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The atom

Assume we want to study a system with M protons and N electrons
Protons are much heavier than electrons ⇒ We assume they have
fixed position X1, ...,XM ∈ R3

The positions x1(t), ..., xN(t) ∈ R3 of the electrons satisfy the
equations of movement:

ẍj(t) = −∇V (x1(t), ..., xN(t)),

ẋj(0) = vj ,0,

xj(0) = xj ,0,

V (x1, ..., xN) =
N∑
j=1

M∑
k=1

−1
|xj − Xk |︸ ︷︷ ︸

electron-proton

+
∑

1≤j1<j2≤N

1
|xj1 − xj2 |︸ ︷︷ ︸

electron-electron

.
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Solving the problem

We have an ODE: 
ẍj(t) = −∇V (x1, ..., xN),

ẋj(0) = vj ,0,

xj(0) = xj ,0,

Compute ∇V explicitly, or with autodifferentiation
Solve the equation with RK4, or a symplectic integrator
Add external electro-magnetic field !
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Thank you for your attention !
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Professor Schrödinger believes things are too easy

Figure: Erwin Schrödinger in 1933 (Wikipedia)
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The Schrödinger equation

Electrons are not "point" particles, they are waves
Electronic systems are described by a wave function
ψ : (t, x1, ..., xN) ∈ R× R3 × ...× R3 7→ C

|ψ|2 represents the density of presence of the electrons in the space of
all possible configurations (

∫
|ψ(t, x1, ..., xN)|2 dx1 ... dxN = 1)

The movement of the electrons is ruled by the Schrödinger equation:{
i∂tψ = −∆ψ + Vψ,

ψ(t = 0) = ψ0 ∈ L2(R3N) ,
Pros Cons
Linear Curse of dimensionality
Mathematically well posed Ubounded domain
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Well-posedness

Figure: Tosio Kato (Wikipedia)

Proved the Kato-Rellich theorem
Proved that −∆+ V is self-adjoint ⇒ Schrödinger equation is well
posed whenever ψ0 ∈ L2(R3N).
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The curse of dimensionality

"Grid-type" approach with 1
electron:
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The curse of dimensionality

"Grid-type" approach with 1
electron:

"Grid-type" approach with N
electrons:
ψ(t, x1, ..., xN) ⇒ k3N points

Ex: k = 10, N = 10 ⇒ 1030 points
= Too expensive !
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Variational formulation for the Schrödinger equation

We want a variational formulation for the Schrödinger equation{
i∂tψ = (−∆+ V )ψ,

ψ(0) = ψ0.

We "twist" the equation: Define φ(t) = e−it∆ ψ(t), then φ is solution
to {

i∂tφ = e−it∆ V eit∆ φ,

φ(0) = ψ0.

(The operator e−it∆ V eit∆ follows the Heisenberg picture)
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Variational formulation for the Schrödinger equation

{
i∂tφ = e−it∆ V eit∆ φ,

φ(0) = ψ0.
(1)

Theorem (Dupuy, Ehrlacher, Guillot)
Let

F (u) = ∥u(0)− ψ0∥2L2 + T
∥∥i∂tu − e−it∆ V eit∆ u

∥∥2
L2(I ,L2)

.

If V satisfies the condition (C), then (1) has a unique solution φ in
H1

loc(R, L2
(
R3N

)
). For any bounded time interval I = (0,T ), φ there exist

constants α,C > 0 such that

α ∥u − φ∥2H1(I ,L2) ≤ F (u) ≤ C ∥u − φ∥2H1(I ,L2) ,

Condition (C): There exists an ε > 0 such that

sup
λ∈R

∥∥V (−∆+ iε+ λ)−1
∥∥ < 1.
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Variational formulation for the Schrödinger equation

Theorem (Dupuy, Ehrlacher, Guillot)
Let

F (u) = ∥u(0)− ψ0∥2L2 + T
∥∥i∂tu − e−it∆ V eit∆ u

∥∥2
L2(I ,L2)

.

If V satisfies the condition (C), then (1) has a unique solution φ in
H1

loc(R, L2
(
R3N

)
). For any bounded time interval I = (0,T ), φ there exist

constants α,C > 0 such that

α ∥u − φ∥2H1(I ,L2) ≤ F (u) ≤ C ∥u − φ∥2H1(I ,L2) ,

What is it for:

Now (1) is equivalent to
argmin

u∈H1(I ,L2)

F (u)

Computing F (u) gives an a posteriori error bound
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Variational formulation for the Schrödinger equation

Theorem (Dupuy, Ehrlacher, Guillot)
Let

F (u) = ∥u(0)− ψ0∥2L2 + T
∥∥i∂tu − e−it∆ V eit∆ u

∥∥2
L2(I ,L2)

.

