Low-complexity approximations with least-squares formulation of the time-dependent Schrödinger equation

Mi-Song Dupuy, Virginie Ehrlacher, Clément Guillot

July 22, 2025

Established by the European Commission

The atom

- ullet Assume we want to study a system with M protons and N electrons
- Protons are much heavier than electrons \Rightarrow We assume they have fixed position $X_1,...,X_M \in \mathbb{R}^3$

The atom

- ullet Assume we want to study a system with M protons and N electrons
- Protons are much heavier than electrons \Rightarrow We assume they have fixed position $X_1,...,X_M \in \mathbb{R}^3$
- The positions $x_1(t),...,x_N(t) \in \mathbb{R}^3$ of the electrons satisfy the equations of movement:

$$\begin{cases} \ddot{x_j}(t) = -\nabla V(x_1(t), ..., x_N(t)), \\ \dot{x_j}(0) = v_{j,0}, \\ x_j(0) = x_{j,0}, \end{cases}$$

$$V(x_1,...,x_N) = \underbrace{\sum_{j=1}^N \sum_{k=1}^M \frac{-1}{|x_j - X_k|}}_{\text{electron-proton}} + \underbrace{\sum_{1 \leq j_1 < j_2 \leq N} \frac{1}{|x_{j_1} - x_{j_2}|}}_{\text{electron-electron}}.$$

Solving the problem

• We have an ODE:

$$\begin{cases} \ddot{x}_{j}(t) = -\nabla V(x_{1},...,x_{N}), \\ \dot{x}_{j}(0) = v_{j,0}, \\ x_{j}(0) = x_{j,0}, \end{cases}$$

Solving the problem

• We have an ODE:

$$\begin{cases} \ddot{x_j}(t) = -\nabla V(x_1, ..., x_N), \\ \dot{x_j}(0) = v_{j,0}, \\ x_j(0) = x_{j,0}, \end{cases}$$

- Compute ∇V explicitly, or with autodifferentiation
- Solve the equation with RK4, or a symplectic integrator
- Add external electro-magnetic field!

Thank you for your attention!

Professor Schrödinger believes things are too easy

Figure: Erwin Schrödinger in 1933 (Wikipedia)

The Schrödinger equation

- Electrons are not "point" particles, they are waves
- Electronic systems are described by a wave function $\psi: (t, x_1, ..., x_N) \in \mathbb{R} \times \mathbb{R}^3 \times ... \times \mathbb{R}^3 \mapsto \mathbb{C}$

The Schrödinger equation

- Electrons are not "point" particles, they are waves
- Electronic systems are described by a wave function $\psi: (t, x_1, ..., x_N) \in \mathbb{R} \times \mathbb{R}^3 \times ... \times \mathbb{R}^3 \mapsto \mathbb{C}$
- $|\psi|^2$ represents the *density of presence* of the electrons in the space of all possible configurations $(\int |\psi(t, x_1, ..., x_N)|^2 dx_1 ... dx_N = 1)$

The Schrödinger equation

- Electrons are not "point" particles, they are waves
- Electronic systems are described by a wave function $\psi: (t, x_1, ..., x_N) \in \mathbb{R} \times \mathbb{R}^3 \times ... \times \mathbb{R}^3 \mapsto \mathbb{C}$
- $|\psi|^2$ represents the *density of presence* of the electrons in the space of all possible configurations $(\int |\psi(t, x_1, ..., x_N)|^2 dx_1 ... dx_N = 1)$
- The movement of the electrons is ruled by the *Schrödinger equation*:

$$\begin{cases} i\partial_t \psi = -\Delta \psi + V\psi, \\ \psi(t=0) = \psi_0 \in L^2(\mathbb{R}^{3N}), \end{cases}$$

Pros	Cons
Linear	Curse of dimensionality
Mathematically well posed	Ubounded domain

Well-posedness

Figure: Tosio Kato (Wikipedia)

- Proved the Kato-Rellich theorem
- Proved that $-\Delta + V$ is self-adjoint \Rightarrow Schrödinger equation is well posed whenever $\psi_0 \in L^2(\mathbb{R}^{3N})$.

The curse of dimensionality

"Grid-type" approach with 1 electron:

The curse of dimensionality

"Grid-type" approach with 1 electron:

"Grid-type" approach with *N* electrons:

$$\psi(t, x_1, ..., x_N) \Rightarrow k^{3N}$$
 points

Ex:
$$k = 10$$
, $N = 10 \Rightarrow 10^{30}$ points = Too expensive!

