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A crash introduction to (multi-marginal)
Optimal Transport



Classical Optimal Transportation Theory

Consider two probability measures µi on Xi ⊆ Rd , and c a cost function (e.g. continuous or l.s.c.), the
Optimal Transport (OT) problem is defined as follows

OT0 := inf

{∫
X
c(x1, x2)dγ(x1, x2) | γ ∈ Π(µ1, µ2)

}
(1)

where Π(µ1, µ2) denotes the set of couplings γ(x1, x2) ∈ P(X ) having µ1 and µ2 as marginals.
• Solution à la Monge the transport plan γ is deterministic (or à la Monge) if γ = (Id ,T )]µ1 where
T]µ1 = µ2.

• Duality:

sup {J(ϕ1, ϕ2) | (ϕ1, ϕ2) ∈ K} . (2)

where

J(ϕ1, ϕ2) :=

∫
X1
ϕ1dµ1 +

∫
X2
ϕ2dµ2

and K is the set of bounded and continuous functions
(ϕ1, ϕ2) such that ϕ1(x1) + ϕ(x2) ≤ c(x1, x2).
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The Multi-Marginal Optimal Transportation

Take (1) m probability measures µi ∈ P(Xi ); (2) c a cost function. Then the multi-marginal OT
problem reads as:

Multi-Marginal Optimal Transport problem
It reads as:

MOT0 := inf
γ∈Π(µ1,...,µm)

∫
X
c(x1, . . . , xm)dγ(x1, . . . , xm) (3)

where Π(µ1, . . . , µm) denotes the set of couplings γ(x1, . . . , xm) having µi as marginals.
• Solution à la Monge: γ = (Id ,T2, . . . ,Tm)]µ1 where Ti]µ1 = µi .
• Duality: Both 2 and m marginal OT problems admit a useful dual formulation

Why is it a difficult problem to treat?
Example: m = 3, d = 1, µi = L[0,1] ∀i and c(x1, x2, x3) = |x1 + x2 + x3|2.

• Uniqueness fails (Simone Di Marino, Gerolin, and Luca Nenna 2017);

• ∃ Ti optimal, are not differentiable at any point and they are fractal maps ibid., Thm 4.6
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Why are we interested in MOT?

• The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and
G. Carlier 2011)): statistics, machine learning, image processing;

• Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics.

• In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and
Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan γ(x1, . . . , xm) returns the
probability of finding electrons at position x1, . . . , xm;

• Incompressible Euler Equations (Brenier 1989) : γ(ω) gives “the mass of fluid” which follows a
path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).

• Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);

• Risk measures (Ennaji, Mérigot, Luca Nenna, and Pass 2022)

• Martingale transport, etc
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The real line case

Given a probability measure µ ∈ P(R), its inverse cumulative function (c.d.f) of as

F−1
µ (m) = inf{x ∈ R | Fµ(x) ≥ m} where Fµ(x) = µ((−∞, x ]).

Theorem (see (Filippo Santambrogio 2015; Rachev and Rüschendorf 1998))
Let the cost function satisfies the condition

c(x ′, y ′)− c(x , y ′)− c(x ′, y) + c(x , y) ≤ 0,

for x ′ ≥ x , y ′ ≥ y . Then the optimal transport plan γ is of the form γ = (F−1
µ1 ,F

−1
µ2 )]Leb[0,1]

• Question: can we extend this result to the multi-marginal case?

Theorem ((Guillaume Carlier 2003))

Given c ∈ C2(X1 × · · · × Xm) and strict submodular cost, that is ∂2
xi xj c < 0 for all i 6= j . Then the

optimal γ is of the form γ = (F−1
µ1 , · · · ,F

−1
µm

)]Leb[0,1]
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Definition (Compatibility)
We will say that s is compatible if

∂2
xi xj c[∂2

xk xj c]−1∂2
xk xi c(x1, . . . , xm) < 0,

for each i , j , k = 1, . . . ,m and each (x1, . . . , xm) ∈ X1 × · · · × Xm.

