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What kind of problem are we looking at ?

Maximizes: payoff
Decides: energy prices
Has: private knowledge

Minimizes: cost
Decides: consumption
Has: private knowledge

exogenous factorsReaction

Anticipation

Leader
producer, supplier, aggregator

Follower
consumer, prosumer

”pure randomness”



Why are we interested in this kind of problem?

▶ Before
▶ Consumers were mostly passive users of energy
▶ Energy was mainly generated from controllable sources

(e.g. nuclear, gas)
▶ Supply could be smoothly adjusted to match demand at any time

▶ Now
▶ Consumers can now produce their own energy (e.g. solar panels)
▶ Renewable energy sources depend on weather

and cannot be easily controlled (e.g. wind, solar)
▶ Communication technology make it possible

to adjust demand in real time

Demand response

Situations where customers change their consumption behaviors
in response to price signals from the energy provider



How to model this kind of problem?

▶ The information structure is sequential
▶ Leader (e.g. electricity producer) plays first
▶ Follower (e.g. consumer) reacts

▶ We focus on private knowledge
▶ Leader’s production cost
▶ Follower’s unwillingness to shift consumption

▶ We need to take ”pure randomness” into account
▶ Renewable energy production, demand, market prices

▶ We apply a versatile mathematical framework to handle problems
with complex information structures
▶ A W-model for decisions, uncertainty and information
▶ A W-game for objective functions, beliefs and notions of equilibrium
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Example of demand response program

Time-of-use pricing

Price-based demand response program encouraging load-shifting:
higher prices during peak hours and lower prices during off-peak hours

(a) Normal consumption (b) Shifted consumption

Figure: Illustration of load-shifting [Alekseeva et al., 2019]
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Identification of the agents

An agent is a decision-maker taking only one action

▶ 2 decisions: static setup
▶ Deciding the electricity prices
▶ Deciding how to shift the consumption

⇒ 2 agents
▶ Leader (agent): electricity producer
▶ Follower (agent): consumer

▶ Example of dynamic setup
▶ Deciding the electricity prices every month
▶ Deciding how to shift the consumption every day

⇒ More agents



Schematic of time-of-use pricing

Decides: (peak, off-peak) prices

*

Decides: consumption shift

Leader (agent)
electricity producer ï

Follower (agent)
consumer Ñ

*https://www.cleanpowersf.org/tou



Agents’ actions and action sets

Each agent makes an action u in a measurable space (U ,U)
U is called the action set of an agent

▶ Leader’s action: (peak, off-peak) prices (€)

uL = (uL, uL) ∈ UL =
{
(x , y) ∈ R2 | x ≥ y

}
⊂ R2

▶ Follower’s action: consumption shift,
i.e. fraction of consumption during (peak, off-peak) hours (%)

uF = (uF , uF ) ∈ UF =
{
(α, β) ∈ R2

+ | α+ β = 1
}
⊂ R2

+



Players’ and exogenous uncertainties

Decides: (peak, off-peak) prices
Has: production costs Ó

Decides: consumption shift
Has: unwillingness to shift �

Determines: demand �

Leader (agent)
electricity producer ï

Follower (agent)
consumer Ñ

Exogenous Nature
weather Å



Decomposition of Nature as a product

Nature contains everything that is not a decision

Ω = Ωe︸︷︷︸
exogenous
Nature

× ΩL︸︷︷︸
leader
type

× ΩF︸︷︷︸
follower
type

▶ Exogenous Nature: electricity demand (kWh)

ωe ∈ Ωe = R+

▶ Leader type: unitary production cost (€/kWh)

ωL ∈ ΩL = R+

▶ Follower type: unwillingness to shift to off-peak hours (€/kWh)

ωF ∈ ΩF = R+



Components of the upcoming objective functions

▶ Consumption (€)

uFωe︸ ︷︷ ︸
peak

demand

· uL︸︷︷︸
peak
price

+ uFωe︸ ︷︷ ︸
off-peak
demand

· uL︸︷︷︸
off-peak
price

▶ Production cost (€)

