

A quasi-stationary approach to the narrow escape problem

Louis Carillo

PhD under the supervision of Tony Lelièvre, Urbain Vaes & Gabriel Stoltz

Metastability of energetic origin

Thermal particle living in a potential well:

- Slow dynamics between the wells
- Long time to escape. This is a rare event

Toy model: Langevin particle in a double-well (φ^4) potential

How much time does it take to **escape** the well?

Eyring-Kramers' formula

Answer known since the 1930s:

Eyring-Kramers' formula*

The escape time is exponentially distributed, with a rate r_i , with $i \in \{1, 2\}$:

$$r_i = C_i \exp\left(-rac{\Delta V_i}{k_{
m B}T}
ight),$$

 ΔV_i the height of the barrier, $k_{\rm B}$ the Boltzmann constant, T the temperature, C_i a constant

* Also Arrhenius, Polanyi or Van't Hoff law

What if energy is not the driving factor?

A potential made a confining well and a few narrow canals:

Still a long time to escape. This is still a rare event

Is there an equivalent to the Eyring Kramers formula in this case?

The narrow escape problem [1]

Toy model of the metastability of entropic origin:

Setting:

- Domain Ω with holes $\Gamma_{D_i}^{arepsilon}$ and reflecting boundary $\Gamma_N^{arepsilon}$
- A Brownian motion starting at x_0 taking a long time to exit $\tau_{\varepsilon} = \inf\{t \geq 0 \mid X_t \not\in \overline{\Omega}\}$

Goal: In the limit of small holes $\varepsilon \to 0$:

- Distribution of the escape time $au_{arepsilon}$
- The exit hole distribution $X_{\tau_{\varepsilon}}$

[1] Introduced by Holcman and Schuss (2004), then large numbers of contributors: Ammari, Bénichou, Chen, Chevalier, Cheviakov, Friedman, Grebenkov, Singer, Straube, Voituriez, Ward...

Quasi-stationary distribution (QSD)

Definition

If
$$X_0 \sim \nu_{\varepsilon}$$
, then $\forall t > 0$, $\mathbb{P}(X_t \mid t < \tau_{\varepsilon}) = \nu_{\varepsilon}$

The QSD ν_{ε} is the distribution of X_t that is stationary by the dynamics conditionned on the fact that the Brownian motion has not escaped yet

Property: Yaglom's limit

If
$$X_0 \in \Omega$$
, then $\lim_{t \to +\infty} \mathbb{P}(X_t \mid t < \tau_{\varepsilon}) = \nu_{\varepsilon}$

The QSD is attained after a large time of simulation, in our context

Fundamental properties of the QSD

Assume that $X_0 \sim \nu_{\varepsilon}$. Then

• The exit time au is exponentially distributed $\sim \operatorname{Exp}(\lambda_{arepsilon})$

$$\mathbb{P}_{\nu_{\varepsilon}}[\tau \geq s + t] = \mathbb{P}_{\nu_{\varepsilon}}[\tau \geq s + t \mid \tau \geq s] \, \mathbb{P}_{\nu_{\varepsilon}}[\tau \geq s] \\ = \mathbb{P}_{\nu_{\varepsilon}}[\tau \geq t] \, \mathbb{P}_{\nu_{\varepsilon}}[\tau \geq s].$$

• The exit point X_{τ} is *independent* of the exit time τ

$$\mathbb{P}_{\nu_{\varepsilon}}[X_{\tau} \in A, \tau \geq t] = \mathbb{P}_{\nu_{\varepsilon}}[X_{\tau} \in A \mid \tau \geq t] \, \mathbb{P}_{\nu_{\varepsilon}}[\tau \geq t]$$
$$= \mathbb{P}_{\nu_{\varepsilon}}[X_{\tau} \in A] \, \mathbb{P}_{\nu_{\varepsilon}}[\tau \geq t]$$

Quasi-stationary distribution (QSD)

In the setting with a stationary distribution:

