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Cermics March 28th 2024

Warning;:

m Semiclassical is more than semiclassical.
Hérmander FIO | (1971):"The purpose of the present paper is not to extend the more or
less formal methods used in geometrical optics but to extract from them a precise
operator theory which can be applied to the theory of partial differential equations”

® A Grushin problem is not a Grushin problem.

The name and the notations were actually introduced in the early works of J. Sjostrand
(phD, 1973)

A reference: J. Sjostrand and M. Zworski “Elementary linear algebra for advanced
spectral problems” (Ann. Inst. Fourier (2007)).
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m Schur complement and Grushin problem. First applications.
m Multiple wells, resonances

m Comparison of Langevin and overdamped Langevin.
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F"\f_"‘—"s The Grushin problem method can be viewed as a variation of the Schur complement
LAGA, formula of Linear Algebra (Numerical Analysis), like the Feshbach formula (Math.
Y Phys.) or the Lyapunov-Schmidt method (Dynamical systems and non linear analysis).
X
Schur complement formula
Schur
comple- A B\t (1 —-A1B A1 0 1 0
b cC D “\o 1 0 (D-cAalp)! —CA™1 1 )>
Grushin
ref:flm whenever the block A is invertible as well as its Schur complement (D — CA™1B).
n Grushin problem works in a different way

The block matrix is constructed in such a way that it is invertible and its relates the

invertibility of A to the invertibility of a block of D-size (finite dimension for Fredholm
theory).



Grushin
problem
method

Schur
comple-
ment
and
Grushin
problem

Let 6 — Ap be a continuous map from the metric space (X, d) to L(E; F).
Important example:

F Banach space; E = D(A) C F the domain of a closed operator A;

(X, d) a Banach space of relatively bounded perturbations of A with bound less
than 1 (= Ag with D(Ag) = D(A) = E).
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Let 6 — Ap be a continuous map from the metric space (X, d) to L(E; F).
Important example:

F Banach space; E = D(A) C F the domain of a closed operator A;

(X, d) a Banach space of relatively bounded perturbations of A with bound less
than 1 (= Ag with D(Ag) = D(A) = E).

The operator A € L(E, F) is Fredholm if dim ker A= a; < oo, if its range RanA is
closed and if codim(RanA) = dim cokerA = a_ < oo.

Fred(E; F) set of Fredholm operators.
Ind(A) = ay —a_ .
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Let 6 — Ap be a continuous map from the metric space (X, d) to L(E; F).
Important example:

F Banach space; E = D(A) C F the domain of a closed operator A;

(X, d) a Banach space of relatively bounded perturbations of A with bound less
than 1 (= Ag with D(Ag) = D(A) = E).

The operator A € L(E, F) is Fredholm if dim ker A= a; < oo, if its range RanA is
closed and if codim(RanA) = dim cokerA = a_ < oo.

Fred(E; F) set of Fredholm operators.
Ind(A) = ay —a_ .

Remember (checked below)

m Fred(E; F) is an open set of L(E; F);

m Ind is constant on connected components of Fred(E; F)
Let us assume Ag, € Fred(E; F) (here (X, d) = L(E; F)) with
dim ker Ag, = a4+ and dim cokerAg, = a— .



Grushin
problem
method

Schur
comple-
ment
and
Grushin
problem

Grushin pb and Fredholm thy

R_:C°~ - F e Ry:E—C™, R;ye€L(EC™),

R_ (resp. R;*) parametrizes coker(Ag,) (resp. ker(Ag,)) and

E F
A= 2 R e 5 e
R, 0 o ot
is invertible for 6 ~ 6o and we set
F
_ E(0) E.(0)

A0) = ( + S —

©) EL0) E.0) ) &

R. |kerA9° bij.
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Grushin pb and Fredholm thy

Ro:C™ = F et Ro:E—C™, Ro€L(ECH), R, bi
0

R_ (resp. R;*) parametrizes coker(Ag,) (resp. ker(Ag,)) and

E F
_( A R\
Ay = ( R, 0 > : (CEQB_ — (CEQB+

is invertible for 6 ~ 6o and we set
F E

—1_ [ E(0)  Ey(0) .
A(9) 1*( E.(0) E.(0) ) & o

For 0 = 0 solving Aeo (uu ) = (v‘;) gives

1 —1
( E(60) E.(60) ) _ [ oo lher R.)  TRanAgy (RJr}kerAgo]
E_(60) E_4(f0) (R_) M rpang ; .

