c(x_-, x_+) - E(x).
 \]

- By Taylor's integral formula
 \[
 E(x') + E(x) \geq \int_0^1 \int_0^1 D^2_{p_-, p_+} c(x_s, t)(x'_- - x_-, x'_+ - x_+) = \frac{1}{2} g_p(\bar{x})(x' - x) + O_\bar{x}(\|x' - x\|^2)
 \]
 and taking a convex combination \(g = \sum t_p g_p \), for diagonalizing coordinates \((u^+, u^-, u^0)\)
 \[
 E(x') + E(x) \geq |u^+(x') - u^+(x)|^2 - |u^-(x') - u^-(x)|^2 + O(|x' - x|^2)
 \]
 \[
 \implies \text{quadratic detachment of the duality gap } E \text{ in } d^+(g) \geq d^* \text{ dimensions.}
Let \(p = \{ p_-, p_+ \} \in P \) we identify \(x \in X \) with \((x_-, x_+)\) and write \(\varphi_{\pm}(y) = \sum_{i \in p_{\pm}} \varphi_i(y_i) \).

- If \((\varphi_i)\) are \(c \)-conjugate, for \(x, x' \in X \), we have:
 \[
 E(x') = c(x'_-, x'_+) - \varphi_-(x'_-) - \varphi_+(x'_+)
 \geq c(x'_-, x'_+) - (c(x'_-, x_+) - \varphi_+(x_+)) - (c(x_-, x'_+) - \varphi_-(x_-))
 = c(x'_-, x'_+) - c(x'_-, x_+) - c(x_-, x'_+) + c(x_-, x_+) - E(x).
 \]

- By Taylor’s integral formula
 \[
 E(x') + E(x) \geq \int_0^1 \int_0^1 D^2_{p_- p_+} c(x_s, t)(x'_- - x_-, x'_+ - x_+) = \frac{1}{2} g_p(\bar{x})(x' - x) + O_x(\|x' - x\|^2)
 \]
 and taking a convex combination \(g = \sum t_p g_p \), for diagonalizing coordinates \((u^+, u^-, u^0)\)
 \[
 E(x') + E(x) \geq |u^+(x') - u^+(x)|^2 - |u^-(x') - u^-(x)|^2 + O(|x' - x|^2)
 \]
 \(\implies \) quadratic detachment of the duality gap \(E \) in \(d^+(g) \geq d^* \) dimensions.

- Taking \((\varphi_i)_{1 \leq i \leq m}\) as competitor in the dual of the entropic MOT:
 \[
 \text{MOT}_\varepsilon \geq \text{MOT}_0 - \varepsilon \log \left(\int_{1 \leq i \leq m} e^{-\frac{E}{\varepsilon}} \, d \otimes_{1 \leq i \leq m} \mu_i \right) \geq \text{MOT}_0 + \frac{d^*}{2} \varepsilon \log(1/\varepsilon) - O(\varepsilon).
 \]
Consequences and some examples

- $m = 2$ and non-degenerate cost function, then we retrieve the bounds in (Guillaume Carlier, Pegon, and Tamanini 2022);
Consequences and some examples

- \(m = 2 \) and non-degenerate cost function, then we retrieve the bounds in (Guillaume Carlier, Pegon, and Tamanini 2022);
- \(m = 2 \) and degenerate cost function such that \(D^2_{x,y}c \) has rank \(r \) then the lower bound is such that \(d^* = r \);
Consequences and some examples

- $m = 2$ and non-degenerate cost function, then we retrieve the bounds in (Guillaume Carlier, Pegon, and Tamanini 2022);
- $m = 2$ and degenerate cost function such that $D_{x,y}^2 c$ has rank r then the lower bound is such that $d^* = r$;
- $m = 2$, $d_2 < d_1$ (aka the unequal dimensional case) and $D_{x,y}^2 c$ has full rank d_2 then

$$\text{MOT}_\epsilon = \text{MOT}_0 + \frac{d_2}{2} \epsilon \log(1/\epsilon) + O(\epsilon)$$
Consequences and some examples

- $m = 2$ and non-degenerate cost function, then we retrieve the bounds in (Guillaume Carlier, Pegon, and Tamanini 2022);
- $m = 2$ and degenerate cost function such that $D_{x,y}^2 c$ has rank r then the lower bound is such that $d^* = r$;
- $m = 2$, $d_2 < d_1$ (aka the unequal dimensional case) and $D_{x,y}^2 c$ has full rank d_2 then

\[
\text{MOT}_\varepsilon = \text{MOT}_0 + \frac{d_2}{2} \varepsilon \log(1/\varepsilon) + O(\varepsilon)
\]

- Consider $d_i = d$ for all i and the cost $c = h(\sum_{i=1}^m x_i)$ with $D^2 h < 0$ then $d^* = (m - 1)d$ and

\[
\text{MOT}_\varepsilon = \text{MOT}_0 + \frac{(m - 1)d}{2} \varepsilon \log(1/\varepsilon) + O(\varepsilon).
\]

This is the case of Gangbo-Święch cost, that is $\sum_{i<j} |x_i - x_j|^2$ which corresponds to the multi-marginal formulation of the Wasserstein barycenter problem.
Another way to characterise (and solve) \(\text{MOT}_\varepsilon \): an ODE approach (with B. Pass)
What are we interested in and direction of our work

We are interested in solving the entropic multi-marginal optimal transport.
What are we interested in and direction of our work

We are interested in solving the entropic multi-marginal optimal transport.

