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Metastability of energetic origin

Thermal particle living in a potential well:
n Slow dynamics between the wells

Long time to escape. This is a rare event

Toy model: Langevin particle in a double-well (¢?%)
potential

How much time does it take to escape the well?
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Eyring-Kramers' formula

Answer known since the 1930s:

Eyring-Kramers’ formula*
The escape time is exponentially distributed, with a rate r;, with i € {1,2}:

AV,
ri = C; exp (—k T) ,
B

AV, the height of the barrier, kg the Boltzmann constant, T the temperature, C; a
constant

* Also Arrhenius, Polanyi or Van't Hoff law
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What if energy is not the driving factor?

A potential made a confining
well and a few narrow canals:

Still a long time to escape.
This is still a rare event

480

Potential V

20 Is there an equivalent to the
Eyring Kramers formula in this
case?

160
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The narrow escape problem [1]

Toy model of the metastability of entropic origin:

Setting:
Domain Q with holes I'5, and reflecting
boundary ',

A Brownian motion starting at xg taking a

long time to exit 7. = inf{t > 0| X; & Q}
Goal: In the limit of small holes ¢ — 0:

Distribution of the escape time 7.

The exit hole distribution X,

[1] Introduced by Holcman and Schuss (2004), then large numbers of contributors: Ammari, Bénichou,
Chen, Chevalier, Cheviakov, Friedman, Grebenkov, Singer, Straube, Voituriez, Ward...
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Quasi-stationary distribution (QSD)

Definition |
If Xo ~ ve, thenVt >0, P(X:|t <72) =1,

The QSD v, is the distribution of X; that is stationary by the dynamics conditionned on
the fact that the Brownian motion has not escaped yet

Property: Yaglom’'s limit

If Xo € Q, then lim P(X:|t<7)=1r:
t——+00

The QSD is attained after a large time of simulation, in our context
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Assume that Xy ~ v.. Then
¢ The exit time 7 is exponentially distributed ~ Exp(Az)

P r>s+t]=P, [r>s+t|7>s]|P, [1>5]
=P, [r>t]P, [T > 5]

© The exit point X; is independent of the exit time 7

P, [X: e AT >t]|=P, [X; € AlT > t]|P, [T > ]
— P, [X, € AP, [r > 1]




Quasi-stationary distribution (QSD)

In the setting with a stationary
distribution:

One can build a Markov-chain model [2],
~> labyrinth of simple shapes

[2] Di Gesu, Leligvre, Le Peutrec and Nectoux, Faraday Discussion, (2016)
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Quasi-stationary distribution and Eigenvalue problems

In the setting with a stationary distribution:
Consider the adjoint generator (Fokker-Planck) L* of the process:
Then the stationary distribution s is given by L*s =0=0s

In the metastable setting:

The QSD v, is given by the eigenvector with the smallest eigenvalue: —Liv. = A ve.
Qualitative idea: Consider the eigen-decomposition of L} (it exists as L. is self-adjoint
and has a compact resolvant), then

p(t) =3 (p(0), ukye et uk,

At large time, the dominant term is the one with the smallest eigenvalue, which is
identified to the QSD by Yaglom'’s limit.
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We want to find the QSD v,

—Av, = A1g in Q.
One =0 on Iy

ve =0 on I'p,
Then the narrow escape problem is solved:
¢ E[r.] = A!, the mean exit time

° P [XeTh] x /I_6 OnVe , the exit hole
Dj

distribution



The QSD as an eigenvalue problem

We want to find the QSD v,

—Av. = \.ve in Q.
Opv: =0 on 'y
ve=20 on I'p,

But thanks to [3]:

Flat angle between '}, and NFB’,: Onve € L2(09)
90° angle between Iy, and I, : d,ve € L2(09)
We need to be able to do integration by parts to
get the exit hole distribution X;

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)

louis.carillo@enpc.fr 11 of 30



Why modifying the domain?