One can build a Markov-chain model [2], \rightsquigarrow labyrinth of simple shapes

[2] Di Gesù, Lelièvre, Le Peutrec and Nectoux, Faraday Discussion, (2016)

Quasi-stationary distribution and Eigenvalue problems

In the setting with a stationary distribution:

Consider the adjoint generator (Fokker-Planck) $\mathcal{L}_{\varepsilon}^*$ of the process:

Then the stationary distribution s is given by $\mathcal{L}^*s=0=0$ s

In the metastable setting:

The QSD ν_{ε} is given by the eigenvector with the smallest eigenvalue: $-\mathcal{L}_{\varepsilon}^*\nu_{\varepsilon} = \lambda_{\varepsilon} \nu_{\varepsilon}$. Qualitative idea: Consider the eigen-decomposition of $\mathcal{L}_{\varepsilon}^*$ (it exists as $\mathcal{L}_{\varepsilon}$ is self-adjoint and has a compact resolvant), then

$$\rho(t) = \sum_{k} \langle \rho(0), u_{\varepsilon}^{k} \rangle e^{-\lambda_{\varepsilon}^{k} t} u_{\varepsilon}^{k},$$

At large time, the dominant term is the one with the smallest eigenvalue, which is identified to the QSD by Yaglom's limit.

The QSD as an eigenvalue problem

We want to find the QSD $u_{arepsilon}$

$$\begin{cases} -\Delta \nu_{\varepsilon} = \lambda_{\varepsilon} \nu_{\varepsilon} & \text{in } \Omega_{\varepsilon} \\ \partial_{n} \nu_{\varepsilon} = 0 & \text{on } \Gamma_{N}^{\varepsilon} \\ \nu_{\varepsilon} = 0 & \text{on } \Gamma_{D_{i}}^{\varepsilon} \end{cases}$$

Then the narrow escape problem is solved:

- ullet $\mathbb{E}[au_arepsilon] = \lambda_arepsilon^{-1}$, the mean exit time
- $\mathbb{P}_{\nu_{\varepsilon}}[X_{\tau} \in \Gamma_{D_i}^{\varepsilon}] \propto \int_{\Gamma_{D_i}^{\varepsilon}} \partial_n \nu_{\varepsilon}$, the exit hole distribution

The QSD as an eigenvalue problem

We want to find the QSD $u_{arepsilon}$

$$\begin{cases} -\Delta \nu_{\varepsilon} = \lambda_{\varepsilon} \nu_{\varepsilon} & \text{in } \Omega_{\varepsilon} \\ \partial_{n} \nu_{\varepsilon} = 0 & \text{on } \Gamma_{N}^{\varepsilon} \\ \nu_{\varepsilon} = 0 & \text{on } \Gamma_{D_{i}}^{\varepsilon} \end{cases}$$

But thanks to [3]:

Flat angle between Γ_{N}^{ε} and $\Gamma_{D_{i}}^{\varepsilon}$: $\partial_{n}\nu_{\varepsilon} \not\in L^{2}(\partial\Omega)$

90° angle between Γ_N^{ε} and $\widetilde{\Gamma}_{D_i}^{\varepsilon}$: $\partial_n \nu_{\varepsilon} \in L^2(\partial \Omega)$

We need to be able to do integration by parts to get the exit hole distribution X_{τ}

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)

Why modifying the domain?

We want to find the QSD $u_{arepsilon}$

$$\begin{cases} -\Delta \nu_{\varepsilon} = \lambda_{\varepsilon} \nu_{\varepsilon} & \text{in } \Omega_{\varepsilon} \\ \partial_{n} \nu_{\varepsilon} = 0 & \text{on } \Gamma_{N}^{\varepsilon} \\ \nu_{\varepsilon} = 0 & \text{on } \Gamma_{D_{i}}^{\varepsilon} \end{cases}$$

But thanks to [3]:

Flat angle between Γ_N^{ε} and $\Gamma_{D_i}^{\varepsilon}$: $\partial_n \nu_{\varepsilon} \not\in L^2(\partial \Omega)$

90° angle between Γ_N^{ε} and $\widetilde{\Gamma}_{D_i}^{\varepsilon}$: $\partial_n \nu_{\varepsilon} \in L^2(\partial \Omega)$

We need to be able to do integration by parts to get the exit hole distribution X_{τ}

Figure: Level curves of the solution ν_{ε} near a flat hole.