ωe︸︷︷︸
total

demand

· ωL︸︷︷︸
unitary

production cost

▶ Inconvenience cost (€)

uFωe︸ ︷︷ ︸
off-peak
demand

· ωF︸︷︷︸
unwillingness

to shift



Details of the configuration space

▶ Nature
Ω = R+︸︷︷︸

electricity
demand

× R+︸︷︷︸
unitary

production
cost

× R+︸︷︷︸
unwillingness

to shift

= R3
+

Configuration space is the product space H = Ω× UL × UF

H = R3
+︸︷︷︸

Nature

×
{
(x , y) ∈ R2 | x ≥ y

}︸ ︷︷ ︸
(peak, off-peak)

prices

×
{
(α, β) ∈ R2

+ | α+ β = 1
}︸ ︷︷ ︸

consumption
shift



Visualization of the information structure

Leader

Knows his type ωL

(production costs)

Takes his decision uL

(electricity prices)

Demand ωe

is revealed

Follower

Knows his type ωF

(unwillingness to shift)

Takes his decision uF

(consumption shift)

Time



Leader’s information field and strategies

The leader information field IL is a subfield of the σ-field associated
with the configuration space H = Ge ⊗GL ⊗GF ⊗ UL ⊗ UF

IL︸︷︷︸
leader’s

information
field

= {∅,Ωe}︸ ︷︷ ︸
cannot see
consumer’s
demand

⊗ GL︸︷︷︸
knows his
production

cost

⊗ {∅,ΩF}︸ ︷︷ ︸
cannot see
consumer’s
unwillingness

to shift

⊗ {∅,UL}︸ ︷︷ ︸
absence of

self-information

⊗ {∅,UF}︸ ︷︷ ︸
cannot see
consumer’s

action

A leader’s strategy is a mapping λL : (H,H) → (UL,UL) measurable
with respect to his information field IL: λ−1(UL) ⊂ IL

uL︸︷︷︸
electricity
prices

= λL︸︷︷︸
leader’s
strategy

(
��ω

e , ωL︸︷︷︸
production

costs

,��ωF ,��u
L,��uF

)



Follower’s information field and strategies

The follower information field IF is a subfield of the σ-field associated
with the configuration space H = Ge ⊗GL ⊗GF ⊗ UL ⊗ UF

IF︸︷︷︸
follower’s
information

field

= Ge︸︷︷︸
sees his
demand

⊗ {∅,ΩL}︸ ︷︷ ︸
cannot see
producer’s

cost

⊗ GF︸︷︷︸
knows his own
unwillingness

to shift

⊗ UL︸︷︷︸
sees the
electricity
prices

⊗ {∅,UF}︸ ︷︷ ︸
absence of

self-information

A follower’s strategy is a mapping λF : (H,H) → (UF ,UF ) measurable
with respect to his information field IF : λ−1(UF ) ⊂ IF

uF︸︷︷︸
consumption

shift

= λF︸︷︷︸
follower’s
strategy

(
ωe︸︷︷︸

demand

,��ω
L, ωF︸︷︷︸

unwillingness
to shift

, uL︸︷︷︸
electricity
prices

,��uF
)



A sequential (hence playable) information structure

Leader

Knows his type ωL

(production costs)

Takes his decision λL(ωL)
(electricity prices)

Demand ωe

is revealed

Follower

Knows his type ωF

(unwillingness to shift)

Takes his decision λF
(
ωe , ωF , λL(ωL)︸ ︷︷ ︸

uL

)
(consumption shift)

Time

When playability holds true, the solution map
is the mapping SλL,λF : Ω → H which gives for every state of Nature
the unique outcome

SλL,λF (ωe , ωL, ωF ) =
(
ωe , ωL, ωF , λL

(
ωL

)︸ ︷︷ ︸
uL

, λF
(
ωe , ωF , λL(ωL)

)︸ ︷︷ ︸
uF

)



What land have we covered? What comes next?