Main steps of the work:
1. Introduce a suitable one parameter family of cost functions c_η, **interpolating** between the original multi-marginal problem and a simpler one whose complexity **scales linearly** in the number of marginals;
What are we interested in and direction of our work

We are interested in solving the entropic multi-marginal optimal transport.

Main steps of the work:

1. Introduce a suitable one parameter family of cost functions c_η, interpolating between the original multi-marginal problem and a simpler one whose complexity scales linearly in the number of marginals;

2. Differentiate the optimality condition of the dual $\text{MOT}_\varepsilon := \sup_\varphi \Phi(\varphi, \eta)$ with respect to η (ε is now fixed);

Remark: This method is actually inspired by the one introduced in (G. Carlier, A. Galichon, and F. Santambrogio 2009/10) to compute the Monge solution of the two marginal problem, starting from the Knothe-Rosenblatt rearrangement.
We are interested in solving the entropic multi-marginal optimal transport.

Main steps of the work:

1. Introduce a suitable one parameter family of cost functions c_η, interpolating between the original multi-marginal problem and a simpler one whose complexity scales linearly in the number of marginals;

2. Differentiate the optimality condition of the dual $\text{MOT}_\epsilon := \sup_\varphi \Phi(\varphi, \eta)$ with respect to η (ϵ is now fixed);

3. The solution of the original multi-marginal problem can be now recovered by solving an ordinary differential equation (ODE) whose initial condition is the solution to the simpler problem;

$$\begin{cases}
\frac{d\varphi}{d\eta}(\eta) = -[D_\varphi^2 \Phi(\varphi(\eta), \eta)]^{-1} \frac{\partial}{\partial \eta} \nabla \varphi \Phi(\varphi(\eta), \eta), \\
\varphi(0) = \varphi_w,
\end{cases}$$

Remark: This method is actually inspired by the one introduced in (G. Carlier, A. Galichon, and F. Santambrogio 2009/10) to compute the Monge solution of the two marginal problem, starting from the Knothe-Rosenblatt rearrangement.
What are we interested in and direction of our work

We are interested in solving the entropic multi-marginal optimal transport.

Main steps of the work:

1. Introduce a suitable one parameter family of cost functions \(c_\eta \), interpolating between the original multi-marginal problem and a simpler one whose complexity scales linearly in the number of marginals;
2. Differentiate the optimality condition of the dual \(\text{MOT}_\varepsilon := \sup \varphi \Phi(\varphi, \eta) \) with respect to \(\eta \) (\(\varepsilon \) is now fixed);
3. The solution of the original multi-marginal problem can be now recovered by solving an ordinary differential equation (ODE) whose initial condition is the solution to the simpler problem;

\[
\left\{ \begin{array}{l}
\frac{d\varphi}{d\eta}(\eta) = -[D^2\varphi,\Phi(\varphi(\eta), \eta)]^{-1} \frac{\partial}{\partial \eta} \nabla \Phi(\varphi(\eta), \eta), \\
\varphi(0) = \varphi_w,
\end{array} \right.
\]

Remark: This method is actually inspired by the one introduced in (G. Carlier, A. Galichon, and F. Santambrogio 2009/10) to compute the Monge solution of the two marginal problem, starting from the Knothe-Rosenblatt rearrangement.
How to derive the differential equation

Some assumptions to make it simple:

1. (Equal marginals and discrete set) All the marginals are equal $\mu_i = \rho = \sum_{x \in X} \rho_x \delta_x$, where X is a finite subset.
2. (Pair-wise cost) $c_\eta(x_1, \ldots, x_m) := \eta \sum_{i=2}^m \sum_{j=i+1}^m w(x_i, x_j) + \sum_{i=2}^m w(x_1, x_i)$.
3. (Symmetric cost) The two body cost w is symmetric $w(x, y) = w(x, y)$.
4. (Finite cost) The two body cost function $w : X \times X \to \mathbb{R}$ is everywhere real-valued.
How to derive the differential equation

Some assumptions to make it simple:

1. **(Equal marginals and discrete set)** All the marginals are equal \(\mu_i = \rho = \sum_{x \in X} \rho_x \delta_x \), where \(X \) is a finite subset.
2. **(Pair-wise cost)** \(c_\eta(x_1, \ldots, x_m) := \eta \sum_{i=2}^{m} \sum_{j=i+1}^{m} w(x_i, x_j) + \sum_{i=2}^{m} w(x_1, x_i) \).
3. **(Symmetric cost)** The two body cost \(w \) is symmetric \(w(x, y) = w(y, x) \).
4. **(Finite cost)** The two body cost function \(w : X \times X \to \mathbb{R} \) is everywhere real-valued.

Step 1: Consider the dual problem (it is convex!);

\[
\inf_{\varphi} \{ \Phi(\varphi, \eta) \} , \tag{5}
\]

where

\[
\Phi(\varphi, \eta) := -(m - 1) \int_X \varphi d\rho + \varepsilon \int_X \log \left(\int_{X^{m-1}} \exp \left(\frac{\sum_{i=2}^{m} \varphi - c_\eta}{\varepsilon} \right) d \otimes^{m-1} \rho \right) d\rho.
\]

Log-Sum-Exp
Step 2: Thanks to convexity we have that the minimizers are characterized by $\nabla_{\varphi} \Phi(\varphi, \eta) = 0$. Then, by differentiate w.r.t. η we obtain

$$\frac{d\varphi}{d\eta}(\eta) = -[D_{\varphi,\varphi} \Phi(\varphi(\eta), \eta)]^{-1} \frac{\partial}{\partial \eta} \nabla_{\varphi} \Phi(\varphi(\eta), \eta).$$
Step 2: Thanks to convexity we have that the minimizers are characterized by $\nabla_\varphi \Phi(\varphi, \eta) = 0$. Then, by differentiate w.r.t. η we obtain

$$\frac{d\varphi}{d\eta}(\eta) = -[D_{\varphi,\varphi}^2 \Phi(\varphi(\eta), \eta)]^{-1} \frac{\partial}{\partial \eta} \nabla_\varphi \Phi(\varphi(\eta), \eta).$$

Step 3: The following well-posedness theorem then holds.