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)

A more regular narrow escape problem

Similar eigenvalue problem:

$$\begin{cases} -\Delta \nu_{\varepsilon} = \lambda_{\varepsilon} \nu_{\varepsilon} & \text{in } \widetilde{\Omega}_{\varepsilon} \\ \partial_{n} \nu_{\varepsilon} = 0 & \text{on } \Gamma_{N}^{\varepsilon} \\ \nu_{\varepsilon} = 0 & \text{on } \widetilde{\Gamma}_{D_{i}}^{\varepsilon} \end{cases}$$
 (1

N holes of radius $r_{\varepsilon}^{(i)}$ centered at $x^{(i)} \in \partial \Omega$

Domain
$$\widetilde{\Omega}_{\varepsilon} = \Omega \setminus \overline{\cup_{i=1}^{N} B(x^{(i)}, r_{\varepsilon}^{(i)})}$$

New holes: $\widetilde{\Gamma}_{D_i}^{\varepsilon} = \partial B(x^{(i)}, r_{\varepsilon}^{(i)}) \cap \overline{\Omega}$

A more regular narrow escape problem

Similar eigenvalue problem:

$$\begin{cases} -\Delta \nu_{\varepsilon} = \lambda_{\varepsilon} \nu_{\varepsilon} & \text{ in } \widetilde{\Omega}_{\varepsilon} \\ \partial_{n} \nu_{\varepsilon} = 0 & \text{ on } \Gamma_{N}^{\varepsilon} \\ \nu_{\varepsilon} = 0 & \text{ on } \widetilde{\Gamma}_{D_{i}}^{\varepsilon} \end{cases}$$

Previous work: Asymptotic scaling for the disk and the ball [4]

My PhD work: Asymptotic scaling for general domains in $d \ge 2$ dimensions

[4] Lelièvre, Rachid and Stoltz, preprint (2024)

What does the quasi-stationary distribution look like?

Figure: Dimension 2: Circle

Figure: Dimension 3: Cube

Explicit solution to (1) with 1 exit hole

In (1), when $\varepsilon \to 0$, it holds $|\Gamma_D^{\varepsilon}| \to 0$ so we expect $\lambda_{\varepsilon} \to 0$ and $\nu_{\varepsilon} \to \mathrm{cst.}$ This motivates looking for a solution of the form $\nu_{\varepsilon} = 1 + \nu_{\varepsilon}$, with

$$egin{cases} -\Delta v_{arepsilon} = \lambda_{arepsilon} + \lambda_{arepsilon} v_{arepsilon} & ext{on } \Omega_{arepsilon} \ \partial_n v_{arepsilon} = 0 & ext{on } \Gamma_{
m N}^{arepsilon} \ v_{arepsilon} = -1 & ext{on } \Gamma_{
m D}^{arepsilon} \end{cases}$$

Taking formally the limit $\varepsilon \to 0$, we find that $v_{\varepsilon}/\lambda_{\varepsilon}$ should converge to a function f satisfying

$$\begin{cases} -\Delta f = 1 & \text{on } \Omega \\ \partial_n f = 0 & \text{on } \partial\Omega \setminus \{x_1\} \end{cases}$$

We will now try to build such f.