Rmk: Note that if c compatible, the condition above implies that each ∂2
xi xj c 6= 0 throughout

thedomain X1 × . . .× Xm; continuity then yields that each ∂2
xi xj c is either always positive or always

negative. Partition the set {1, 2, ...m} = P+ ∪ P− of indices into disjoint subsets P+ and P− such that
1 ∈ P+ and
• for each i 6= j , ∂2

xi xj c < 0 throughout X1 × · · · × Xm if either both i and j are in P− or if both are in
P+;
• ∂2

xi xj c > 0 throughout X1 × · · · × Xm otherwise.
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Comonotone plan for compatible cost

Definition
For a compatible c, we define the c - comonotone coupling by γ = (G1,G2, . . . ,Gm)#Leb[0,1], where
G1 = F−1

µ1 and for each i = 1, 2, . . . ,m

Gi (m) =

F−1
µi

(m) if i ∈ P−,

F−1
µi

(1−m) if i ∈ P+.
(4)

and in higher dimension?
For the quadratic cost or under some strong assumptions on the cost (Gangbo and Swiech 1998; Pass
2012; Pass 2011; Pass 2015; Kim and Pass 2013).
Good news: we can estimate the dimension of the support of the optimal plans.
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A signature condition on the second mixed derivatives

• Consider (1) m probability measures µi ∈ P(Xi ) where Xi are C2 submanifolds of dimension di ; (2)
c ∈ C2(X); let (3) P be the set of partitions of {1, . . . ,m} into two non empty disjoint subsets:
p := {p−, p+} ∈ P;

• For each p ∈ P we denote by gp the bilinear form on X as

gp =
∑

i∈p−,j∈p+

D2
xi ,xj c +

∑
i∈p+,j∈p−

D2
xi ,xj c.

• Define G := {
∑

p∈P tpgp | (tp)p∈P ∈ ∆P} to be the convex hull generated by the gp.

Theorem (Upper bound on the dimension of the support of the optimal plan (Pass 2011))
Let γ0 a solution to MOT0 and suppose that at some point x ∈ X, the signature of some g ∈ G is
(d+(g), d−(g), d0(g)). Then, there exists a neighbourhood Nx of x such that Nx

⋂
supp(γ0) is

contained in a Lipschitz submanifold with dimension no greater than
∑

i di − d+(g).
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Application I: MMOT for computing
geodesics in the Wasserstein space



The three formulations of quadratic Optimal Transport

Three formulations of Optimal Transport problem) with the quadratic cost :

• The static

inf

{∫
X1×X2

1
2
|x1 − x2|2dγ | γ ∈ Π(µ1, µ2)

}
• The dynamic (Lagrangian) (C = H1([0, 1];X ) and et : [0, 1]→ X )

inf

{∫
C

∫ 1

0

1
2
|ω̇|2dtdQ(ω) | Q ∈ P(C), (e0)]Q = µ1, (e1)]Q = µ2

}
• The dynamic (Eulerian), aka the Benamou-Brenier formulation

inf

∫ ∫
1
2
|vt |2ρtdxdt s.t. ∂tρt +∇ · (ρtvt) = 0

ρ(0, ·) = µ1, ρ(1, ·) = µ2

8/32



Some remarks and a MMOT formulation

Remarks:

• Consider the optimal solutions for the three formulations γ?,Q?, ρ?t then

πt(x , y)]γ = (et)]Q = ρ?t ,

where πt(x , y) = (1− t)x + ty .

• if we discretise in time (let take T + 1 time steps) the Lagrangian formulation and imposing that
ω(ti ) = xi (ti = i 1

T
for i = 0, · · · ,T ) we get the following discrete (in time) MMOT problem

inf

∫
XT

1
2T

T∑
i=0

|xi+1 − xi |2dγ(x0, · · · , xT ) s.t

γ ∈ P(XT+1), π0,]γ = µ1, πT ,]γ = µ2
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The geodesic in 2D

Figure 1: t = 0
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The geodesic in 2D

Figure 2: t =
1
14
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The geodesic in 2D

Figure 3: t =
2
14
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The geodesic in 2D

Figure 4: t =
3
14
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The geodesic in 2D

Figure 5: t =
4
14
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The geodesic in 2D

Figure 6: t =
5
14
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The geodesic in 2D

Figure 7: t =
6
14
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The geodesic in 2D

Figure 8: t =
7
14
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The geodesic in 2D