Theorem

Let $\varphi(\eta)$ be the solution to the dual problem above for all $\eta \in [0, 1]$. Then $\eta \mapsto \varphi(\eta)$ is C^1 and is the unique solution to the Cauchy problem with $\varphi(0) = \varphi_w$.

Sketch of the proof:
Step 2: Thanks to convexity we have that the minimizers are characterized by $\nabla \varphi \Phi(\varphi, \eta) = 0$. Then, by differentiate w.r.t. η we obtain

$$\frac{d \varphi}{d \eta}(\eta) = -[D^2_{\varphi, \varphi} \Phi(\varphi(\eta), \eta)]^{-1} \frac{\partial}{\partial \eta} \nabla \varphi \Phi(\varphi(\eta), \eta).$$

Step 3: The following well-posedness theorem then holds.

Theorem

Let $\varphi(\eta)$ be the solution to the dual problem above for all $\eta \in [0, 1]$. Then $\eta \mapsto \varphi(\eta)$ is C^1 and is the unique solution to the Cauchy problem with $\varphi(0) = \varphi_w$.

Sketch of the proof:

- The pure second derivatives with respect to φ as well as the mixed second derivatives with respect to φ and η exist and are Lipschitz;
Step 2: Thanks to convexity we have that the minimizers are characterized by \(\nabla \varphi \Phi(\varphi, \eta) = 0 \). Then, by differentiate w.r.t. \(\eta \) we obtain

\[
\frac{d\varphi}{d\eta}(\eta) = -[D^2_{\varphi,\varphi} \Phi(\varphi(\eta), \eta)]^{-1} \frac{\partial}{\partial \eta} \nabla \varphi \Phi(\varphi(\eta), \eta).
\]

Step 3: The following well-posedness theorem then holds.

Theorem

Let \(\varphi(\eta) \) be the solution to the dual problem above for all \(\eta \in [0, 1] \). Then \(\eta \mapsto \varphi(\eta) \) is \(C^1 \) and is the unique solution to the Cauchy problem with \(\varphi(0) = \varphi_w \).

Sketch of the proof:

- The pure second derivatives with respect to \(\varphi \) as well as the mixed second derivatives with respect to \(\varphi \) and \(\eta \) exist and are Lipschitz;
- The Hessian with respect to \(\varphi \) is invertible: since the cost is bounded then the potentials are bounded too ((carlier2021linear)). So one can restrict the study of the well-posedness of the ODE on the set

\[
U := \{ \varphi \mid \varphi_{x_0} = 0, ||\varphi||_\infty \leq C \}.
\]

On this set the functional \(\Phi \) is now strongly convex.
The algorithm to compute the ODE solution

- Algorithm to compute the φ via explicit Euler method takes the following form:

Require: $\varphi(0) = \varphi_w$

1. while $\|\varphi^{(k+1)} - \varphi^{(k)}\| < \text{tol}$ do
2. $D^{(k)} := D^2 \varphi, \varphi \Phi(\varphi^{(k)}, kh)$
3. $b^{(k)} := -\frac{\partial}{\partial \epsilon} \nabla \varphi \Phi(\varphi^{(k)}, kh)$
4. Solve $D^{(k)} z = b^{(k)}$
5. $\varphi^{(k+1)} = \varphi^{(k)} + h z$
6. end while

Remarks:
- The Euler scheme converges linearly and the uniform error between the discretized solution obtained via the scheme and the solution to the ODE is $O(h)$;
- Thanks to the regularity of the RHS of the ODE one can apply high order methods.
- At each step k we obtaine the solution of the entropic multi-marginal problem with cost $c_{kh}^{2/3}$.
The algorithm to compute the ODE solution

- Algorithm to compute the φ via explicit Euler method takes the following form:

Require: $\varphi(0) = \varphi_w$

1. while $||\varphi^{(k+1)} - \varphi^{(k)}|| < \text{tol}$ do
2. $D^{(k)} := D^2_{\varphi,\varphi} \Phi(\varphi^{(k)}, kh)$
3. $b^{(k)} := -\frac{\partial}{\partial \epsilon} \nabla \varphi \Phi(\varphi^{(k)}, kh)$
4. Solve $D^{(k)}z = b^{(k)}$
5. $\varphi^{(k+1)} = \varphi^{(k)} + hz$
6. end while

Remarks:

- The Euler scheme converges linearly and the uniform error between the discretized solution obtained via the scheme and the solution to the ODE is $O(h)$;
- Thanks to the regularity of the RHS of the ODE one can apply high order methods.
The algorithm to compute the ODE solution

- Algorithm to compute the φ via explicit Euler method takes the following form:

Require: $\varphi(0) = \varphi_w$

1. while $||\varphi^{(k+1)} - \varphi^{(k)}|| < \text{tol}$ do
2. $D^{(k)} := D_{\varphi,\varphi}^2 \Phi(\varphi^{(k)}, kh)$
3. $b^{(k)} := -\frac{\partial}{\partial \epsilon} \nabla \varphi \Phi(\varphi^{(k)}, kh)$
4. Solve $D^{(k)} z = b^{(k)}$
5. $\varphi^{(k+1)} = \varphi^{(k)} + h z$
6. end while

Remarks:

- The Euler scheme converges linearly and the uniform error between the discretized solution obtained via the scheme and the solution to the ODE is $O(h)$;
- Thanks to the regularity of the RHS of the ODE one can apply high order methods.
- At each step k we obtain the solution of the entropic multi-marginal problem with cost c_{kh}!
Consider $\varepsilon = 0.006$, $m = 3$, the uniform measure on $[0, 1]$ uniformly discretized with 400 gridpoints, the pairwise interaction $w(x, y) = -\log(0.1 + |x - y|)$ and a reference solution φ_ε computed via a gradient descent algorithm. Then we have the following comparison between the ODE approach and Sinkhorn in terms of performances

<table>
<thead>
<tr>
<th></th>
<th>3rd RK</th>
<th>5th RK</th>
<th>8th RK</th>
<th>Sinkhorn</th>
</tr>
</thead>
<tbody>
<tr>
<td>relative error</td>
<td>1.47×10^{-5}</td>
<td>7.8×10^{-6}</td>
<td>7.62×10^{-6}</td>
<td>5.46×10^{-6}</td>
</tr>
<tr>
<td>iterations</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>820</td>
</tr>
<tr>
<td>CPU time (sec)</td>
<td>72.39</td>
<td>158.9</td>
<td>385.1</td>
<td>102.8</td>
</tr>
</tbody>
</table>
Some numerical results

- Log cost and support of the coupling γ_1^η.
Brenier’s relaxed formulation consists in finding a probability measure over absolutely continuous paths which minimizes the average kinetic energy.
Brenier’s relaxed formulation consists in finding a probability measure over absolutely continuous paths which minimizes the average kinetic energy.

The incompressibility at each time t, the distribution of position need be uniform.
Brenier’s relaxed formulation consists in finding a probability measure over absolutely continuous paths which minimizes the average kinetic energy.

The incompressibility at each time t, the distribution of position need be uniform.

If we consider a uniform discretization of $[0,T]$ (where T is the final time) with m steps in time, we recover a multi-marginal formulation of the Brenier principle with the specific cost function

$$c(x_1, \ldots, x_m) = \frac{m^2}{2T^2} \sum_{i=1}^{m-1} |x_{i+1} - x_i|^2 + \beta |F(x_1) - x_m|^2,$$

where $\beta > 0$ is a penalization parameter in order to enforce the initial-final constraint.
• Brenier’s relaxed formulation consists in finding a probability measure over absolutely continuous paths which minimizes the average kinetic energy.

• The incompressibility at each time t, the distribution of position need be uniform.

• If we consider a uniform discretization of $[0, T]$ (where T is the final time) with m steps in time, we recover a multi-marginal formulation of the Brenier principle with the specific cost function

$$c(x_1, \ldots, x_m) = \frac{m^2}{2T^2} \sum_{i=1}^{m-1} |x_{i+1} - x_i|^2 + \beta |F(x_1) - x_m|^2,$$

where $\beta > 0$ is a penalization parameter in order to enforce the initial-final constraint.

• If we consider now the ODE setting, we have now to deal with a non symmetric case and so to solve a system, still well posed, of ODEs. In particular we consider the following c_η cost

$$c_\eta(x_1, \ldots, x_m) = \frac{m^2}{2T^2} |x_2 - x_1|^2 + \eta \left(\frac{m^2}{2T^2} \sum_{i=2}^{m-1} |x_{i+1} - x_i|^2 \right) + \beta |F(x_1) - x_m|^2.$$
At $\eta = 1$ we plot the coupling $\gamma_{1,i}$ giving the probability of finding a generalized particle initially at x_1 to be at x_i at time i.
At $\eta = 1$ we plot the coupling $\gamma_{1,i}$ giving the probability of finding a generalized particle initially at x_1 to be at x_i at time i.

- $F(x) = 1 - x$

![Graphs showing the evolution of the probability at different times](image-url)
At $\eta = 1$ we plot the coupling $\gamma_{1,i}$ giving the probability of finding a generalized particle initially at x_1 to be at x_i at time i.

- $F(x) = 1 - x$

\[
\begin{align*}
F(x) &= 1 - x \\
t = 0 & \quad t = 1/4 & \quad t = 1/2 & \quad t = 3/4 & \quad t = 1
\end{align*}
\]

- $F(x) = (x + 1/2) \mod 1$

\[
\begin{align*}
F(x) &= (x + 1/2) \mod 1 \\
t = 0 & \quad t = 1/4 & \quad t = 1/2 & \quad t = 3/4 & \quad t = 1
\end{align*}
\]
Extension to general multi-marginal problems
(joint work with B. Pass and J. Zoen-Git Hiew)

Consider the following "1st" generalization

\[
\text{MOT}_\varepsilon := \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(\eta, x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) + \varepsilon \text{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\},
\]

where the cost function is not anymore symmetric but such that \(c(0, x_1, \ldots, x_m)\) give a MOT easy to solve:

1. \(c(0, x_1, \ldots, x_m) = 0;\)
Consider the following "1st" generalization

\[
\text{MOT}_\varepsilon := \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(\eta, x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) + \varepsilon \text{Ent}(\gamma | \otimes_{i=1}^m \mu_i) \right\},
\]

where the cost function is not anymore symmetric but such that \(c(0, x_1, \ldots, x_m)\) give a MOT easy to solve:

1. \(c(0, x_1, \ldots, x_m) = 0;\)
2. \(c(\eta, x_1, \ldots, x_m)\) is the Euler cost;
Consider the following "1st" generalization

\[
\text{MOT}_\varepsilon := \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(\eta, x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) + \varepsilon \text{Ent}(\gamma | \otimes_{i=1}^m \mu_i) \right\},
\]

where the cost function is not anymore symmetric but such that \(c(0, x_1, \ldots, x_m)\) give a MOT easy to solve:

1. \(c(0, x_1, \ldots, x_m) = 0;\)
2. \(c(\eta, x_1, \ldots, x_m)\) is the Euler cost;
3. \(c(\eta, x_1, z, x_2) = (1 - \eta)|x_1 - z|^2 + \eta|z - x_3|^2, \gamma\) is a 3 marginals coupling with only two fixed marginals, \(\mu_1\) and \(\mu_2\). Then the \(z\)−marginal of \(\gamma\) gives the \textit{Wasserstein geodesic} at time \(\eta\).
Consider the following "1st" generalization

\[
\text{MOT}_\varepsilon := \inf_{\gamma \in \Pi(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(\eta, x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) + \varepsilon \text{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\},
\]

where the cost function is not anymore symmetric but such that \(c(0, x_1, \ldots, x_m)\) give a MOT easy to solve:

1. \(c(0, x_1, \ldots, x_m) = 0\);
2. \(c(\eta, x_1, \ldots, x_m)\) is the Euler cost;
3. \(c(\eta, x_1, z, x_2) = (1 - \eta)|x_1 - z|^2 + \eta|z - x_3|^2\), \(\gamma\) is a 3 marginals coupling with only two fixed marginals, \(\mu_1\) and \(\mu_2\). Then the \(z\)−marginal of \(\gamma\) gives the Wasserstein geodesic at time \(\eta\).
4. \(c(\eta, x_1, \ldots, x_m, z) = \sum_{i=1}^m \lambda_i(\eta)|x_i - z|^2\) such that \(\sum_{i=1}^m \lambda_i(\eta) = 1\) for every \(\eta\) and \(\gamma\) is an \(m + 1\) coupling with \(m\) fixed marginals. Then at for every \(\eta\) the \(z\)−marginal of \(\gamma\) is the Wasserstein barycenter with weights \(\lambda_i(\eta)\).
Consider the following "2nd" generalization

\[
\text{MOT}_\varepsilon := \inf_{\gamma \in \Pi_Q(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(\eta, x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) + \varepsilon \text{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\},
\]

where \(\Pi_Q(\mu_1, \ldots, \mu_m)\) is the set of coupling having \(\mu_1, \ldots, \mu_m\) as marginals and satisfying an additional constraint \(\int q \, d\gamma = 0\) for all \(q \in Q\) where \(Q\) be a set of bounded continuous function on \(X\).

- Classical case: \(Q = \{0\};\)
Extension to general multi-marginal problems
(joint work with B. Pass and J. Zoen-Git Hiew)

Consider the following "2nd" generalization

\[
\text{MOT}_\varepsilon := \inf_{\gamma \in \Pi^Q(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(\eta, x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) + \varepsilon \text{Ent} (\gamma \mid \otimes_{i=1}^m \mu_i) \right\},
\]

where \(\Pi^Q(\mu_1, \ldots, \mu_m) \) is the set of coupling having \(\mu_1, \ldots, \mu_m \) as marginals and satisfying an additional constraint \(\int q \, d\gamma = 0 \) for all \(q \in Q \) where \(Q \) be a set of bounded continuous function on \(X \).

- **Classical case:** \(Q = \{0\} \);
- **Generalized Euler solution:** force \(\gamma_{1,m} = (Id, F)_{\mathcal{L}} \).

Extension to general multi-marginal problems
(joint work with B. Pass and J. Zoen-Git Hiew)

Consider the following "2nd" generalization

\[
\text{MOT}_\varepsilon := \inf_{\gamma \in \Pi^Q(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(\eta, x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) + \varepsilon \text{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\},
\]

where \(\Pi^Q(\mu_1, \ldots, \mu_m) \) is the set of coupling having \(\mu_1, \ldots, \mu_m \) as marginals and satisfying an additional constraint \(\int q \, d\gamma = 0 \) for all \(q \in Q \) where \(Q \) be a set of bounded continuous function on \(X \).

- **Classical case:** \(Q = \{0\} \);
- **Generalized Euler solution:** force \(\gamma_{1,m} = (Id, F)_\sharp \mathcal{L} \);
- **Martingale OT:** \(\Pi^Q(\mu_1, \mu_2) \) with extra constraint

\[
\int q(x_1)(x_2 - x_1) \, d\gamma = 0, \quad \forall q \in \mathcal{C}_b(X_1).
\]
Consider the following "2nd" generalization

\[
\text{MOT}_\varepsilon := \inf_{\gamma \in \Pi^Q(\mu_1, \ldots, \mu_m)} \left\{ \int_X c(\eta, x_1, \ldots, x_m) \, d\gamma(x_1, \ldots, x_m) + \varepsilon \operatorname{Ent}(\gamma \mid \otimes_{i=1}^m \mu_i) \right\},
\]

where \(\Pi^Q(\mu_1, \ldots, \mu_m)\) is the set of coupling having \(\mu_1, \ldots, \mu_m\) as marginals and satisfying an additional constraint \(\int q \, d\gamma = 0\) for all \(q \in Q\) where \(Q\) be a set of bounded continuous function on \(X\).