Observations on f

From the compatibility condition:

$$\int_{\partial\Omega}\partial_n f = \int_{\Omega}\Delta f = -|\Omega|$$

The distribution f formally satisfies:

$$\begin{cases} -\Delta f = 1 & \text{in } \Omega \\ \partial_n f = -|\Omega| \delta_{\chi^{(1)}} & \text{on } \partial \Omega \end{cases}$$
 (2)

 \Rightarrow Neumann's Green function with the singularity pushed to the boundary The Narrow escape problem has been related to f before in the literature [5]

[5] Silbergleit, Mandel and Nemenman (link with electrostatics)

Construction of *f* for 1 exit hole

Let $\Lambda\colon\mathbb{R}^d\to\mathbb{R}$ denote the fundamental solution of the Laplacian

$$\Lambda(x) \propto \begin{cases} \log(x) & \text{if } d = 2 \\ -\frac{1}{|x|^{d-2}} & \text{if } d \geq 3 \end{cases}$$

Lemma: Construction of a quasimode

If $\partial\Omega$ is locally smooth around $\{x_1\}$, there exists $(f, C_{d,\Omega})$ solution to (2), such that $f \colon \Omega \mapsto \mathbb{R}$ is smooth on Ω and of the form $f(x) = C_{d,\Omega}^{-1} \Lambda(x - x_1) + R(x)$

The remainder term $R \colon \Omega \to \mathbb{R}$ satisfies

$$R(x) = \begin{cases} O(1) & \text{if } d = 2\\ O(-\log|x - x_1|) & \text{if } d = 3\\ O(|x - x_1|^{-(d-3)}) & \text{if } d \ge 4 \end{cases}$$

Proof of the lemma on f: step 1/3

Sketch of proof. Consider the change of variables

$$\Psi \colon \Omega \cap B(x_1, \delta) \to \mathbb{R}^+ \times \mathbb{R}^{d-1}$$

that locally flattens the boundary $\partial\Omega$ while preserving the normals and satisfies $\Psi(x_1)=0$

Figure: Local change of coordinates Ψ

Figure: Smooth cutoff function η_L

Proof of the lemma on f: step 2/3

Ansatz:
$$f = C_{d,\Omega}^{-1} \eta_L \circ \Lambda \circ \Psi + S$$

- In the first term $\eta_L \circ \Lambda \circ \Psi(x)$ equals $\Lambda(x x_1)$ to leading order, in a neighborhood of x_1 , as $\Psi(x) = x x_1 + O(|x x_1|^2)$
- By substitution we look for S satisfying

$$egin{cases} -\Delta S = 1 - \mathit{C}_{d,\Omega}^{-1} \, \Delta (\eta_L \circ \Lambda \circ \Psi) & ext{on } \Omega \ \partial_n S = 0 & ext{on } \partial \Omega \end{cases}$$

This problem admits a unique mean-zero weak solution if RHS is mean-zero, \rightsquigarrow defines $C_{d,\Omega}$ as

$$|\Omega| C_{d,\Omega} = \int_{\Omega} \Delta(\eta_L \circ \Lambda \circ \Psi)$$

Proof of the lemma on f: step 3/3

Determine $C_{d,\Omega}$:

- 1. $\Delta(\eta_L \circ \Lambda \circ \Psi) \in L^p(\Omega)$ with 1
- 2. Computation using Green's theorem:

$$\int_{\Omega} \Delta(\eta_L \circ \Lambda \circ \Psi) = \int_{\partial \Omega} \partial_n (\eta_L \circ \Lambda \circ \Psi)$$

Proof that S is subsingular:

Using the integral representation of S (layer potential techniques [6]), we have that, in the limit $x \to x^{(1)}$

$$S(x) = O\left(\int_{\Omega} \Lambda(x - y) \Delta S(y) dy\right) = o\left(\Lambda(x - y)\right)$$

[6] Ammari, Kang and Lee, American Mathematical Society, (2009)

The Dirichlet condition (still with 1 exit hole)

Remember that

- f "=" $\lim_{\varepsilon \to 0} \lambda_{\varepsilon}^{-1} v_{\varepsilon}$ with $v_{\varepsilon} = \nu_{\varepsilon} 1 = -1$ on $\widetilde{\Gamma}_D^{\varepsilon}$
- Close to x_1 , we have $f \sim C_{d,\Omega}^{-1} \Lambda$.