▶ Our problem is translated into a W-model
▶ Agents: producer, consumer
▶ Nature: production costs, unwillingness, demand
▶ Sequential information structure: the consumer reacts to the

producer
▶ Strategies and solution map

▶ We now complete the W-model to have a W-game
▶ Players
▶ Objective functions
▶ Beliefs
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Conclusion



Identification of the players

A player is an individual or a corporation, possibly taking
several decisions, endowed with an objective function and a belief
To each player is associated a group of agents

▶ 2 players
▶ Leader (player): electricity producer
▶ Follower (player): consumer

▶ To each player corresponds a single agent
⇒ same notations for the agent or the player

▶ Example of multi-leader-multi-follower setup
▶ Several electricity producers
▶ Several consumers



Players’ objective functions

Maximizes: (sales - production costs)
Decides: (peak, off-peak) prices

Has: production costs Ó

Minimizes: (bills + unwillingness cost)
Decides: consumption profile
Has: unwillingness to shift �

Determines: demand �

Leader (player)
Leader (agent)

electricity producer ï

Follower (player)
Follower (agent)
consumer Ñ

Exogenous Nature
weather Å



Expression of the objective functions

An objective function is a measurable function j : H → R = R ∪ {±∞}
representing the player’s preferences over the different outcomes

▶ Leader’s payoff (maximization)

jL(ωe , ωL,��ωFuL, uF ) =

peak
demand︷ ︸︸ ︷
uFωe

peak
price︷︸︸︷
uL +

off-peak
demand︷ ︸︸ ︷
uFωe

off-peak
price︷︸︸︷
uL︸ ︷︷ ︸

sales

−

total
demand︷︸︸︷
ωe

unitary
cost︷︸︸︷
ωL︸ ︷︷ ︸

production cost

▶ Follower’s cost (minimization)

jF (ωe ,��ω
L, ωFuL, uF ) =

peak
demand︷ ︸︸ ︷
uFωe

peak
price︷︸︸︷
uL +

off-peak
demand︷ ︸︸ ︷
uFωe

off-peak
price︷︸︸︷
uL︸ ︷︷ ︸

bills

+

off-peak
demand︷ ︸︸ ︷
uFωe

unwillingness
to shift︷︸︸︷
ωF︸ ︷︷ ︸

inconvenience cost



Leader’s belief in time-of-use pricing

Maximizes: (sales - production costs)
Decides: (peak, off-peak) prices

Has: production costs Ó

Minimizes: (bills + unwillingness cost)
Decides: consumption profile

Has: unwillingness to shift � ?

Determines: demand � ?

Leader (player)
Leader (agent)

electricity producer ï

Follower (player)
Follower (agent)
consumer Ñ

Exogenous Nature
weather Å



Follower’s belief in time-of-use pricing

Maximizes: (sales - production costs)
Decides: (peak, off-peak) prices
Has: production costs Ó ?

Minimizes: (bills + unwillingness cost)
Decides: consumption profile
Has: unwillingness to shift �

Determines: demand �

Leader (player)
Leader (agent)

electricity producer ï

Follower (player)
Follower (agent)
consumer Ñ

Exogenous Nature
weather Å



Decomposition of beliefs

Each player has a certain perception regarding uncertainty
modelled by his belief, that is a probability distribution on

Ω = Ωe × ΩL × ΩF

▶ Leader’s belief

βL = βL
e︸︷︷︸

distribution on
consumer’s demand

⊗ δ{ωL}︸ ︷︷ ︸
own type
known

⊗ βL
F︸︷︷︸

distribution on consumer’s
unwillingness to shift

▶ Follower’s belief

βF = δ{ωe}︸ ︷︷ ︸
demand
known

⊗ βF
L︸︷︷︸

distribution on
producer’s cost

⊗ δ{ωF}︸ ︷︷ ︸
own type
known



Normal form W-games

▶ Strategies are the heart of normal form games
▶ ΛL: set of leader’s strategies
▶ ΛF : set of follower’s strategies

The normal form objective function is a function J : ΛL × ΛF → R
giving what a player can expect to gain (or lose) from a strategy profile

L , F . . . λF . . .