- **Classical case:** \(Q = \{0\}\);
- **Generalized Euler solution:** force \(\gamma_{1,m} = (Id, F) \sharp \mathcal{L}\);
- **Martingale OT:** \(\Pi^Q(\mu_1, \mu_2)\) with extra constraint
 \[
 \int q(x_1)(x_2 - x_1) \, d\gamma = 0, \quad \forall q \in C_b(X_1).
 \]
- **Multi-period martingale OT:** e.g. 3-period \(\Pi^Q(\mu_1, \mu_2, \mu_3)\) with extra constraint
 \[
 \int [q(x_1)(x_2 - x_1) + h(x_1, x_2)(x_3 - x_2)] \, d\gamma = 0, \quad \forall q \in C_b(X_1), \forall h \in C_b(X_1 \times X_2).
 \]
• Si vous voulez goûter des gourmandises italiennes : soutenance de HDR le 6 mars à 14h30 (à Orsay)! :)
• Si vous voulez goûter des gourmandises italiennes : soutenance de HDR le 6 mars à 14h30 (à Orsay)! :)

Thank You!!
Si vous voulez goûter des gourmandises italiennes : soutenance de HDR le 6 mars à 14h30 (à Orsay)! :)

Thank You!!

There are some more slides.
Spectral risk measures and MOT (with H. Ennaji, Q. Mérigot and B. Pass)
Spectral risk measures

We will consider spectral risk measures to quantify the risk associated with μ. Given an integrable, non-negative and nondecreasing function $\alpha : [0, 1] \rightarrow \mathbb{R}^+$ with $\int_0^1 \alpha(t)dt = 1$, the α-risk, is defined as

$$R_{\alpha}(\mu) = \int_0^1 F_{\mu}^{-1}(m)\alpha(m)dm.$$
Spectral risk measures

We will consider *spectral risk measures* to quantify the risk associated with μ. Given an integrable, non-negative and nondecreasing function $\alpha : [0, 1] \to \mathbb{R}_+$ with $\int_0^1 \alpha(t)dt = 1$, the α-risk, is defined as

$$R_\alpha(\mu) = \int_0^1 F_{\mu^{-1}}^{-1}(m)\alpha(m)dm.$$

- **Lemma (variational representation):** If the function α is non-decreasing, then

$$R_\alpha(\mu) = \max_{\gamma \in \Pi(\mu \times \text{Leb}[0,1], \mu)} \int_{\mathbb{R} \times \mathbb{R}} xyd\gamma(x, y),$$

the problem is indeed an optimal transport problem with 2 marginals.
We will consider *spectral risk measures* to quantify the risk associated with \(\mu \). Given an integrable, non-negative and non-decreasing function \(\alpha : [0, 1] \rightarrow \mathbb{R}_+ \) with \(\int_0^1 \alpha(t)dt = 1 \), the \(\alpha \)-risk, is defined as

\[
R_\alpha(\mu) = \int_0^1 F_{\mu}^{-1}(m)\alpha(m)dm.
\]

- **Lemma (variational representation):** If the function \(\alpha \) is non-decreasing, then

\[
R_\alpha(\mu) = \max_{\gamma \in \Pi(\alpha \# \text{Leb}_{[0,1]}, \mu)} \int_{\mathbb{R} \times \mathbb{R}} xyd\gamma(x, y),
\]

the problem is indeed an optimal transport problem with 2 marginals.

- **Lemma:** \(\mu \mapsto R_\alpha(\mu) \) is concave on \(\mathcal{P}(\mathbb{R}) \).
The m parameters case

Let denote by \(b : X_1 \times \cdots \times X_m \to \mathbb{R} \) the output function which describes the level of the risk depending on the parameters of the systems and \(\mu_1, \cdots, \mu_N \) the probability measures, associated to each parameter. Then, the problem of determining the worst case is then to maximize the \(\alpha \)-risk of \(b_\# \eta \) over all \(\eta \)

\[
\max_{\eta \in \Pi(\mu_1, \mu_2, \ldots, \mu_m)} R_\alpha(b_\# \eta).
\]
The m parameters case

Let denote by $b : X_1 \times \cdots \times X_m \to \mathbb{R}$ the output function which describes the level of the risk depending on the parameters of the systems and μ_1, \cdots, μ_N the probability measures, associated to each parameter. Then, the problem of determining the worst case is then to maximize the $\alpha -$ risk of $b\#\eta$ over all η

$$\max_{\eta \in \Pi(\mu_1, \mu_2, \ldots, \mu_m)} R_\alpha(b\#\eta).$$

- $b\#\gamma$ represents the distribution of outputs.
Let denote by \(b : X_1 \times \cdots \times X_m \to \mathbb{R} \) the output function which describes the level of the risk depending on the parameters of the systems and \(\mu_1, \cdots, \mu_N \) the probability measures, associated to each parameter. Then, the problem of determining the worst case is then to maximize the \(\alpha \)-risk of \(b_\# \eta \) over all \(\eta \)

\[
\max_{\eta \in \Pi(\mu_1, \mu_2, \ldots, \mu_m)} R_\alpha(b_\# \eta).
\]