Figure 9: t =
8
14
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The geodesic in 2D

Figure 10: t =
9
14
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The geodesic in 2D

Figure 11: t =
10
14
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The geodesic in 2D

Figure 12: t =
11
14
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The geodesic in 2D

Figure 13: t =
12
14
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The geodesic in 2D

Figure 14: t =
13
14
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The geodesic in 2D

Figure 15: t = 1
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Application II: MMOT and the
electron-electron repulsion



The (optimal) electronic configuration via MMOT

Consider now the cost function
c(x1, · · · , xm) =

∑
i 6=j

1
|xi − xj |

,

and µ1 = · · · = µm = ρ (we refer to ρ as the electronic density) then the MMOT gives the electronic
configuration (namely the optimal transport plan γ) which minimises the electron-electron repulsion.
Remarks:

• Since the cost is symmetric in the marginals then the dual problem reduces to look for only one
potential;

• The cost is also radially symmetric which means that when ρ is radially symmetric then the d = 3
pb. reduces to a one dimensional pb;

• Existence of Monge solutions is still an open problem for d > 1;
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Some simulations for m = 3, 4, 5 in 1D

We take the density ρ(x) = m
10 (1 + cos(π5 x)) and...

N = 3 N = 4 N = 5

Figure 16: Support of the projected plan γ1,2
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The transition from spread to deterministic plans for m = 3 and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure 17: α = 0
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The transition from spread to deterministic plans for m = 3 and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure 18: α = 0.1429
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The transition from spread to deterministic plans for m = 3 and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure 19: α = 0.2857
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The transition from spread to deterministic plans for m = 3 and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure 20: α = 0.4286
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The transition from spread to deterministic plans for m = 3 and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure 21: α = 0.5714
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The transition from spread to deterministic plans for m = 3 and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure 22: α = 0.7143
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The transition from spread to deterministic plans for m = 3 and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure 23: α = 0.8571
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The transition from spread to deterministic plans for m = 3 and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure 24: α = 1
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Entropic multi-marginal optimal
transport



Definition of the problem

Consider

• m ≥ 2 probability measures µi compactly supported on C2 submanifolds Xi ⊆ RN of dim di ;

• a cost function c : X→ R+ (e.g. continuous or lsc) where X := ×m
i Xi ;

Entropic Multi-Marginal Optimal Transport problem
It reads as:

MOTε := inf
γ∈Π(µ1,...,µm)

{∫
X
c(x1, . . . , xm) dγ(x1, . . . , xm) + εEnt(γ | ⊗m

i=1 µi )

}
,

where

• Π(µ1, . . . , µm) is the set of couplings γ ∈ P(X) having µi as marginals

• Ent(γ |π) is the Boltzmann-Shannon entropy, that is

Ent(γ |π) =

∫
ρ log ρdπ, if γ = ρπ.
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Some useful remarks

• ε = 0 and m = 2. Classical Optimal Transport problem. Convex problem, but may have several
solutions γ, with or without finite entropy!

• ε > 0. Strictly convex cost =⇒ unique solution γε with finite entropy.
• It admits a dual problem

MOTε = sup

{
m∑
i=1

∫
Xi

ϕi (xi )dµi − ε log

(∫
X
e

∑m
i=1 ϕi (xi )−c(x)

ε d⊗m
i=1 µi

)
| ϕi ∈ Cb(Xi )

}
.

• The solution γε is "almost" explicit

γε = exp

(
⊕m

i=1ϕ
ε
i − c

ε

)
⊗m

i=1 µi .

• Easy to solve numerically via Sinkhorn (take m = 2 for simplicity)

ϕk+1
1 = −ε log

(∫
X2

e
ϕk

2−c

ε dµ2

)
, ϕk+1

2 = −ε log

(∫
X1

e
ϕk+1

1 −c

ε dµ1

)
.
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The asymptotics for the MOTε (with P.
Pegon)



What are we interested in?and what is known...

Asymptotics for ε→ 0 of

• the cost MOTε

• the optimal entropic plan γε and optimal Schrödinger potentials (ϕεi )0≤i≤m

First remark: depends heavily on c = c(x) and the marginals µi ’s.
What is known? Mostly for the m = 2 case.