In particular E_ (6¢) (resp. E4(6g)) has the maximal rank a_ (resp. a; ), which is an open condition (=
the same holds true for £_(6) and £, (6) when 6 ~ 6p).
Now by setting R u = v, the equivalences

Agu+R_0

(Aeu:v)<:>{ 2 ‘/+ @,{ ;ii(j’zv+5+(9)‘/+

v O) + E_, (0)v4

lead to (v € RanAg) & (E,(e)v € RanE,+(9))

and (v = 0) (u € kerAg) < (u € E;(0) ker E7+(9)) .
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Grushin problem and Fredholm thy

~(0) E_.(0)

(v € RanAg) < (E_(0)v € RanE__(0))
(u € ker Ag) < (u € EL(0) ker E__(0)) ,
rankE_(0) =a_ , rankE;(0) =a; when 6~ 0,.

F E
A(e)*’:(EE(e) E+(9) >: e - @ ,
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F E
-1 _ ( E(0) EL(0) .
ao=(£9 £D) g - 2

(v € RanAg) < (E_(0)v € RanE__(0))

(u € ker Ag) < (u € EL(0) ker E__(0)) ,

rankE_(0) =a_ , rankE;(0) =a; when 6~ 0,.
dim RanE_(0) < oo and E_(0) € L(F;C°~) = RanAy closed.
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Grushin problem and Fredholm thy

F E
-1 _ ( E(0) EL(0) .
ao=(£9 £D) g - 2

(v € RanAg) < (E_(0)v € RanE__(0))

(u € ker Ag) < (u € EL(0) ker E__(0)) ,

rankE_(0) =a_ , rankE;(0) =a; when 6~ 0,.
dim RanE_(0) < oo and E_(0) € L(F;C°~) = RanAy closed.
Because E_(0) is onto and EL(0) is one to one, we deduce

m dim cokerAyp = dim cokerE_(0);
m dim ker Ag = dim ker E_,(0).
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Grushin
problem F E
method —1 E(O) E+(9) > .

6 = : )
i ao=(£9 £50) A
L'XIerA. (v € RanAg) < (E_(0)v € RanE__(0))

o (u € ker Ag) < (u € E,(0) ker E_,(0)) ,

X rankE_(0) =a_ , rankE;(0) =a; when 6~ 0,.
Schur dim RanE_(0) < oo and E_(0) € L(F;C°~) = RanAy closed.
:’e'““:’"' Because E_(0) is onto and EL(0) is one to one, we deduce
and m dim cokerAy = dim cokerE_,(0);

G"‘;Ihi" m dim ker Ag = dim ker E_,(0).
problem
With the above notations and with 0 € Vo, small neighborhood of 0y ,
Ag € Fred(E; F) and
. IndAg = IndE_1(0) = ay — a—
which does not depend on 0 € Vg, . Additionally when Ind(Ag,) =0, a;y =a_, we
have

(Ag invertible) < (E_(0) invertible) < (det E_1(0) #0) ,
with the formula
Ayl = E(0) — EL(0)E—+(0) *EL(6).
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Examples of non s.a. operators

When A : D(A) — F is closed and the imbedding D(A) — F is compact then
either o(A) = C or o(A) = 04isc(A) .
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Examples of non s.a. operators

For a = 8*—\/"; with D(a) = D(OY/?), O = %“2 , compactly included in
L2(R,dx), o(a) = o(a*) =C.
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Examples of non s.a. operators

o(—Ax + ix) = 0 for the complex Airy operator —Ay + ix with
D(A) = {u € L2(R,dx), — Axuand xu € L2(R,dx)}.