- \(b_\# \gamma \) represents the distribution of outputs.
- **Proposition**: under some mild assumption on \(b \) there exists a solution to the above problem.
Moreover, \(\eta \mapsto R_\alpha(b_\# \eta) \) is concave on \(\mathcal{P}(\mathbb{R}^N) \).
The m parameters case

Let denote by $b : X_1 \times \cdots \times X_m \to \mathbb{R}$ the output function which describes the level of the risk depending on the parameters of the systems and μ_1, \cdots, μ_n the probability measures, associated to each parameter. Then, the problem of determining the worst case is then to maximize the $\alpha-$risk of $b \# \eta$ over all η

$$\max_{\eta \in \Pi(\mu_1, \mu_2, \ldots, \mu_m)} R_{\alpha}(b \# \eta).$$

- $b \# \gamma$ represents the distribution of outputs.
- **Proposition**: under some mild assumption on b there exists a solution to the above problem. Moreover, $\eta \mapsto R_{\alpha}(b \# \eta)$ is concave on $\mathcal{P}(\mathbb{R}^n)$.

- **A double optimization problem**:

$$R_{\alpha}(b \# \eta) = \max_{\sigma \in \Pi(\alpha \# \text{Leb}_{[0,1]}, b \# \eta)} \int x_0 y d\sigma(x_0, y).$$

Can we re-formulate it as a multi-marginal problem?
Let $\mu_0 = \alpha \# \text{Leb}_{[0,1]}$, the other X_i and μ_i representing the domains and distributions of the underlying variables, respectively, and

$$s(x_0, x_1, \ldots, x_m) = x_0 b(x_1, \ldots, x_m).$$

Then the following result holds

Theorem

A probability measure γ in $\Pi(\mu_0, \mu_1, \ldots, \mu_m)$ is optimal for the MMOT problem with the cost function defined above if and only if its $(1, \ldots, N)$-marginal is optimal in

$$\max_{\eta \in \Pi(\mu_1, \mu_2, \ldots, \mu_m)} R_\alpha(b \# \eta),$$

and $\tau_\gamma = \left((x_0, x_1, x_2, \ldots, x_m) \mapsto (x_0, b(x_1, x_2, \ldots, x_m)) \right)$ γ has monotone increasing support.
Stability

We can also establish some stability results with respect to the marginals. Indeed we have

Lemma

If \(\alpha \leq M \), then \(\mu \in \mathcal{P}(\mathbb{R}) \mapsto R_\alpha(\mu) \) is \(M \)-Lipschitz for the 1-Wasserstein distance,

\[
|R_\alpha(\mu) - R_\alpha(\nu)| \leq M \mathcal{W}_1(\mu, \nu).
\]

and for the multi-marginal case

Proposition

Assume that the cost function \(b \) is \(k \)-Lipschitz with respect to \(\| \cdot \|_p \) on \(\mathbb{R}^d \) and that \(\alpha \) is non-decreasing and bounded by \(M \). Then,

\[
\left| \sup_{\eta \in \Pi(\mu_1, \ldots, \mu_m)} R_\alpha(b_{\#}\eta) - \sup_{\eta \in \Pi(\nu_1, \ldots, \nu_m)} R_\alpha(b_{\#}\eta) \right| \leq M \left(k \sum_i \mathcal{W}_p(\mu_i, \nu_i) \right)^{1/p}
\]
Suppose that the output function b satisfies the following assumptions

- b is weak compatible;
- b monotone increasing in each $x_i \in S_+$ and monotone decreasing for each $x_i \in S_-.$

Then one can prove that the s-comonotone $(Id, G_1, \ldots, G_m)_\# \text{Leb}_{[0,1]}$ maximizes $\sup_{\eta \in \Pi(\mu_1, \ldots, \mu_m)} R_{\alpha}(b_\# \eta)$ and the maximal value is given by

$$\int_0^1 \alpha(t) b(G_1(t), \cdots, G_m(t)) dt.$$
Suppose that the output function b satisfies the following assumptions

- b is weak compatible;
- b monotone increasing in each $x_i \in S_+$ and monotone decreasing for each $x_i \in S_-$.

Then one can prove that the s-comonotone $(\text{Id}, G_1, \ldots, G_m)_\# \text{Leb}_{[0,1]}$ maximizes $\sup_{\eta \in \Pi(\mu_1, \ldots, \mu_m)} R_\alpha(b_\# \eta)$ and the maximal value is given by

$$\int_0^1 \alpha(t) b(G_1(t), \ldots, G_m(t)) \, dt.$$

Example: consider again the output function from (Iooss and Lemaître 2015)

$$S = Z_\nu + \left(\frac{Q}{BK_s \sqrt{\frac{Z_m - Z_\nu}{L}}} \right)^{0.6} - H_d - C_b,$$

up to a change of variable, it satisfies the assumption above. This implies that we have an explicit solution for this model!
Some extensions
• Suppose now that $X_i \subset \mathbb{R}^d$ with $d > 1$, $b : X_1 \times \cdots \times X_m \rightarrow \mathbb{R}$ and α as before.
Suppose now that $X_i \subset \mathbb{R}^d$ with $d > 1$, $b : X_1 \times \cdots \times X_m \to \mathbb{R}$ and α as before. We have to deal with MMOT where when the underlying variables lie in more general spaces.
• Suppose now that $X_i \subseteq \mathbb{R}^d$ with $d > 1$, $b : X_1 \times \cdots \times X_m \rightarrow \mathbb{R}$ and α as before.
• We have to deal with MMOT where when the underlying variables lie in more general spaces.
• **Warning:** it is generally not possible to derive explicit solutions! But we can still prove that in some cases the solutions are of Monge type.
• Suppose now that \(X_i \subset \mathbb{R}^d \) with \(d > 1 \), \(b : X_1 \times \cdots \times X_m \to \mathbb{R} \) and \(\alpha \) as before.

