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@ Assume we want to study a system with M protons and N electrons

@ Protons are much heavier than electrons = We assume they have
fixed position X1, ..., Xy € R3
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@ Assume we want to study a system with M protons and N electrons

@ Protons are much heavier than electrons = We assume they have
fixed position X1, ..., Xy € R3

@ The positions x1(t), ..., xn(t) € R3 of the electrons satisfy the
equations of movement:

Xj(t) = =V V(xi(t), ..., xn(t)),

N M -1 1
V(x1, .oy i) = [ Xy — x|
(X17 7XN) ZZ’XJ._Xk’—i_lﬁjKijSN |)<j1_)<j2|

electron-proton electron-electron
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Solving the problem

@ We have an ODE:

XJ(t) = —V\/(Xl, ...,XN),
xi(0) = vj 0,
x;(0) = xj 0,
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Solving the problem

@ We have an ODE:
XJ(t) == —V\/(Xl, ...,XN),
x(0) = vj0,
%;(0) = xj.0,

o Compute VV explicitly, or with autodifferentiation

@ Solve the equation with RK4, or a symplectic integrator

@ Add external electro-magnetic field !
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Thank you for your attention !
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Professor Schrodinger believes things are too easy

Figure: Erwin Schrédinger in 1933 (Wikipedia)
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The Schrodinger equation

@ Electrons are not "point" particles, they are waves

o Electronic systems are described by a wave function
¥ (tyxi, .., xy) ERXR3x ... x R3 = C
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The Schrodinger equation

@ Electrons are not "point" particles, they are waves

o Electronic systems are described by a wave function
¥ (tyxi, .., xy) ERXR3x ... x R3 = C

o |1|? represents the density of presence of the electrons in the space of
all possible configurations ( [ [4)(t, x1, ..., xn)|? dxi ... dxy = 1)
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The Schrodinger equation

@ Electrons are not "point" particles, they are waves

o Electronic systems are described by a wave function
¥ (tyxi, .., xy) ERXR3x ... x R3 = C

o |1|? represents the density of presence of the electrons in the space of
all possible configurations ( [ [4)(t, x1, ..., xn)|? dxi ... dxy = 1)

@ The movement of the electrons is ruled by the Schrédinger equation:

10¢) = =AY + V1,
Y(t =0) =g € L2(R3N),

Pros Cons
Linear Curse of dimensionality
Mathematically well posed | Ubounded domain
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Well-posedness

Figure: Tosio Kato (Wikipedia)

@ Proved the Kato-Rellich theorem

@ Proved that —A + V is self-adjoint = Schrédinger equation is well
posed whenever 19 € L2(R3V).
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The curse of dimensionality

"Grid-type" approach with 1

electron:
k points ) K points
k ph k points
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The curse of dimensionality

"Grid-type" approach with 1 "Grid-type" approach with N
electron: electrons:
Y(t, x1, ..., xn) = k3N points

Ex: k=10, N =10 = 1030 points

k points 3. .
m==) Kk’ points .
P = Too expensive !

kp®

k points
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Variational formulation for the Schrédinger equation

@ We want a variational formulation for the Schrddinger equation

{iatw = (—A+ V)Y,
¥(0) = 2o.
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Variational formulation for the Schrédinger equation

@ We want a variational formulation for the Schrddinger equation

{iatw = (—A+ V)Y,
¥(0) = 2o.

o We "twist" the equation: Define o(t) = e *2 ¢)(t), then ¢ is solution
to

¢(0) = vo.

(The operator e~ 2 V/ e follows the Heisenberg picture)

{iatg) = e ItD |/ gitA
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Variational formulation for the Schrédinger equation

1D = e—itB \/ ith
©(0) = o.

Theorem (Dupuy, Ehrlacher, Guillot)

Let
F(u) = [|u(0) — ol + T |[idpu — e~ ™A v e'ta

2
“HLz(/,Lz) :

If V satisfies the condition (C), then (1) has a unique solution ¢ in
Hi: (R, L2(R3N)). For any bounded time interval | = (0, T), ¢ there exist
constants o, C > 0 such that

2 2
« ||Ll - SOHHi(/,LZ) < F(U) <C ||U - @HH‘(I,LZ) )
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Variational formulation for the Schrédinger equation

1D = e—itB \/ ith
©(0) = o.

Theorem (Dupuy, Ehrlacher, Guillot)

Let
F(u) = [|u(0) — ol + T |[idpu — e~ ™A v e'ta

2
“HLz(/,Lz) :

If V satisfies the condition (C), then (1) has a unique solution ¢ in
Hi: (R, L2(R3N)). For any bounded time interval | = (0, T), ¢ there exist
constants o, C > 0 such that

2 2
« ||Ll - SOHHi(/,LZ) < F(U) <C ||U - @HH‘(I,LZ) )

@ Condition (C): There exists an £ > 0 such that

sup [|[V(—A + ie + /\)*IH <1
AeR
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Variational formulation for the Schrédinger equation

Theorem (Dupuy, Ehrlacher, Guillot)
Let

] —i i 2
F(u) = [[u(0) = tholliz + T [|ideu — ™A Ve ull 3, 1oy

If V satisfies the condition (C), then (1) has a unique solution ¢ in
Hi: (R, L2(R3N)). For any bounded time interval | = (0, T), ¢ there exist
constants o, C > 0 such that

2 2
« ||Ll - SOHHi(/,LZ) < F(U) <C ||U - @HH‘(I,LZ) ’

What is it for:
@ Now (1) is equivalent to
argmin F(u)
ueHY(1,L2)

@ Computing F(u) gives an a posteriori error bound

Clément Guillot Low-complexity approximations with least July 22, 2025



Variational formulation for the Schrédinger equation

Theorem (Dupuy, Ehrlacher, Guillot)

Let

; o . 2
F(u) = [[u(0) = tolljz + T [|ideu — &4 Ve ull 4, 1oy

If V satisfies the condition (C), then (1) has a unique solution ¢ in
Hioo (R, L2(R3N)). For any bounded time interval | = (0, T), ¢ there exist
constants o, C > 0 such that

2 2
allu = @lling 2y < F(u) < Cllu = @lling 12y

.