ightharpoonup A good approximation of $(\lambda_{\varepsilon}, \nu_{\varepsilon})$ is the pair $(\widehat{\lambda}_{\varepsilon}, \widehat{\nu}_{\varepsilon})$, with $\widehat{\lambda}_{\varepsilon} := C_{d,|\Omega|} (\Lambda(r_1^{\varepsilon}))^{-1}$ and $\widehat{\nu}_{\varepsilon} := 1 + \widehat{\lambda}_{\varepsilon} f$, satisfies the initial problem with small residuals

$$\begin{cases} -\Delta \widehat{\nu}_{\varepsilon} = \widehat{\lambda}_{\varepsilon} \widehat{\nu}_{\varepsilon} - \widehat{\lambda}_{\varepsilon}^{2} \mathbf{f} & \text{ on } \Omega_{\varepsilon} \\ \partial_{n} u_{\varepsilon} = 0 & \text{ on } \Gamma_{\mathrm{N}}^{\varepsilon} \\ \nu_{\varepsilon} = \widehat{\lambda}_{\varepsilon} \mathbf{R} & \text{ on } \Gamma_{\mathrm{D}}^{\varepsilon} \end{cases}$$

These resilduals have been quantified in the previous lemma

Estimate of the error on the eigenvalue

Reminder: ν_{ε} is the QSD, $\widehat{\nu}_{\varepsilon}$ is the quasimode Similarily to [4], we have $\langle \widehat{\nu}_{\varepsilon}, \nu_{\varepsilon} \rangle = 1 + \mathrm{O}(\lambda_{\varepsilon}) + \mathrm{O}(\widehat{\lambda}_{\varepsilon})$ By *Green's identity*, we have

$$\begin{split} \lambda_{\varepsilon} \langle \widehat{\nu}_{\varepsilon}, \nu_{\varepsilon} \rangle &= - \langle \widehat{\nu}_{\varepsilon}, \Delta \nu_{\varepsilon} \rangle \\ &= - \langle \Delta \widehat{\nu}_{\varepsilon}, \nu_{\varepsilon} \rangle + \langle \partial_{n} \widehat{\nu}_{\varepsilon}, \nu_{\varepsilon} \rangle_{\Gamma^{\varepsilon}} - \langle \widehat{\nu}_{\varepsilon}, \partial_{n} \nu_{\varepsilon} \rangle_{\Gamma^{\varepsilon}} \\ &= \widehat{\lambda}_{\varepsilon} \langle \widehat{\nu}_{\varepsilon}, \nu_{\varepsilon} \rangle - \widehat{\lambda}_{\varepsilon}^{2} \langle f, \nu_{\varepsilon} \rangle + 0 - \widehat{\lambda}_{\varepsilon} \langle R, \partial_{n} \nu_{\varepsilon} \rangle_{\Gamma_{D}^{\varepsilon}} \end{split}$$

Therefore we deduce that

$$\left|\lambda_{\varepsilon} - \widehat{\lambda}_{\varepsilon}\right| \langle \widehat{\nu}_{\varepsilon}, \nu_{\varepsilon} \rangle \leq \mathcal{O}(\widehat{\lambda}_{\varepsilon}^{2}) + \widehat{\lambda}_{\varepsilon} \|R\|_{L^{\infty}(\Gamma_{D}^{\varepsilon})} \|\partial_{n}\nu_{\varepsilon}\|_{L^{1}(\Gamma_{D}^{\varepsilon})}$$

To conclude: the bound on R comes from the lemma, and it can be shown that $\|\partial_n \nu_{\varepsilon}\|_{L^1(\Gamma_{\Sigma}^{\varepsilon})} = \mathrm{O}(\lambda_{\varepsilon})$ [4].