• We want a variational formulation for the Schrödinger equation

$$\begin{cases} i\partial_t \psi = (-\Delta + V)\psi, \\ \psi(0) = \psi_0. \end{cases}$$

We want a variational formulation for the Schrödinger equation

$$\begin{cases} i\partial_t \psi = (-\Delta + V)\psi, \\ \psi(0) = \psi_0. \end{cases}$$

• We "twist" the equation: Define $\varphi(t)=\mathrm{e}^{-it\Delta}\,\psi(t)$, then φ is solution to

$$\begin{cases} i\partial_t \varphi = e^{-it\Delta} V e^{it\Delta} \varphi, \\ \varphi(0) = \psi_0. \end{cases}$$

(The operator $e^{-it\Delta} V e^{it\Delta}$ follows the *Heisenberg picture*)

$$\begin{cases} i\partial_t \varphi = e^{-it\Delta} V e^{it\Delta} \varphi, \\ \varphi(0) = \psi_0. \end{cases}$$
 (1)

Theorem (Dupuy, Ehrlacher, Guillot)

Let

$$F(u) = \left\| u(0) - \psi_0 \right\|_{L^2}^2 + T \left\| i \partial_t u - \mathrm{e}^{-it\Delta} \; V \, \mathrm{e}^{it\Delta} \; u \right\|_{L^2(I,L^2)}^2.$$

If V satisfies the condition (C), then (1) has a unique solution φ in $H^1_{loc}(\mathbb{R},L^2(\mathbb{R}^{3N}))$. For any bounded time interval I=(0,T), φ there exist constants $\alpha,C>0$ such that

$$\alpha \|u - \varphi\|_{H^{1}(I,L^{2})}^{2} \leq F(u) \leq C \|u - \varphi\|_{H^{1}(I,L^{2})}^{2},$$

$$\begin{cases} i\partial_t \varphi = e^{-it\Delta} V e^{it\Delta} \varphi, \\ \varphi(0) = \psi_0. \end{cases}$$
 (1)

Theorem (Dupuy, Ehrlacher, Guillot)

Let

$$F(u) = \|u(0) - \psi_0\|_{L^2}^2 + T \|i\partial_t u - e^{-it\Delta} V e^{it\Delta} u\|_{L^2(I,L^2)}^2.$$

If V satisfies the condition (C), then (1) has a unique solution φ in $H^1_{loc}(\mathbb{R},L^2(\mathbb{R}^{3N}))$. For any bounded time interval I=(0,T), φ there exist constants $\alpha,C>0$ such that

$$\alpha \|u - \varphi\|_{H^{1}(I,L^{2})}^{2} \leq F(u) \leq C \|u - \varphi\|_{H^{1}(I,L^{2})}^{2},$$

• Condition (C): There exists an $\varepsilon > 0$ such that

$$\sup_{\lambda \in \mathbb{R}} \left\| V(-\Delta + i\varepsilon + \lambda)^{-1} \right\| < 1.$$

Theorem (Dupuy, Ehrlacher, Guillot)

Let

$$F(u) = \|u(0) - \psi_0\|_{L^2}^2 + T \|i\partial_t u - e^{-it\Delta} V e^{it\Delta} u\|_{L^2(I,L^2)}^2.$$

If V satisfies the condition (C), then (1) has a unique solution φ in $H^1_{loc}(\mathbb{R},L^2(\mathbb{R}^{3N}))$. For any bounded time interval I=(0,T), φ there exist constants $\alpha,C>0$ such that

$$\alpha \|u - \varphi\|_{H^1(I,L^2)}^2 \le F(u) \le C \|u - \varphi\|_{H^1(I,L^2)}^2$$

What is it for:

Now (1) is equivalent to

$$\underset{u \in H^{1}(I,L^{2})}{\operatorname{argmin}} F(u)$$

• Computing F(u) gives an a posteriori error bound

Theorem (Dupuy, Ehrlacher, Guillot)

Let

$$F(u) = \|u(0) - \psi_0\|_{L^2}^2 + T \|i\partial_t u - e^{-it\Delta} V e^{it\Delta} u\|_{L^2(I,L^2)}^2.$$

If V satisfies the condition (C), then (1) has a unique solution φ in $H^1_{loc}(\mathbb{R},L^2(\mathbb{R}^{3N}))$. For any bounded time interval I=(0,T), φ there exist constants $\alpha,C>0$ such that

$$\alpha \|u - \varphi\|_{H^{1}(I,L^{2})}^{2} \leq F(u) \leq C \|u - \varphi\|_{H^{1}(I,L^{2})}^{2},$$

Remarks:

- The constants α , C depends on T polynomially.
- The potential mentioned earlier (Coulomb and bounded) satisfy condition (C).