We want to find the QSD v,

—Av. = A ve in
Onv: =0 on Iy

Ve = on I'p,

But thanks to [3]:
Flat angle between 'y and I'},: Oy ¢ L2(09)
90° angle between Iy, and I} : Onve € [2(09)

We need to be able to do integration by parts to
get the exit hole distribution X;

Level curves of the solution v, near
a flat hole.

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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Similar eigenvalue problem:

—Av, = Ve in S~25
O =0 on [y (1)

v: =0 on I'p,

N holes of radius rg(i)centered at x() € 9Q

Domain Q. = Q\UM , B(x(1), fa(i))

. New holes: Ff)l_ = 9B(x\, ragi)) na



A more regular narrow escape problem

Similar eigenvalue problem:

—Av. = A\.Us in §~25
Opve =0 on Iy

ve =0 on I'p,

3

Previous work: Asymptotic scaling for the disk
and the ball [4]

My PhD work: Asymptotic scaling for general
domains in d > 2 dimensions

[4] Lelievre, Rachid and Stoltz, preprint (2024)
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What does the quasi-stationary distribution look like?

o 0113 0225 0338 0451 DE 0676 0789 0902 101 113
N S
QsD
0 00891 0138 0207 0276 0345 0414 0483 0552 0622 0691
L B ]
Dimension 2: Circle Dimension 3: Cube
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Explicit solution to (1) with 1 exit hole

In (1), when € — 0, it holds |['f,| — 0 so we expect A, — 0 and v, — cst. This motivates
looking for a solution of the form v, =1 + v,, with

—Av. = A+ A2 on Q.
Onve =0 on 'y
ve =—1 on Iy
Taking formally the limit € — 0, we find that v./A. should converge to a function
satisfying
—Af=1 on Q
{ Onf =0 on9Q\ {x1}

We will now try to build such f.
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Observations on f

From the compatibility condition:

6,,f_/Af_—\Q]
o0 Q

The distribution f formally satisfies:

—-Af =1 in
8,,f = —|Q‘5x(1) on 092

= Neumann’'s Green function with the singularity pushed to the boundary
The Narrow escape problem has been related to f before in the literature [5]

[5] Silbergleit, Mandel and Nemenman (link with electrostatics)
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Construction of f for 1 exit hole

Let A: RY — R denote the fundamental solution of the Laplacian

| if d =2
AGx) o 0@? |
~ a2 ifd>3

Lemma: Construction of a quasimode

If 0Q is locally smooth around {x;}, there exists (f, C4.q) solution to (2), such that
f: Q+— R is smooth on Q and of the form f(x) = C;é/\(x —x1) + R(x)

The remainder term R: Q — R satisfies

0(1) ifd=2
R(x) = { O(—log |x — x1|) ifd=3
O(|x — x| ~(@=3)) ifd>4
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Proof of the lemma on f: step 1/3

Sketch of proof. Consider the change of variables

V: QN B(xg,8) » RT x RI™L

that locally flattens the boundary 9Q while preserving the normals and satisfies W(x;) = 0

Local change of coordinates W

We will take the ansatz f = C;an oo W +S.
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— f(a) ==

—Y

Smooth cutoff function 7,
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Proof of the lemma on f: step 2/3

Ansatz : f = C hmioNoW+S

In the first term 7, o A o W(x) equals A(x — x1) to leading order, in a neighborhood
of x1, as W(x) = x — x; + O(|x — x1/?)

By substitution we look for S satisfying
—ASzl—C;SI)A(nLo/\o\U) on Q
0,S=0 on 0f2

This problem admits a unique mean-zero weak solution if RHS is mean-zero,
~ defines Cy o as

|Q|Cd,Q:/QA(77Lo/\o\U)
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Proof of the lemma on f: step 3/3

Determine (4 o:
A(nLoNoW) € LP(Q) with 1 < p < 47

Computation using Green's theorem:

/A(mvow): Dl 0 Ao W)
Q o0

Proof that S is subsingular:
Using the integral representation of S (layer potential techniques [6]), we have that, in
the limit x — x()

509 = O( | Abx=1)AS()dy) = o(A(x )