• We have to deal with MMOT where when the underlying variables lie in more general spaces.

• **Warning:** it is generally not possible to derive explicit solutions! But we can still prove that in some cases the solutions are of Monge type.

Proposition

Suppose that \(m = 2 \), \(\mu_1 \) absolutely continuous with respect to Lebesgue measures and that \(x_2 \mapsto D_{x_1} b(x_1, x_2) \) is injective for each fixed \(x_2 \), and that for each \((x_1, x_2) \in X_1 \times X_2 \) we have

\[
D_{x_2} b(x_1, x_2) \left[D^2_{x_1 x_2} b(x_1, x_2) \right]^{-1} D_{x_1} b(x_1, x_2) > 0.
\]

Then the solution of \(\sup_{\eta \in \Pi(\mu_1, \ldots, \mu_m)} R_\alpha(b_\# \eta) \) *is concentrated on a graph, aka is of Monge type.*
We consider the framework in (Ekeland, Alfred Galichon, and Henry 2012) in which risk is measured in a multi-dimensional way. We have now a vector valued output function $b : X_1 \times \cdots \times X_m \rightarrow \mathbb{R}^d$.

Define a multi-variate risk measure on the distribution $b \# \eta$ of output variables as in (ibid.) by

$$R_{\alpha} (b \# \eta) = \max_{\sigma \in \Pi(\mu, \nu)} \int z \cdot y \ d\sigma$$

where $\mu = b \# \eta$ and $\nu = \alpha \# \text{Leb}$ with $\alpha : [0, 1] \rightarrow \mathbb{R}^d$, we consider the problem of maximizing $R_{\alpha} (b \# \eta)$ over all $\eta \in \Pi(\mu_1, \ldots, \mu_N)$.

Some results:

• If the underlying variables are one dimensional and b is supermodular that the solution is still of Monge type.

• If $\nu \ll \text{Leb}$, $m \leq d$ and b is invertible then there exists a unique solution concentrated on a graph of y.

Multidimensional measures of risk

- We consider the framework in (Ekeland, Alfred Galichon, and Henry 2012) in which risk is measured in a multi-dimensional way. We have now a vector valued output function $b : X_1 \times \cdots \times X_m \to \mathbb{R}^d$.
- Define a multi-variate risk measure on the distribution $b_\# \eta$ of output variables as in (ibid.) by

$$R_\alpha(b_\# \eta) = \max_{\sigma \in \Pi(\mu, \nu)} \int z \cdot y \, d\sigma$$

where $\mu = b_\# \eta$ and $\nu = \alpha_\# \text{Leb}$ with $\alpha : [0, 1]^d \to \mathbb{R}^d$, we consider the problem of maximizing $R_\alpha(b_\# \eta)$ over all $\eta \in \Pi(\mu_1, \ldots, \mu_N)$.
Multidimensional measures of risk

- We consider the framework in *(Ekeland, Alfred Galichon, and Henry 2012)* in which risk is measured in a multi-dimensional way. We have now a vector valued output function \(b : X_1 \times \cdots \times X_m \rightarrow \mathbb{R}^d \).
- Define a multi-variate risk measure on the distribution \(b\# \eta \) of output variables as in *(ibid.)* by

\[
R_\alpha(b\# \eta) = \max_{\sigma \in \Pi(\mu, \nu)} \int z \cdot y \, d\sigma
\]

where \(\mu = b\# \eta \) and \(\nu = \alpha \# \text{Leb} \) with \(\alpha : [0,1]^d \rightarrow \mathbb{R}^d \), we consider the problem of maximizing \(R_\alpha(b\# \eta) \) over all \(\eta \in \Pi(\mu_1, \ldots, \mu_N) \).

Some results:
- If the underlying variables are one dimensional and \(b \) is supermodular that the solution is still of Monge type.
Multidimensional measures of risk

- We consider the framework in *Ekeland, Alfred Galichon, and Henry 2012* in which risk is measured in a multi-dimensional way. We have now a vector valued output function $b : X_1 \times \cdots \times X_m \rightarrow \mathbb{R}^d$.
- Define a multi-variate risk measure on the distribution $b_{\#}\eta$ of output variables as in *(ibid.)* by

$$R_\alpha(b_{\#}\eta) = \max_{\sigma \in \Pi(\mu, \nu)} \int z \cdot y \, d\sigma$$

where $\mu = b_{\#}\eta$ and $\nu = \alpha_{\#}\text{Leb}$ with $\alpha : [0, 1]^d \rightarrow \mathbb{R}^d$, we consider the problem of maximizing $R_\alpha(b_{\#}\eta)$ over all $\eta \in \Pi(\mu_1, \ldots, \mu_N)$.

Some results:
- If the underlying variables are one dimensional and b is supermodular that the solution is still of Monge type.
- If $\nu \ll \text{Leb}$, $m \leq d$ and b is invertible then there exists a unique solution concentrated on a graph of y.