Hint of proof:

We know that

$$\int_0^\infty e^{-t(ix+\varepsilon)} e^{-it\xi} dt = \frac{-i}{x+(\xi-i\varepsilon)}.$$

Hint of proof:

We know that

$$\int_0^\infty e^{-t(ix+\varepsilon)} e^{-it\xi} dt = \frac{-i}{x+(\xi-i\varepsilon)}.$$

Using functional calculus (ie replacing x with $-\Delta$), it follows that for any $\varphi \in L^2(\mathbb{R}^{3N})$:

$$\int_0^\infty \mathrm{e}^{-it\xi}\,\mathrm{e}^{-t\varepsilon}\,V\,\mathrm{e}^{it\Delta}\,\varphi\,dt\,=-iV(-\Delta+(\xi-i\varepsilon))^{-1}\varphi.$$

Hint of proof:

We know that

$$\int_0^\infty e^{-t(ix+\varepsilon)} e^{-it\xi} dt = \frac{-i}{x+(\xi-i\varepsilon)}.$$

Using functional calculus (*ie* replacing x with $-\Delta$), it follows that for any $\varphi \in L^2(\mathbb{R}^{3N})$:

$$\int_0^\infty e^{-it\xi} e^{-t\varepsilon} V e^{it\Delta} \varphi dt = -iV(-\Delta + (\xi - i\varepsilon))^{-1} \varphi.$$

Then we have Plancherel's indentity:

$$\int_0^\infty \mathrm{e}^{-2\varepsilon t} \left\| V \, \mathrm{e}^{it\Delta} \, \varphi \right\|^2 \, dt \, = \int_{\mathbb{R}} \left\| V (-\Delta + (\xi - i\varepsilon))^{-1} \varphi \right\|^2 \, d\xi$$

Hint of proof:

We know that

$$\int_0^\infty e^{-t(ix+\varepsilon)} e^{-it\xi} dt = \frac{-i}{x + (\xi - i\varepsilon)}.$$

Using functional calculus (ie replacing x with $-\Delta$), it follows that for any $\varphi \in L^2(\mathbb{R}^{3N})$:

$$\int_0^\infty \mathrm{e}^{-it\xi}\,\mathrm{e}^{-t\varepsilon}\,V\,\mathrm{e}^{it\Delta}\,\varphi\,dt\,=-iV\big(-\Delta+(\xi-i\varepsilon)\big)^{-1}\varphi.$$

Then we have Plancherel's indentity:

$$\int_0^\infty \mathrm{e}^{-2\varepsilon t} \left\| V \, \mathrm{e}^{it\Delta} \, \varphi \right\|^2 \, dt \, = \int_\mathbb{R} \left\| V (-\Delta + (\xi - i\varepsilon))^{-1} \varphi \right\|^2 \, d\xi$$

Doing the same for $\int_{-\infty}^{0}$, we get

$$\int_{\mathbb{R}} \mathsf{e}^{-2\varepsilon |t|} \left\| V \, \mathsf{e}^{it\Delta} \, \varphi \right\|^2 \, dt \, = \int_{\mathbb{R}} \left\| V (-\Delta + (\xi - i\varepsilon))^{-1} \varphi \right\|^2 + \left\| V (-\Delta + (\xi + i\varepsilon))^{-1} \varphi \right\|^2$$

Example: Gaussian Wave Packets

• We consider the set of gaussian wave packets:

$$\mathcal{G} = \left\{ g : \mathbb{R}^d \to \mathbb{C} : \begin{array}{c} \forall x \in \mathbb{R}^d, \ g(x) = \lambda \, \mathrm{e}^{-\frac{1}{2}(x-q) \cdot Q(x-q)} \, \mathrm{e}^{ip \cdot (x-q)}, \\ \lambda \in \mathbb{C}, \ p, q \in \mathbb{R}^d, \ Q = A + iB \ \text{ with } A \in \mathcal{S}_d^{+,*}B \in \mathcal{S}_d \end{array} \right\}$$

Example: Gaussian Wave Packets

• We consider the set of gaussian wave packets:

$$\mathcal{G} = \left\{ g : \mathbb{R}^d \to \mathbb{C} : \begin{array}{c} \forall x \in \mathbb{R}^d, \ g(x) = \lambda \, \mathrm{e}^{-\frac{1}{2}(x-q) \cdot Q(x-q)} \, \mathrm{e}^{ip \cdot (x-q)}, \\ \lambda \in \mathbb{C}, \ p, q \in \mathbb{R}^d, \ Q = A + iB \ \text{ with } A \in \mathcal{S}_d^{+,*} B \in \mathcal{S}_d \end{array} \right\}$$

- ullet $\mathcal{O}(d^2)$ parameters (not exponential)
- Computations are often explicit
- \bullet $e^{it\Delta}(\mathcal{G}) = \mathcal{G}$
- $m{\cdot}$ \mathcal{G} is a weakly close subset of $L^2(\mathbb{R}^d)$ (useful to prove the existence of minimizers)

Optimization process: Greedy algorithm

We want to approximate the solution of

$$\underset{u \in H^1(I,L^2)}{\operatorname{argmin}} \left\| u(0) - \psi_0 \right\|_{L^2}^2 + T \left\| i \partial_t u - \mathrm{e}^{-it\Delta} \, V \, \mathrm{e}^{it\Delta} \, u \right\|_{L^2(I,L^2)}^2,$$

using only elements of $H^1(I,\mathcal{G})$.