• Convergence rate under strong regularity assumptions (Pal 2019), second-order expansion for
dynamical quadratic OT (Conforti and Tamanini 2021)

• Convergence rate for 2−marginal and a general class of C2 non-degenerate costs
(Guillaume Carlier, Pegon, and Tamanini 2022)

• Upper bound for the multi-marginal (Eckstein and Nutz 2022) with a condition on the optimal
transport plans in terms of quantization dimension ;
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The upper bound

Assumptions

• µi are compactly supported measures in L∞(Xi ) where Xi are C2 submanifolds of dimension di ;

• c ∈ C
1,1
loc(X) or more generally locally semi-concave (also, weaker upper bound c ∈ C0,1(X));

Goal: get an upper bound of the form

MOTε −MOT0 ≤
1
2

( ∑
1≤i≤m

di −max
i

di
)
ε log(1/ε) + O(ε).

Strategy. Straightforward (almost) generalization of the upper bound in (Guillaume Carlier, Pegon,
and Tamanini 2022) on C2 submanifolds:

• Build a suitable competitor for the entropic (primal) problem

MOTε = inf
γ∈Π(µ1,...,µm)

{∫
X
c(x1, . . . , xm) dγ(x1, . . . , xm) + εEnt(γ | ⊗m

i=1 µi )

}
.

using an optimizer for (MOT0) and a block-approximation of (Guillaume Carlier, Duval, Peyré,
and Schmitzer 2017).

• Show and use some integral variant of Alexandrov theorem on convex functions.
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Upper bound: some details for m = 2, marginals µ1, µ2

For blocks
⊔

n An = RN of diameter ≤ δ, take as
competitor

γδ :=
∑
i,j∈N

γ0(Ai × Aj)
µ1 Ai

µ1(Ai )
⊗ µ2 Aj

µ2(Aj)
.
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• Plug this competitor into the primal problem, write E = c − ϕ⊕ ψ the duality gap, then:

MOTε ≤
∫
Rd×Rd

cdγδ + εEnt(γδ|µ1 ⊗ µ2) = MOT0 +

∫
Rd×Rd

Ed(γδ − γ0) + εEnt(γδ|µ1 ⊗ µ2)

• Bound the entropy term, for well-chosen blocks:

Ent(γδ |µ1 ⊗ µ2) =
∑
i,j∈N

γ0(Ai × Aj) log

(
γ0(Ai × Aj)

µ1(Ai )µ2(Aj)

)
≤
∑
j∈N

µ2(Aj) log(1/µ2(Aj)) = d2 log(1/δ) + O(1).

• Show that
∫
Rd×Rd Ed(γδ − γ0) = O(δ2) then take ε = δ2 (integral Alexandrov-type estimate):

MOTε ≤ MOT0 + O(δ2) + d2ε log(1/δ) + O(ε) = MOT0 +
d+

2
ε log(1/ε) + O(ε).
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Reminder on multi-marginal optimal transport

Consider the unregularized problem

MOT0 = inf
γ∈Π(µ1,...,µm)

{∫
X
c(x1, . . . , xm) dγ(x1, . . . , xm)

}
.

Good news: we can estimate the dimension of the support of the optimal plans.

• for each p ∈ P we
denote by gp the bilinear form on X as

gp =
∑

i∈p−,j∈p+

D2
xi ,xj c +

∑
i∈p+,j∈p−

D2
xi ,xj c.

• Define G := {
∑

p∈P tpgp | (tp)p∈P ∈ ∆P} to be the convex hull generated by the gp.

Theorem (Upper bound on the dimension of the support of the optimal plan (Pass 2011))
Let γ0 a solution to MOT0 and suppose that at some point x ∈ X, the signature of some g ∈ G is
(d+(g), d−(g), d0(g)). Then, there exists a neighbourhood Nx of x such that Nx

⋂
supp(γ0) is

contained in a Lipschitz submanifold with dimension no greater than
∑

i di − d+(g).
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Lower bound

• µi be compactly supported measures over Xi with L∞ densities;
• c ∈ C2(X);
• for every x ∈ X, d+(gx) ≥ d?;
Goal: get a lower bound of the form

MOTε −MOT0 ≥
d?