Remarks:
@ The constants «, C depends on T polynomially.

@ The potential mentioned earlier (Coulomb and bounded) satisfy condition

().
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Variational formulation for the Schrédinger equation

Hint of proof:

We know that

® _tlxte) —ite 5. —i
e e dt = —————.
/0 x+ (& — ie)
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Variational formulation for the Schrédinger equation

Hint of proof:

We know that - )
—t(ixt+e) —it€ o —1

e e dt = ———.

/0 x+ (& —ig)

Using functional calculus (ie replacing x with —A), it follows that for any
@ € L*(R*):

[ e e e = A i
0
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Variational formulation for the Schrédinger equation

Hint of proof:

We know that

® _tlxte) —ite 5. —i
e e dt = —————.
/0 X+ (§ — ig)

Using functional calculus (ie replacing x with —A), it follows that for any
@ € L*(R*):
/ e e Vet pdt = —iV(—A+ (€ —ie)) .
0

Then we have Plancherel's indentity:

oo
/ e—2st
0

ve‘*%”z dt = /R V(=4 + (£ —ie)) || de
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Variational formulation for the Schrédinger equation

Hint of proof:

We know that - )
—t(ixt+e) —it€ o —1
e e dt = ———.
/ FEm
Using functional calculus (ie replacing x with —A), it follows that for any
@ € L*(R*):
/ e e Vet pdt = —iV(—A+ (€ —ie)) .

0

Then we have Plancherel's indentity:

fe's}
—2¢t
[
0
0

Doing the same for [~

/ef2slt\
R

ve‘*%”z dt = /R V(=4 + (£ —ie)) || de

we get

vee o d = [IV-a+E— i el HIV-a+ e+ i) olf
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Example: Gaussian Wave Packets

@ We consider the set of gaussian wave packets:

d _ —1(x—9)-Q(x—q) nip:(x—q)
g:{g:Rd%C: I ER', glx) = e CsiB }

ANEC, p,geRY, Q=A+iB with Ac S "B Sy
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Example: Gaussian Wave Packets

@ We consider the set of gaussian wave packets:

d _ —1(x—9)-Q(x—q) nip:(x—q)
g:{g:Rd%C: I ER', glx) = e CsiB }

ANEC, p,geRY, Q=A+iB with Ac S "B Sy
O(d?) parameters (not exponential)

Computations are often explicit

eitA(g) =G

G is a weakly close subset of L2(R9) (useful to prove the existence of
minimizers)
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Optimization process: Greedy algorithm

@ We want to approximate the solution of

argmin [|u(0) — o2 + T Hi@tu —e Ay eitA qu
ueHY(1,12) t 1x1,12)’

using only elements of H*(/,G).

@ Problem: No reason why the real minimizer should be in (or even close

to) HY(1,G)
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Optimization process: Greedy algorithm

@ We want to approximate the solution of

argmin [|u(0) — o2 + T Hi@tu —e Ay eitA qu
ueHY(1,12) t 1x1,12)’
using only elements of H*(/,G).
@ Problem: No reason why the real minimizer should be in (or even close
to) H(/,G)
@ Solution: We use more than one elements, and a greedy algorithm:

Compute g1 argminge,.,l(,,g) F(g)
Compute gz <— argmingc ;. g) Fle1+g)
Compute g3 + argming e yy/,g) Fle+ e +g)

Compute gx < argmingcpy; gy F(g1 + - + gk—1 + &)
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Optimization process: Greedy algorithm

We consider the greedy algorithm:
Compute g1 < argmingc s gy F(8)
Compute g2 < argmingcpy; gy F(g1 + &)
Compute g3 < argmingep,g) F(g1 + & + &)

Compute gk < argmingcppn g) F(g1 + ... + gk-1 + &)

Proposition

If G is the set of gaussian wave packets described above, the sequence
defined by hi = g1 + ... + gk converges in L2(R3N) to the minimizer of F.
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Example: Gaussian Wave Packets
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Figure: Decay of the residual with
respect to the number of terms
computed by the greedy algorithm.

Figure: L2 norm of the computed wave
function with respect to t.
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Example: Gaussian Wave Packets
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Figure: Decay of the residual with
respect to the number of terms
computed by the greedy algorithm.

Figure: L? norm of the computed wave
function with respect to t.

Pros Cons

Cheap parametrization | No proper initial guess
Sparsity Sometimes takes a long time
Parallel in time to converge
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Alternative to space-time: The Dirac-Frenkel principle

@ An alternative is to rely on the Dirac-Frenkel variational principle
@ DefneX={g1+g+...+g : &1,--,8 €3G} (I €N), and solve

/81'90(1') — WTw(t)z (e—itA VeitA 90) 7
¢(0) = 1o € L.
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Alternative to space-time: The Dirac-Frenkel principle

@ An alternative is to rely on the Dirac-Frenkel variational principle
@ DefneX={g1+g+...+g : &1,--,8 €3G} (I €N), and solve

/81'90(1') =TT, (e—itA V eitd 90) 7
©(0) = o € L.
@ Advantage: Easy to implement, cheaper

@ Problem: The Gram matrix of the gj's may become ill-conditioned,
leading to numerical instabilities
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Conclusions and perspectives

e Fixing convergence issues
@ Implementing a serious 3D example (Hydrogen...)

o Consider antisymmetric wave function ansatz
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Thank you for your attention !
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