• Problem: No reason why the real minimizer should be in (or even close to) $H^1(I,\mathcal{G})$

Optimization process: Greedy algorithm

We want to approximate the solution of

$$\underset{u \in H^1(I,L^2)}{\operatorname{argmin}} \|u(0) - \psi_0\|_{L^2}^2 + T \left\| i \partial_t u - \mathrm{e}^{-it\Delta} \, V \, \mathrm{e}^{it\Delta} \, u \right\|_{L^2(I,L^2)}^2,$$

using only elements of $H^1(I,\mathcal{G})$.

- Problem: No reason why the real minimizer should be in (or even close to) $H^1(I,\mathcal{G})$
- Solution: We use more than one elements, and a greedy algorithm:

$$\begin{array}{l} \mathsf{Compute} \ g_1 \leftarrow \mathsf{argmin}_{g \in H^1(I,\mathcal{G})} \ F(g) \\ \mathsf{Compute} \ g_2 \leftarrow \mathsf{argmin}_{g \in H^1(I,\mathcal{G})} \ F(g_1 + g) \\ \mathsf{Compute} \ g_3 \leftarrow \mathsf{argmin}_{G \in H^1(I,\mathcal{G})} \ F(g_1 + g_2 + g) \\ \ldots \\ \mathsf{Compute} \ g_k \leftarrow \mathsf{argmin}_{g \in H^1(I,\mathcal{G})} \ F(g_1 + \ldots + g_{k-1} + g) \end{array}$$

Optimization process: Greedy algorithm

We consider the greedy algorithm:

```
Compute g_1 \leftarrow \operatorname{argmin}_{g \in H^1(I,\mathcal{G})} F(g)

Compute g_2 \leftarrow \operatorname{argmin}_{g \in H^1(I,\mathcal{G})} F(g_1 + g)

Compute g_3 \leftarrow \operatorname{argmin}_{G \in H^1(I,\mathcal{G})} F(g_1 + g_2 + g)

...

Compute g_k \leftarrow \operatorname{argmin}_{g \in H^1(I,\mathcal{G})} F(g_1 + ... + g_{k-1} + g)
```

Proposition

If $\mathcal G$ is the set of gaussian wave packets described above, the sequence defined by $h_k=g_1+...+g_k$ converges in $L^2(\mathbb R^{3N})$ to the minimizer of F.

Example: Gaussian Wave Packets

Figure: L^2 norm of the computed wave function with respect to t.

Figure: Decay of the residual with respect to the number of terms computed by the greedy algorithm.

Example: Gaussian Wave Packets

10⁻¹

10⁻²

Number of terms

A Pure greedy exthogonal

A Pure greedy extended extended

Figure: L^2 norm of the computed wave function with respect to t.

Figure: Decay of the residual with respect to the number of terms computed by the greedy algorithm.

Pros	Cons
Cheap parametrization	No proper initial guess
Sparsity	Sometimes takes a long time
Parallel in time	to converge

Alternative to space-time: The Dirac-Frenkel principle

- An alternative is to rely on the Dirac-Frenkel variational principle
- Define $\Sigma=\{g_1+g_2+...+g_I\,:\,g_1,...,g_I\in\mathcal{G}\}\ (I\in\mathbb{N})$, and solve

$$\begin{cases} i\partial_t \varphi(t) = \pi_{\mathcal{T}_{\varphi(t)}\Sigma} \left(\mathrm{e}^{-it\Delta} \ V \, \mathrm{e}^{it\Delta} \, \varphi \right), \\ \varphi(0) = \tilde{\psi}_0 \in \Sigma. \end{cases}$$

Alternative to space-time: The Dirac-Frenkel principle

- An alternative is to rely on the Dirac-Frenkel variational principle
- Define $\Sigma=\{g_1+g_2+...+g_I\,:\,g_1,...,g_I\in\mathcal{G}\}\ (I\in\mathbb{N})$, and solve

$$\begin{cases} i\partial_t \varphi(t) = \pi_{T_{\varphi(t)}\Sigma} \left(e^{-it\Delta} V e^{it\Delta} \varphi \right), \\ \varphi(0) = \tilde{\psi}_0 \in \Sigma. \end{cases}$$

- Advantage: Easy to implement, cheaper
- Problem: The Gram matrix of the g_j 's may become ill-conditioned, leading to numerical instabilities

Conclusions and perspectives

- Fixing convergence issues
- Implementing a serious 3D example (Hydrogen...)
- Consider antisymmetric wave function ansatz

Thank you for your attention!