2
ε log(1/ε)− Lε.

Strategy

• Use the dual regularized problem (in log form):

• Take Kantorovich potentials (solution to un-regularized dual) as competitors and show that the
duality gap E

.
= c −⊕m

i=1ϕi grows enough near Σ = {E = 0}.
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Lower bound: some details

Let p = {p−, p+} ∈ P we identify x ∈ X with (x−, x+) and write ϕ±(y) =
∑

i∈p± ϕi (yi ).

• If (ϕi ) are c-conjugate, for x , x ′ ∈ X, we have:

E(x ′) = c(x ′−, x
′
+)− ϕ−(x ′−)− ϕ+(x ′+)

≥ c(x ′−, x
′
+)− (c(x ′−, x+)− ϕ+(x+))− (c(x−, x

′
+)− ϕ−(x−))

= c(x ′−, x
′
+)− c(x ′−, x+)− c(x−, x

′
+) + c(x−, x+)− E(x).

• By Taylor’s integral formula

E(x ′) + E(x) ≥
∫ 1

0

∫ 1

0
D2

p−p+
c(xs,t)(x ′− − x−, x

′
+ − x+) =

1
2
gp(x̄)(x ′ − x) + Ox̄(‖x ′ − x‖2)

and taking a convex combination g =
∑

tpgp, for diagonalizing coordinates (u+, u−, u0)

E(x ′) + E(x) ≥ |u+(x ′)− u+(x)|2 − |u−(x ′)− u−(x)|2 + O(|x ′ − x |2)

=⇒ quadratic detachment of the duality gap E in d+(g) ≥ d? dimensions.
• Taking (ϕi )1≤i≤m as competitor in the dual of the entropic MOT:

MOTε ≥ MOT0 − ε log

(∫
Π1≤i≤mXi

e−
E
ε d⊗1≤i≤m µi

)
≥ MOT0 +

d?

2
ε log(1/ε)− O(ε).
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Consequences and some examples

• m = 2 and non-degenerate cost function, then we retrieve the bounds in (Guillaume Carlier, Pegon,
and Tamanini 2022);

• m = 2 and degenerate cost function such that D2
x,yc has rank r then the lower bound is such that

d? = r ;
• m = 2, d2 < d1 (aka the unequal dimensional case) and D2

x,yc has full rank d2 then

MOTε = MOT0 +
d2

2
ε log(1/ε) + O(ε)

• Consider di = d for all i and the cost c = h(
∑m

i=1 xi ) with D2h < 0 then d∗ = (m − 1)d and

MOTε = MOT0 +
(m − 1)d

2
ε log(1/ε) + O(ε).

This is the case of Gangbo-Święch cost, that is
∑

i<j |xi − xj |2 which corresponds to the multi-marginal
formulation of the Wasserstein barycenter problem.
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Another way to characterise (and solve)
MOTε: an ODE approach (with B.
Pass)



What are we interested in and direction of our work

We are interested in solving the entropic multi-marginal optimal transport.

Main steps of the work:

1. Introduce a suitable one parameter family of cost functions cη, interpolating between the original
multi-marginal problem and a simpler one whose complexity scales linearly in the number of
marginals;

2. Differentiate the optimality condition of the dual MOTε := supϕ Φ(ϕ, η) with respect to η (ε is
now fixed);

3. The solution of the original multi-marginal problem can be now recovered by solving an ordinary
differential equation (ODE) whose initial condition is the solution to the simpler problem;

dϕ
dη

(η) = −[D2
ϕ,ϕΦ(ϕ(η), η)]−1 ∂

∂η
∇ϕΦ(ϕ(η), η),

ϕ(0) = ϕw ,

Remark: This method is actually inspired by the one introduced in (G. Carlier, A. Galichon, and
F. Santambrogio 2009/10) to compute the Monge solution of the two marginal problem, starting
from the Knothe-Rosenblatt rearrangement.
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How to derive the differential equation

Some assumptions to make it simple:

1. (Equal marginals and discrete set) All the marginals are equal µi = ρ =
∑

x∈X ρxδx , where X is a
finite subset.

2. (Pair-wise cost) cη(x1, . . . , xm) := η
∑m

i=2
∑m

j=i+1 w(xi , xj) +
∑∑∑m

i=2 w(x1, xi ).

