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Warning:

Semiclassical is more than semiclassical.
Hörmander FIO I (1971):�The purpose of the present paper is not to extend the more or
less formal methods used in geometrical optics but to extract from them a precise
operator theory which can be applied to the theory of partial di�erential equations�

A Grushin problem is not a Grushin problem.
The name and the notations were actually introduced in the early works of J. Sjöstrand

(phD, 1973)

A reference: J. Sjöstrand and M. Zworski �Elementary linear algebra for advanced
spectral problems� (Ann. Inst. Fourier (2007)).



Grushin
problem
method

Francis
Nier,
LAGA,
Univ.
Paris
XIII

Schur
comple-
ment
and
Grushin
problem

Grushin
problem
and mul-
tiscale
analysis

Comparison
of
Langevin
and
over-
damped
Langevin

Outline

Schur complement and Grushin problem. First applications.

Multiple wells, resonances

Comparison of Langevin and overdamped Langevin.
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Schur complement

The Grushin problem method can be viewed as a variation of the Schur complement
formula of Linear Algebra (Numerical Analysis), like the Feshbach formula (Math.
Phys.) or the Lyapunov-Schmidt method (Dynamical systems and non linear analysis).

Schur complement formula(
A B
C D

)−1

=

(
1 −A−1B
0 1

)(
A−1 0
0 (D − CA−1B)−1

)(
1 0

−CA−1 1

)
,

whenever the block A is invertible as well as its Schur complement (D − CA−1B).

Grushin problem works in a di�erent way

The block matrix is constructed in such a way that it is invertible and its relates the
invertibility of A to the invertibility of a block of D-size (�nite dimension for Fredholm
theory).
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Let θ 7→ Aθ be a continuous map from the metric space (X , d) to L(E ;F ) .
Important example:
F Banach space; E = D(A) ⊂ F the domain of a closed operator A ;
(X , d) a Banach space of relatively bounded perturbations of A with bound less
than 1 (⇒ Aθ with D(Aθ) = D(A) = E) .

De�nition

The operator A ∈ L(E ,F ) is Fredholm if dim kerA = a+ <∞, if its range RanA is
closed and if codim(RanA) = dim cokerA = a− <∞.
Fred(E ;F ) set of Fredholm operators.
Ind(A) = a+ − a− .

Remember (checked below)
Fred(E ; F ) is an open set of L(E ; F ) ;
Ind is constant on connected components of Fred(E ; F )

Let us assume Aθ0 ∈ Fred(E ;F ) (here (X , d) = L(E ;F )) with
dim kerAθ0 = a+ and dim cokerAθ0 = a− .
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Grushin pb and Fredholm thy

R− : Ca− → F et R+ : E → Ca+ , R+ ∈ L(E ;Ca+ ) , R+

∣∣
ker Aθ0

bij.

R− (resp. R−1
+ ) parametrizes coker(Aθ0 ) (resp. ker(Aθ0 )) and

Aθ =

(
Aθ R−
R+ 0

)
:

E
⊕

Ca−
→

F
⊕
Ca+

.

is invertible for θ ∼ θ0 and we set

A(θ)−1 =

(
E(θ) E+(θ)
E−(θ) E−+(θ)

)
:

F
⊕
Ca+

→
E
⊕

Ca−
.

For θ = θ0 solving Aθ0

(
u

u−

)
=

(
v
v+

)
gives

(
E(θ0) E+(θ0)

E−(θ0) E−+(θ0)

)
=

(
(Aθ0

∣∣
ker R+

)−1π
RanAθ0

(R+

∣∣
ker Aθ0

)−1

(R−)−1π
RanR− 0

)
.

In particular E−(θ0) (resp. E+(θ0)) has the maximal rank a− (resp. a+) , which is an open condition (⇒
the same holds true for E−(θ) and E+(θ) when θ ∼ θ0) .

Now by setting R+u = v+, the equivalences

(Aθu = v) ⇔
{

Aθu + R−0 = v

R+u = v+
⇔
{

u = E(θ)v + E+(θ)v+
0 = E−(θ)v + E−+(θ)v+

,

lead to (v ∈ RanAθ ) ⇔
(
E−(θ)v ∈ RanE−+(θ)

)
and (v = 0) (u ∈ ker Aθ ) ⇔

(
u ∈ E+(θ) ker E−+(θ)

)
.
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Grushin problem and Fredholm thy

A(θ)−1 =

(
E(θ) E+(θ)
E−(θ) E−+(θ)

)
:

F
⊕
Ca+

→
E
⊕

Ca−
,

(v ∈ RanAθ) ⇔ (E−(θ)v ∈ RanE−+(θ))

(u ∈ kerAθ) ⇔ (u ∈ E+(θ) ker E−+(θ)) ,

rankE−(θ) = a− , rankE+(θ) = a+ when θ ∼ θ+ .

dim RanE−+(θ) <∞ and E−(θ) ∈ L(F ;Ca− ) ⇒ RanAθ closed.
Because E−(θ) is onto and E+(θ) is one to one, we deduce

dim cokerAθ = dim cokerE−+(θ);
dim kerAθ = dim ker E−+(θ) .

Proposition

With the above notations and with θ ∈ Vθ0 small neighborhood of θ0 ,
Aθ ∈ Fred(E ;F ) and

IndAθ = IndE−+(θ) = a+ − a−

which does not depend on θ ∈ Vθ0 . Additionally when Ind(Aθ0 ) = 0 , a+ = a− , we

have

(Aθ invertible) ⇔ (E−+(θ) invertible) ⇔ (detE−+(θ) ̸= 0) ,

with the formula

A−1

θ = E(θ)− E+(θ)E−+(θ)
−1E+(θ) .
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Examples of non s.a. operators

When A : D(A) → F is closed and the imbedding D(A) → F is compact then
either σ(A) = C or σ(A) = σdisc (A) .