If V satisfies the condition (C), then (1) has a unique solution φ in
H1

loc(R, L2
(
R3N

)
). For any bounded time interval I = (0,T ), φ there exist

constants α,C > 0 such that

α ∥u − φ∥2H1(I ,L2) ≤ F (u) ≤ C ∥u − φ∥2H1(I ,L2) ,

Remarks:

The constants α,C depends on T polynomially.

The potential mentioned earlier (Coulomb and bounded) satisfy condition
(C).
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Variational formulation for the Schrödinger equation

Hint of proof:
We know that ∫ ∞

0
e−t(ix+ε) e−itξ dt =

−i

x + (ξ − iε)
.

Using functional calculus (ie replacing x with −∆), it follows that for any
φ ∈ L2(R3N): ∫ ∞

0
e−itξ e−tε V eit∆ φ dt = −iV (−∆+ (ξ − iε))−1φ.

Then we have Plancherel’s indentity:∫ ∞

0
e−2εt

∥∥∥V eit∆ φ
∥∥∥2

dt =

∫
R

∥∥V (−∆+ (ξ − iε))−1φ
∥∥2

dξ

Doing the same for
∫ 0
−∞, we get∫

R
e−2ε|t|

∥∥∥V eit∆ φ
∥∥∥2

dt =

∫
R

∥∥V (−∆+ (ξ − iε))−1φ
∥∥2

+
∥∥V (−∆+ (ξ + iε))−1φ

∥∥2
dξ
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Example: Gaussian Wave Packets

We consider the set of gaussian wave packets:

G =

{
g : Rd → C :

∀x ∈ Rd , g(x) = λ e−
1
2 (x−q)·Q(x−q) eip·(x−q),

λ ∈ C, p, q ∈ Rd , Q = A+ iB with A ∈ S+,∗
d B ∈ Sd

}
.

O
(
d2) parameters (not exponential)

Computations are often explicit
eit∆(G) = G
G is a weakly close subset of L2(Rd

)
(useful to prove the existence of

minimizers)
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Optimization process: Greedy algorithm

We want to approximate the solution of

argmin
u∈H1(I ,L2)

∥u(0)− ψ0∥2L2 + T
∥∥∥i∂tu − e−it∆ V eit∆ u

∥∥∥2

L2(I ,L2)
,

using only elements of H1(I ,G).
Problem: No reason why the real minimizer should be in (or even close
to) H1(I ,G)

Solution: We use more than one elements, and a greedy algorithm:
Compute g1 ← argming∈H1(I ,G) F (g)
Compute g2 ← argming∈H1(I ,G) F (g1 + g)
Compute g3 ← argminG∈H1(I ,G) F (g1 + g2 + g)
...
Compute gk ← argming∈H1(I ,G) F (g1 + ...+ gk−1 + g)
...
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Optimization process: Greedy algorithm

We consider the greedy algorithm:
Compute g1 ← argming∈H1(I ,G) F (g)

Compute g2 ← argming∈H1(I ,G) F (g1 + g)

Compute g3 ← argminG∈H1(I ,G) F (g1 + g2 + g)

...
Compute gk ← argming∈H1(I ,G) F (g1 + ...+ gk−1 + g)

...

Proposition
If G is the set of gaussian wave packets described above, the sequence
defined by hk = g1 + ...+ gk converges in L2(R3N) to the minimizer of F .

Clément Guillot Low-complexity approximations with least-squares formulation of the time-dependent Schrödinger equationJuly 22, 2025 17 / 147



Example: Gaussian Wave Packets

Figure: L2 norm of the computed wave
function with respect to t.

Figure: Decay of the residual with
respect to the number of terms
computed by the greedy algorithm.

Pros Cons
Cheap parametrization No proper initial guess
Sparsity Sometimes takes a long time
Parallel in time to converge
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Alternative to space-time: The Dirac-Frenkel principle

An alternative is to rely on the Dirac-Frenkel variational principle
Define Σ = {g1 + g2 + ...+ gI : g1, ..., gI ∈ G} (I ∈ N), and solve{

i∂tφ(t) = πTφ(t)Σ

(
e−it∆ V eit∆ φ

)
,

φ(0) = ψ̃0 ∈ Σ.

Advantage: Easy to implement, cheaper
Problem: The Gram matrix of the gj ’s may become ill-conditioned,
leading to numerical instabilities
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Conclusions and perspectives

Fixing convergence issues
Implementing a serious 3D example (Hydrogen...)
Consider antisymmetric wave function ansatz
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Thank you for your attention !
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