3. (Symmetric cost) The two body cost w is symmetric w(x , y) = w(x , y).

4. (Finite cost) The two body cost function w : X × X → R is everywhere real-valued.

Step 1: Consider the dual problem (it is convex!);

inf
ϕ
{Φ(ϕ, η)} , (5)

where

Φ(ϕ, η) := −(m − 1)

∫
X

ϕdρ+ ε

∫
X

log

(∫
Xm−1

exp

(∑m
i=2 ϕ− cη

ε

)
d⊗m−1 ρ

)
︸ ︷︷ ︸

Log-Sum-Exp

dρ.
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Step 2: Thanks to convexity we have that the minimizers are characterized by ∇ϕΦ(ϕ, η) = 0. Then, by
differentiate w.r.t. η we obtain

dϕ
dη

(η) = −[D2
ϕ,ϕΦ(ϕ(η), η)]−1 ∂

∂η
∇ϕΦ(ϕ(η), η).

Step 3: The following well-posedness theorem then holds.

Theorem

Let ϕ(η) be the solution to the dual problem above for all η ∈ [0, 1]. Then η 7→ ϕ(η) is C1 and is the
unique solution to the Cauchy problem with ϕ(0) = ϕw .

Sketch of the proof:

• The pure second derivatives with respect to ϕ as well as the mixed second derivatives with respect to
ϕ and η exist and are Lipschitz;

• The Hessian with respect to ϕ is invertible: since the cost is bounded then the potentials are bounded
too ((carlier2021linear)). So one can restrict the study of the well-posedness of the ODE on the set

U := {ϕ | ϕx0 = 0, ||ϕ||∞ ≤ C}.

On this set the functional Φ is now strongly convex.
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Theorem

Let ϕ(η) be the solution to the dual problem above for all η ∈ [0, 1]. Then η 7→ ϕ(η) is C1 and is the
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Sketch of the proof:
• The pure second derivatives with respect to ϕ as well as the mixed second derivatives with respect to
ϕ and η exist and are Lipschitz;

• The Hessian with respect to ϕ is invertible: since the cost is bounded then the potentials are bounded
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The algorithm to compute the ODE solution

• Algorithm to compute the ϕ via explicit Euler method takes the following form:

Require: ϕ(0) = ϕw

1: while ||ϕ(k+1) − ϕ(k)|| <tol do
2: D(k) := D2

ϕ,ϕΦ(ϕ(k), kh)

3: b(k) := − ∂

∂ε
∇ϕΦ(ϕ(k), kh)

4: Solve D(k)z = b(k)

5: ϕ(k+1) = ϕ(k) + hz

6: end while

Remarks:

• The Euler scheme converges linearly and the uniform error between the discretized solution
obtained via the scheme and the solution to the ODE is O(h);

• Thanks to the regularity of the RHS of the ODE one can apply high order methods.

• At each step k we obtaine the solution of the entropic multi-marginal problem with cost ckh!
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Comparison with Sinkhorn

Consider ε = 0.006, m = 3, the uniform measure on [0, 1] uniformily discretized with 400 gridpoints,
the pairwise interaction w(x , y) = − log(0.1 + |x − y |) and a reference solution ϕε computed via a
gradient descent algorithm. Then we have the following comparison between the ODE approach and
Sinkhorn in terms of performances

3rd RK 5th RK 8th RK Sinkhorn
relative error 1.47× 10−5 7.8× 10−6 7.62× 10−6 5.46× 10−6

iterations 87 87 87 820
CPU time (sec) 72.39 158.9 385.1 102.8
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Some numerical results

• Log cost and support of the coupling γη1,2.

η = 0 η = 0.25 η = 0.75 η = 1
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Generalized solutions to incompressible Euler Equations

• Brenier’s relaxed formulation consists in finding a probability measure over absolutely continuous
paths which minimizes the average kinetic energy.

• The incompressibility at each time t, the distribution of position need be uniform.