[6] Ammari, Kang and Lee, American Mathematical Society, (2009)
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The Dirichlet condition (still with 1 exit hole)

Remember that

f="limeso A-tve with v. =2 — 1= —1on [

Close to x1, we have f ~ CJ%Z/\.
~+ A good approximation of (A, v;) is the pair (/):g,ﬁg), with A = Ca 0 (NN
and 7. =1 +X5f, satisfies the initial problem with small residuals

~

—AD. = AD-— N2f on Q.
Onu: =0 on 'y

Vv, = XER onlp

These resilduals have been quantified in the previous lemma
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Estimate of the error on the eigenvalue

Reminder: v, is the QSD, V. is the quasimode R
Similarily to [4], we have (U.,v:) =14 O(A:) + O(Xe)
By Green'’s identity, we have

)\£<I//\5, Va> = _</V\g, AI/E>
= —(AD.,ve) + (OpP, ve)re —

</V\57 anV5> re

= Xe(y\sa Vs> - /)‘\§<f~ V€> +0— :\\6<Rv 8n7/5>F]53

Therefore we deduce that

Ae — A

To conclude: the bound on R comes from the lemma,
and it can be shown that |[Onvel|1(rs) = O(A:) [4].
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Results for /N exit holes and d > 2
We define

ifd =2
()42 ifd>3

Theorem (Eigenvalue)

The mean exit time when Xy ~ v, is given by E,_[7] = i where

0 (RQ

5
)\5 = Cd,QFa + 0(72 og (?5)>
0 (Kg; )
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ford =2
ford =3

ford > 4

+ Ky
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Results for /N exit holes and d > 2

Theorem (Exit hole distribution)

' O(K.), ford =2
P(X; €Th,) = ZE +{ O(K:log(Kz)), ford =3
: O(Kr) for d > 4

Does the bound worsen with the dimension?
No! For d > 4, for the eigenvalue

N
Ae = Cyq (rF)72 (1 +0 (Z rf))
i=1

The same can be done with the exit hole distribution
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Measure of the exit time through Finite Element Method (FEM)

The constant Cy q is given by:

————— Sphere r=1

10° :E EEE:E::Z ('r:,. C . max{d - 27 1} |(£(0’ 1)|
el 98- 2 Q]
/,,:«;;::iif::’;f ‘ In dimension 3 we find for the simple
wr e shapes through FEM:

o . ,' Shape Ga | Ga (simu)
Sphere radius 1 | 1.500 | 1.46 + 0.02
T Sphere radius 2 | 0.187 | 0.18 £ 0.01
) T Cube 6.282 | 6.28 +0.02
) Cylinder 8.000 | 8.06 +0.01

Ke
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Measure

WOS: Fit of the eigenvalue in terms of the size of the hole,
all starting with a dirac in the center of the sphere.

100
o107t
<
AT T 2D expected 2 | fit: 1.9- x10
Ve 3D expected 4.5 | fit: 4.3 x10
[ TR T R Y A 4D expected 16 | fit: 11.0- x*2
p
1072 {— e H 5D expected 37.5] fit: 20.8 - x°°
6D expected 72 | fit: 34.6 - x°2
1074 10-2 102 10t 10°
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of the exit time in higher dimension

Monte Carlo simulation of the exit
time 7. for a unit ball in dimension
{2, 3, 4,5}

It's a rare event so very long
simulations...

Correct scaling in K., but:

Dimension | C2aT | CBal (simu)
2 2 1.9
3 4.5 4.3
4 16 11
5 325 20.8
6 72 34.6
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Several reasons:

¢ The previous simulations where done with the inital condition Xy ~ dg # v, .
¢ Trade-off VAt < € and Nypep = AtK,

Solution: Adaptative timestep algorithm: walk on sphere




Conclusion

The QSD is a useful tool to study the narrow escape problem
With this approach we can solve it for any (locally) smooth domain in any dimension

We get the scaling of the escape time and the exit hole distribution

Future work:
Precise assymptotics starting for deterministic initial conditions
How does the shape of the hole influence the escape time? — the slit
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The slit
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