. . .

λL JL(λL, λF ) , JF (λL, λF )

. . .

Table: Normal form representation of a W-game



Expression of normal form objective functions

When working with beliefs, the normal form objective function
is the average gain (or loss) of a strategy profile

J(λL, λF ) = Eβ

[
j ◦SλL,λF︸ ︷︷ ︸

Ω
S
λL,λF

−−−−→H
j−→R

]
=

∫
Ω

(
j ◦SλL,λF

)
(ω)dβ(ω)

▶ Leader’s normal form payoff (maximization)

JL(λL, λF ) =

∫
Ω

jL
(
ωe , ωL,��ωF , λL

(
ωL

)
, λF

(
ωe , ωF , λL(ωL)

)︸ ︷︷ ︸
S
λL,λF

)
dβL(ω)

▶ Follower’s normal form cost (minimization)

JF (λL, λF ) =

∫
Ω

jF
(
ωe ,��ω

L, ωF , λL
(
ωL

)
, λF

(
ωe , ωF , λL(ωL)

)︸ ︷︷ ︸
S
λL,λF

)
dβF (ω)



Focus on asymmetric knowledge: game data

Player’s data refers to the player’s objective function and belief
W-game data is the collection of the players’ data and write

d =
(
(jL, βL)︸ ︷︷ ︸

dL

, (jF , βF )︸ ︷︷ ︸
dF

)

▶ Leader’s normal form payoff (maximization)

JL(λL, λF ; dL︸︷︷︸
data

) =

∫
Ω

jL
(
ωe , ωL, λL

(
ωL

)
, λF

(
ωe , ωF , λL(ωL)

))
︸ ︷︷ ︸

objective function

dβL(ω)︸ ︷︷ ︸
belief

▶ Follower’s normal form cost (minimization)

JF (λF , λL; dF︸︷︷︸
data

) =

∫
Ω

jF
(
ωe , ωF , λL

(
ωL

)
, λF

(
ωe , ωF , λL(ωL)

))
︸ ︷︷ ︸

objective function

dβF (ω)︸ ︷︷ ︸
belief



What land have we covered? What comes next?

▶ Time-of-use pricing problem is now a W-game
▶ Objective functions: producer’s payoff, consumer’s cost
▶ Decomposition of beliefs

▶ The W-game can be written in normal form
▶ Normal form objective function
▶ Everything in the strategies

▶ We focus on W-game data to model asymmetric knowledge

▶ We now move to translating game theory equilibrium concepts
in the language of W-games
▶ Best response and Nash equilibrium
▶ Stackelberg strategy and Nash-Stackelberg equilibrium
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Illustration of a Nash equilibrium

A player plays a best response if he chooses a strategy that maximizes
(or minimizes) his own objective function, given the strategies
selected by the others
A Nash equilibrium is when each player’s strategy is a best response to
the strategies of the other players

Player 1 Player 2

Best response

Best response

▶ Most common notion for ”solving” a game

▶ Stable situation: no player has an incentive to deviate unilaterally

▶ Example: a group of producers can play a Nash equilibrium



Nash equilibrium in leader-follower W-games

▶ Leader’s best responses (maximization)

ΛL
N(λ

F ; dL) = argmax
λL∈ΛL

JL(λL, λF ; dL) ⊂ ΛL

▶ Follower’s best responses (minimization)

ΛF
N(λ

L; dF ) = argmin
λF∈ΛF

JF (λL, λF ; dF ) ⊂ ΛF

Nash equilibrium

A strategy profile (λL, λF ) ∈ ΛL × ΛF that satisfies{
λL ∈ ΛL

N(λ
F ; dL) : the leader plays a best response

λF ∈ ΛF
N(λ

L; dF ) : the follower plays a best response



Illustration of a Nash-Stackelberg equilibrium

A player plays a Stackelberg strategy if he chooses a strategy
that maximizes (or minimizes) his own objective function,
assuming the others play a best response
A Nash-Stackelberg equilibrium is when one player plays a best response
and the other anticipates by choosing a Stackelberg strategy