• If we consider a uniform discretization of [0,T ] (where T is the final time) with m steps in time,
we recover a multi-marginal formulation of the Brenier principle with the specific cost function

c(x1, . . . , xm) =
m2

2T 2

m−1∑
i=1

|xi+1 − xi |2 + β|F (x1)− xm|2,

where β > 0 is a penalization parameter in order to enforce the initial-final constraint.

• If we consider now the ODE setting, we have now to deal with a non symmetric case and so to
solve a system, still well posed, of ODEs. In particular we consider the following cη cost

cη(x1, . . . , xm) =
m2

2T 2 |x2 − x1|2 + η

(
m2

2T 2

m−1∑
i=2

|xi+1 − xi |2
)

+ β|F (x1)− xm|2.
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At η = 1 we plot the coupling γ1,i giving the probability of finding a generalized particle initially at x1

to be at xi at time i .

• F (x) = 1− x

t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

• F (x) = (x + 1/2) mod 1

t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1
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Extension to general multi-marginal problems
(joint work with B. Pass and J. Zoen-Git Hiew )

Consider the following "1st" generalization

MOTε := inf
γ∈Π(µ1,...,µm)

{∫
X
c(η, x1, . . . , xm) dγ(x1, . . . , xm) + εEnt(γ | ⊗m

i=1 µi )

}
,

where the cost function is not anymore symmetric but such that c(0, x1, . . . , xm) give a MOT easy to
solve:

1. c(0, x1, . . . , xm) = 0;

2. c(η, x1, . . . , xm) is the Euler cost;

3. c(η, x1, z , x2) = (1− η)|x1 − z |2 + η|z − x3|2, γ is a 3 marginals coupling with only two fixed
marginals, µ1 and µ2. Then the z−marginal of γ gives the Wasserstein geodesic at time η.

4. c(η, x1, . . . , xm, z) =
∑m

i=1 λi (η)|xi − z |2 such that
∑m

i=1 λi (η) = 1 for every η and γ is an m + 1
coupling with m fixed marginals. Then at for every η the z−marginal of γ is the Wasserstein
barycenter with weights λi (η).
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Extension to general multi-marginal problems
(joint work with B. Pass and J. Zoen-Git Hiew )

Consider the following "2nd" generalization

MOTε := inf
γ∈ΠQ(µ1,...,µm)

{∫
X
c(η, x1, . . . , xm) dγ(x1, . . . , xm) + εEnt(γ | ⊗m

i=1 µi )

}
,

where ΠQ(µ1, . . . , µm) is the set of coupling having µ1, . . . , µm as marginals and satisfying an
additional constraint

∫
qdγ = 0 for all q ∈ Q where Q be a set of bounded continuous function on X .

• Classical case: Q = {0};

• Generalized Euler solution: force γ1,m = (Id ,F )]L ;
• Martingale OT: ΠQ(µ1, µ2) with extra constraint∫

q(x1)(x2 − x1)dγ = 0, ∀q ∈ Cb(X1).

• Multi-period martingale OT: e.g. 3−period ΠQ(µ1, µ2, µ3) with extra constraint∫
[q(x1)(x2 − x1) + h(x1, x2)(x3 − x2)]dγ = 0, ∀q ∈ Cb(X1), ∀h ∈ Cb(X1 × X2).
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Spectral risk measures and MOT (with
H. Ennaji, Q. Mérigot and B. Pass)



Spectral risk measures

We will consider spectral risk measures to quantify the risk associated with µ. Given an integrable,
non-negative and nondecreasing function α : [0, 1]→ R+ with

∫ 1
0 α(t)dt = 1, the α-risk, is defined as

Rα(µ) =

∫ 1

0
F−1
µ (m)α(m)dm.

• Lemma (variational representation): If the function α is non-decreasing, then

Rα(µ) = max
γ∈Π(α]Leb[0,1],µ)

∫
R×R

xydγ(x , y),

the problem is indeed an optimal transport problem with 2 marginals.
• Lemma: µ 7→ Rα(µ) is concave on P(R).
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The m parameters case

Let denote by b : X1 × · · · × Xm → R the output function which describes the level of the risk
depending on the parameters of the systems and µ1, · · · , µN the probability measures, associated to
each parameter. Then, the problem of determining the worst case is then to maximize the α−risk of
b]η over all η

max
η∈Π(µ1,µ2,...,µm)

Rα(b#η).