Subelliptic consequence:

Yu € CP(R?),

[(=Axy + x10x; )ullHs > CK||”||H5+2/3
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Examples of non s.a. operators

Weyl's theorem when B : D(A) — F is compact the set

{(t,z) € C x (C\ 0ess(A)), z € (A + tB)} is an analytic set. (locally
det(E_+(z,t)) = 0)

When F = (?(Z) consider the operators A et C € L(F) given by

(Ap)n = @nt1 et (Cp)n = dnop1

Then O'ess(A) =St and
B oes(A—tC) = St for t # 1;
m o(A—C)=D(0,1).
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E E

Spectrum around E of —A + U(x — 22) + V(hx) or —h2A+ U(%) + V(xo + X)
rushin
:;roblem
and mul-
tiscale
analysis
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Quantum/semiclassical separation

E E~V(x)+ Ay

There is an eigenvalue E" = V(xp) + Ay + o(h®) where Ay € o(—A + V)
The spectral elements (eigenvectors, spectral projectors. . .) of
Hh = —A + U(x) 4 V/(hx) are well approximated by the ones of Hy
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LA ~
Ur E E~ V(XO) +Au
There is an eigenvalue E" = V(xo) + Ay + o(h°) where Ay € o(—A + U)
The spectral elements (eigenvectors, spectral projectors...) of
H" = —A + U(x) 4+ V(hx) are well approximated by the ones of Hy
Grushin Exponential decay:
::lblr:Tl- Quantum Hamiltonian Filled well Hamiltonian (semiclassical)
ti:clale_ HU =-A+ U(X) H =-A =+ V(hX)
analysie Hyvy = Aupy, Au < E/2<0 V>EandRez< £,

Yu(x) = Oeeel) (z — A" 1(x,y) = B(e~ael—v])
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LA ,
Ur V(x0) + Au
The eigenvalue is given by E" = V(x0) + Ay + o(h®) where Ay € o(—A + U)
The spectral elements (eigenvectors, spectral projectors...) of
H" = —A + U(x) + V(hx) are well approximated by the ones of Hy
Grushin Exponential decay:
coeim Quantum Hamiltonian Filled well Hamiltonian (semiclassical)
til:lale_ HU = —-A+ U(X) Hh = —A+ V(hX)
snelves Hypy = Auty, Ay < E/2 <0 V>EandRez< £,
" py(x) = O(e= e (z— AN~(x,y) = O(e~elx=l)

Cut-off: ¢, x €C3°, ¢ <X x,

o) - P ) )

—— ——
¢e(hx) Xe (hx)
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Quantum/Semiclassical separation

Grushin problem for H:

_ o\ D(Hu) r?
o=t )

With R = |[¢y) and R = (spy|, A%(Ay) is invertible = so A%(z) is invertible for

zeV(Ay): EQ(2) E?
G»2) =A%) = ( OEE EE:(Z)) ’

We consider now for z close to V(xo) + Ay

Hh —z  R_ =xR®
Az) = (R+ m ; >
and take
_ (XEQ(z = V(x0))¢e + (AN = 2)71(1 — ¢2) XeE?
Fla)= ( ’ E® . E0 (z— T7(XO)))

A direct computation shows (with h < £2)
A(2)F(z) =1d+0(e)+0(e"7) and E_i(z) = E®, (z—V(x0))+O(e)+O(e™ 7))

Combined with (H" — z)~1 = E(z) — E+(2)(E—+(2)) "' E—_(z) this allows to compare
spectral quantities (eigenvalues, projector) around E.
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Changing Hy, changing H"

In the construction of the approximate inverse F(z), Hy can be replaced by any
quantum local problem (think of ¢. and x.-truncations)
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In the construction of the approximate inverse F(z), Hy can be replaced by any
quantum local problem (think of ¢. and x.-truncations)

=y

The long range exponential decay of eigenvector with energy ~ E comes from
the exponential decay estimate of H", expressed here in terms of

ag (B =inf o/ V(0) — ER(] bt 5 =y = by
~¥(0)=x

y(1)=y
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In the construction of the approximate inverse F(z), Hy can be replaced by any
quantum local problem (think of ¢. and x.-truncations)

A perturbative analysis of E_, (z)~1 for two different choices V4 and Va,

. _ ~ 5
Vi = Vs in |h(x — x0)| < R, leads to an error of size O(eszR) where
Sk =infv =R dag(x’,x0) as long as infyecp Vi(x) > E.
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