Leader

Follower

Best response

Stackelberg strategy



Different types of Stackelberg strategies

▶ Stackelberg strategy is for the leader (maximization)

▶ Problem: multiplicity of best responses for the follower

▶ Optimistic Stackelberg strategies: the follower chooses the
best response that is most advantageous for the leader

ΛL
S(d

L, dF ) = argmax
λL∈ΛL

sup
λF∈ΛF

N (λ
L;dF )

JL(λL, λF ; dL) ⊂ ΛL

▶ Pessimistic Stackelberg strategies: the follower chooses the
best response that is least advantageous for the leader

ΛL
S(d

L, dF ) = argmax
λL∈ΛL

inf
λF∈ΛF

N (λ
L;dF )

JL(λL, λF ; dL) ⊂ ΛL

▶ Existence of intermediate formulations
(between optimistic and pessimistic)



Nash-Stackelberg equilibrium in leader-follower W-games

Nash-Stackelberg equilibrium

A strategy profile (λL, λF ) ∈ ΛL × ΛF that satisfies{
λL ∈ ΛL

S(d
L, dF ) : the leader plays a Stackelberg strategy

λF ∈ ΛF
N(λ

L; dF ) : the follower plays a best response

▶ Writes as a bilevel optimization problem (optimistic formulation)

max
λL∈ΛL

sup
λF∈ΛF

JL(λL, λF ; dL) (UL)

subject to λF ∈ min
λF∈ΛF

JF (λL, λF ; dF ) (LL)

▶ Upper-Level problem (UL): leader’s problem (maximization)
▶ Lower-Level problem (LL): follower’s problem (minimization)
▶ Ambiguous knowledge of the W-game data



What land have we covered? What comes next?

▶ We conducted the entire study on a simple example

▶ We revisited key concepts of game theory in W-games
▶ Best response
▶ Nash equilibrium

▶ We explored other concepts for leader-follower games
▶ Stackelberg strategy
▶ Nash-Stackelberg equilibrium: link with bilevel optimisation

▶ We raised the question of the W-game data
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W-games can easily deal
with similar energy management problems

Figure: Extracts from [Beraldi and Khodaparasti, 2022]

▶ Leader: aggregator

▶ Richer action sets UL = {PV panels production, plant production,
purchase on the market, battery management, bilateral contracts}

▶ And richer private knowledge ΩL = {plant production bounds,
battery state bounds,market prices, production costs}

▶ Same for the follower who is a prosumer (profesional + consumer)



W-games can easliy deal with dynamic problems

Figure: Extracts from [Carrión, Arroyo, and Conejo, 2009]

▶ Agents are points in the arrow of time
UL =

∏
t∈T UL

t , UF =
∏

t∈T UF
t

▶ Exogenous Nature is a product to model
multi-stage random variables Ωe =

∏
t∈T Ωe

t

▶ Expected value replaced by a risk measure
over the worst-case scenarios



W-games can easily deal with
multi-leader-multi-follower problems

Figure: Extracts from [Aussel, Lepaul, and von Niederhäusern, 2022]

▶ Several leaders and several followers UL =
∏

l∈L U l , UF =
∏

f∈F U f

▶ Each player has private knowledge ΩL =
∏

l∈L Ω
l , ΩF =

∏
f∈F Ωf

▶ Extension of the Nash-Stackelberg equilibrium



Thank you for listening ;)

▶ A rich language

▶ A lot of open questions, and a lot of things not yet properly defined

▶ We aim to build a unified framework
to ease the understanding of literature on energy management

▶ We want to propose a method
to establish an energy management model from scratch

▶ We are looking for feedback
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energy demand-side management. Optimization, 72:1–31, 05 2022. doi:
10.1080/02331934.2021.1954179.

Patriza Beraldi and s Khodaparasti. A bi-level model for the design of dynamic electricity tariffs
with demand-side flexibility. Soft Computing, 27, 04 2022. doi:
10.1007/s00500-022-07038-3.
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