• b#γ represents the distribution of outputs.
• Proposition: under some mild assumption on b there exists a solution to the above problem.
Moreover, η 7→ Rα(b#η) is concave on P(RN).
• A double optimization problem:

Rα(b#η) = max
σ∈Π(α]Leb[0,1],b#η)

∫
x0ydσ(x0, y).

Can we re-formulate it as a multi-marginal problem?
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Link between spectral measures and MMOT

Let µ0 = α]Leb[0,1] , the other Xi and µi representing the domains and distributions of the underlying
variables, respectively, and

s(x0, x1, . . . , xm) = x0b(x1, . . . , xm).

Then the following result holds

Theorem
A probability measure γ in Π(µ0, µ1, . . . , µm) is optimal for the MMOT problem with the cost
function defined above if and only if its (1, . . . ,N)-marginal is optimal in
maxη∈Π(µ1,µ2,...,µm) Rα(b#η), and τγ =

(
(x0, x1, x2, . . . , xm) 7→ (x0, b(x1, x2, . . . , xm))

)
#
γ has

monotone increasing support.
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Stability

We can also establish some stability results with respect to the marginals. Indeed we have

Lemma

If α ≤ M, then µ ∈ P(R) 7→ Rα(µ) is M-Lipschitz for the 1-Wasserstein distance,

|Rα(µ)− Rα(ν)| ≤ MW1(µ, ν).

and for the multi-marginal case

Proposition

Assume that the cost function b is k-Lipschitz with respect to || · ||p on Rd and that α is
non-decreasing and bounded by M. Then,

| sup
η∈Π(µ1,...,µm)

Rα(b#η)− sup
η∈Π(ν1,...,νm)

Rα(b#η)| ≤ M

(
k
∑
i

Wp(µi , νi )

)1/p
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Solutions for one-dimensional assets and compatible outputs

Suppose that the output function b satisfies the following assumptions

• b is weak compatible;

• b monotone increasing in each xi ∈ S+ and monotone decreasing for each xi ∈ S−.

Then one can prove that the s-comonotone (Id ,G1, . . . ,Gm)#Leb[0,1] maximizes supη∈Π(µ1,...,µm) Rα(b#η)

and the maximal value is given by ∫ 1

0
α(t)b(G1(t), · · · ,Gm(t))dt.

• Example : consider again the output function from (Iooss and Lemaître 2015)

S = Zν +

(
Q

BKs

√
Zm−Zν

L

)0.6

− Hd − Cb,

up to a change of variable, it satisfies the assumption above. This implies that we have an explicit
solution for this model!
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Some extensions



Higher dimensional assets

• Suppose now that Xi ⊂ Rd with d > 1, b : X1 × · · · × Xm → R and α as before.

• We have to deal with MMOT where when the underlying variables lie in more general spaces.
• Warning: it is generally not possible to derive explicit solutions! But we can still prove that in some
cases the solutions are of Monge type.

Proposition
Suppose that m = 2, µ1 absolutely continuous with respect to Lebesgue measures and that
x2 7→ Dx1b(x1, x2) is injective for each fixed x2, and that for each (x1, x2) ∈ X1 × X2 we have

Dx2b(x1, x2)[D2
x1x2b(x1, x2)]−1Dx1b(x1, x2) > 0.

Then the solution of supη∈Π(µ1,...,µm) Rα(b#η) is concentrated on a graph, aka is of Monge type.
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Multidimensional measures of risk

• We consider the framework in (Ekeland, Alfred Galichon, and Henry 2012) in which risk is measured
in a multi-dimensional way. We have now a vector valued output function b : X1 × · · · × Xm → Rd .

• Define a multi-variate risk measure on the distribution b#η of output variables as in (ibid.) by

Rα(b#η) = max
σ∈Π(µ,ν)

∫
z · y dσ

where µ = b]η and ν = α]Leb with α : [0, 1]d → Rd , we consider the problem of maximizing Rα(b#η)

over all η ∈ Π(µ1, . . . , µN).

Some results:
• If the underlying variables are one dimensional and b is supermodular that the solution is still of
Monge type.
• If ν � Leb, m ≤ d and b is invertible then there exists a unique solution concentrated on a graph of
y .
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