Results for N exit holes and $d \ge 2$

We define

$$\mathcal{K}^i_{\varepsilon} = -\Lambda(r^{\varepsilon}_i) = \begin{cases} -rac{1}{\log(r^{\varepsilon}_i)} & \text{if } d = 2\\ (r^{\varepsilon}_i)^{d-2} & \text{if } d \geq 3 \end{cases}$$
 $\overline{\mathcal{K}}_{\varepsilon} = \mathcal{K}_1 + \dots + \mathcal{K}_N$

Theorem (Eigenvalue)

The mean exit time when $X_0 \sim \nu_{\varepsilon}$ is given by $\mathbb{E}_{\nu_{\varepsilon}}[\tau] = \frac{1}{\lambda_{\varepsilon}}$, where

$$\lambda_{\varepsilon} = C_{d,\Omega} \overline{K}_{\varepsilon} + \begin{cases} O\left(\overline{K}_{\varepsilon}^{2}\right) & \text{for } d = 2\\ O\left(\overline{K}_{\varepsilon}^{2} \log(\overline{K}_{\varepsilon})\right) & \text{for } d = 3\\ O\left(\overline{K}_{\varepsilon}^{\frac{d-1}{d-2}}\right) & \text{for } d \geq 4 \end{cases}$$

Results for N exit holes and $d \ge 2$

Theorem (Exit hole distribution)

$$\mathbb{P}_{\varepsilon}(X_{\tau} \in \Gamma_{D_{i}}^{\varepsilon}) = \frac{K_{\varepsilon}^{i}}{\overline{K_{\varepsilon}}} + \begin{cases} O(\overline{K_{\varepsilon}}), & \text{for } d = 2\\ O(\overline{K_{\varepsilon}} \log(\overline{K_{\varepsilon}})), & \text{for } d = 3\\ O(\overline{K_{\varepsilon}}^{\frac{1}{d-2}}) & \text{for } d \geq 4 \end{cases}$$

Does the bound worsen with the dimension?

No! For $d \geq 4$, for the eigenvalue

$$\lambda_{\varepsilon} = \mathsf{C}_{d,\Omega} \left(r_i^{\varepsilon} \right)^{d-2} \left(1 + \mathrm{O} \left(\sum_{i=1}^{N} r_i^{\varepsilon} \right) \right)$$

The same can be done with the exit hole distribution

Measure of the exit time through Finite Element Method (FEM)

The constant $C_{d,\Omega}$ is given by:

$$C_{d,\Omega} = \frac{\max\{d-2,\,1\}}{2} \frac{|\mathscr{C}(0,1)|}{|\Omega|}$$

In **dimension** 3 we find for the simple shapes through FEM:

Shape	$C_{3,\Omega}$	$C_{3,\Omega}$ (simu)
Sphere radius 1	1.500	1.46 ± 0.02
Sphere radius 2	0.187	0.18 ± 0.01
Cube	6.282	6.28 ± 0.02
Cylinder	8.000	8.06 ± 0.01

Measure of the exit time in higher dimension

- Monte Carlo simulation of the exit time τ_{ε} for a unit ball in dimension $\{2, 3, 4, 5\}$
- It's a rare event so very long simulations...
- Correct scaling in K_{ε} , but:

Dimension	C_d^{ball}	C_d^{ball} (simu)
2	2	1.9
3	4.5	4.3
4	16	11
5	32.5	20.8
6	72	34.6

Why are the simulations inacurate?

Several reasons:

- The previous simulations where done with the inital condition $X_0 \sim \delta_0 \neq \nu_{\varepsilon}$.
- Trade-off $\sqrt{\Delta t} \ll arepsilon$ and $N_{
 m step} \simeq \Delta t \overline{K}_arepsilon$

Solution: Adaptative timestep algorithm: walk on sphere

Conclusion

- The QSD is a useful tool to study the narrow escape problem
- With this approach we can solve it for any (locally) smooth domain in any dimension
- We get the scaling of the escape time and the exit hole distribution

Future work:

Precise assymptotics starting for deterministic initial conditions How does the shape of the hole influence the escape time? \rightarrow the slit

The slit