For a = ∂x+x√
2

with D(a) = D(O1/2) , O = −∆+x2

2
, compactly included in

L2(R, dx) , σ(a) = σ(a∗) = C .

σ(−∆x + ix) = ∅ for the complex Airy operator −∆x + ix with
D(A) =

{
u ∈ L2(R, dx) , −∆xu and xu ∈ L2(R, dx)

}
.

Subelliptic consequence:

∀u ∈ C∞
K (R2), ∥(−∆x1 + x1∂x2 )u∥Hs ≥ CK∥u∥Hs+2/3

Weyl's theorem when B : D(A) → F is compact the set
{(t, z) ∈ C× (C \ σess(A)), z ∈ σ(A+ tB)} is an analytic set. (locally
det(E−+(z, t)) = 0)
When F = ℓ2(Z) consider the operators A et C ∈ L(F ) given by

(Aφ)n = φn+1 et (Cφ)n = δn,0φ1

Then σess(A) = S1 and

σess (A − tC) = S1 for t ̸= 1;

σ(A − C) = D(0, 1).
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Quantum/semiclassical separation

E E

Spectrum around E of −∆+ U(x − x0
h
) + Ṽ (hx) or −h2∆+ U( x

h
) + Ṽ (x0 + x)
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Quantum/semiclassical separation

E E ∼ Ṽ (x0) + λU

There is an eigenvalue Eh = Ṽ (x0) + λU + o(h0) where λU ∈ σ(−∆+ U)
The spectral elements (eigenvectors, spectral projectors. . . ) of
Hh = −∆+ U(x) + Ṽ (hx) are well approximated by the ones of HU
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Quantum/semiclassical separation

E E ∼ Ṽ (x0) + λU

There is an eigenvalue Eh = Ṽ (x0) + λU + o(h0) where λU ∈ σ(−∆+ U)
The spectral elements (eigenvectors, spectral projectors. . . ) of
Hh = −∆+ U(x) + Ṽ (hx) are well approximated by the ones of HU

Exponential decay:
Quantum Hamiltonian Filled well Hamiltonian (semiclassical)

HU = −∆+ U(x) H̃h = −∆+ Ṽ (hx)

HUψU = λUψU , λU ≤ E/2 < 0 Ṽ ≥ E
4
and Re z ≤ E

2
,

ψU(x) = Õ(e−αE |x|) (z − H̃h)−1(x , y) = Õ(e−αE |x−y|)
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The spectral elements (eigenvectors, spectral projectors. . . ) of
Hh = −∆+ U(x) + Ṽ (hx) are well approximated by the ones of HU

Exponential decay:
Quantum Hamiltonian Filled well Hamiltonian (semiclassical)

HU = −∆+ U(x) H̃h = −∆+ Ṽ (hx)

HUψU = λUψU , λU ≤ E/2 < 0 Ṽ ≥ E
4
and Re z ≤ E

2
,

ψU(x) = Õ(e−αE |x|) (z − H̃h)−1(x , y) = Õ(e−αE |x−y|)
Cut-o�: ϕ, χ ∈ C∞

0
, ϕ ⪯ χ ,

1 = ϕ(
hx − x0

ε
)︸ ︷︷ ︸

ϕε(hx)

+(1− ϕ)(
hx − x0

ε
) = χ(

hx − x0

ε
)︸ ︷︷ ︸

χε(hx)

+(1− χ)(
hx − x0

ε
)
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Grushin problem for HU :

A0(z) =

(
HU − z R0

−
R0
+ 0

)
:
D(HU)

⊕
C

→
L2

⊕
C

With R0

− = |ψU⟩ and R0
+ = ⟨ψU | , A0(λU) is invertible ⇒ so A0(z) is invertible for

z ∈ V(λU):

G0(z) = [A0(z)]−1 =

(
E0

0
(z) E0

+
E0

− E0

−+(z)

)
.

We consider now for z close to Ṽ (x0) + λU

A(z) =

(
Hh − z R− = χεR0

−
R+ = R0

+ 0

)
and take

F(z) =

(
χεE0

0
(z − Ṽ (x0))ϕε + (H̃h − z)−1(1− ϕε) χεE0

+

E0

−ϕε E0

−+(z − Ṽ (x0))

)
A direct computation shows (with h ≤ ε2)

A(z)F(z) = Id+O(ε)+Õ(e−
ε
h ) and E−+(z) = E0

−+(z−Ṽ (x0))+O(ε)+Õ(e−
ε
h ))

Combined with (Hh − z)−1 = E(z)− E+(z)(E−+(z))−1E−(z) this allows to compare
spectral quantities (eigenvalues, projector) around E .
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Changing HU , changing H̃h

In the construction of the approximate inverse F(z) , HU can be replaced by any
quantum local problem (think of ϕε and χε-truncations)

The long range exponential decay of eigenvector with energy ∼ E comes from
the exponential decay estimate of H̃h , expressed here in terms of

dAg (x
′, y ′;E) = inf γ

γ(0)=x′

γ(1)=y′

∫
1

0

√
Ṽ (γ(t))− E |γ̇(t)| dt , x ′ = hx , y ′ = hy .

A perturbative analysis of E−+(z)−1 for two di�erent choices Ṽ1 and Ṽ2 ,

Ṽ1 = Ṽ2 in |h(x − x0)| ≤ R , leads to an error of size Õ(e−2
SR
h ) where

SR = inf|x′−x0|=R dAg (x
′, x0) as long as infx∈R Ṽk (x) > E .
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