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Metastability of energetic origin

Thermal particle living in a potential well:

• Slow dynamics between the wells

• Long time to escape. This is a rare event

Toy model: Langevin particle in a double-well (φ4)
potential

How much time does it take to escape the well?
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Eyring-Kramers’ formula

Answer known since the 1930s:

Eyring-Kramers’ formula*

The escape time is exponentially distributed, with a rate ri , with i ∈ {1, 2}:

ri = Ci exp

(
−∆Vi

kBT

)
,

∆Vi the height of the barrier, kB the Boltzmann constant, T the temperature, Ci a
constant

* Also Arrhenius, Polanyi or Van’t Hoff law
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What if energy is not the driving factor?

A potential made a confining
well and a few narrow canals:

Still a long time to escape.
This is still a rare event

Is there an equivalent to the
Eyring Kramers formula in this
case?
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The narrow escape problem [1]

Toy model of the metastability of entropic origin:

Setting:

• Domain Ω with holes ΓεDi
and reflecting

boundary ΓεN
• A Brownian motion starting at x0 taking a
long time to exit τε = inf{t ≥ 0 |Xt ̸∈ Ω}

Goal: In the limit of small holes ε → 0:

• Distribution of the escape time τε

• The exit hole distribution Xτε

[1] Introduced by Holcman and Schuss (2004), then large numbers of contributors: Ammari, Bénichou,
Chen, Chevalier, Cheviakov, Friedman, Grebenkov, Singer, Straube, Voituriez, Ward...
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Quasi-stationary distribution (QSD)

Definition

If X0 ∼ νε, then ∀t > 0, P(Xt | t < τε) = νε

The QSD νε is the distribution of Xt that is stationary by the dynamics conditionned on
the fact that the Brownian motion has not escaped yet

Property: Yaglom’s limit

If X0 ∈ Ω, then lim
t→+∞

P(Xt | t < τε) = νε

The QSD is attained after a large time of simulation, in our context
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Fundamental properties of the QSD

Assume that X0 ∼ νε. Then

• The exit time τ is exponentially distributed ∼ Exp(λε)

Pνε [τ ≥ s + t] = Pνε [τ ≥ s + t | τ ≥ s]Pνε [τ ≥ s]

= Pνε [τ ≥ t]Pνε [τ ≥ s].

• The exit point Xτ is independent of the exit time τ

Pνε [Xτ ∈ A, τ ≥ t] = Pνε [Xτ ∈ A | τ ≥ t]Pνε [τ ≥ t]

= Pνε [Xτ ∈ A]Pνε [τ ≥ t]
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Quasi-stationary distribution (QSD)

In the setting with a stationary
distribution:

One can build a Markov-chain model [2],
⇝ labyrinth of simple shapes

[2] Di Gesù, Lelièvre, Le Peutrec and Nectoux, Faraday Discussion, (2016)
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Quasi-stationary distribution and Eigenvalue problems

In the setting with a stationary distribution:
Consider the adjoint generator (Fokker-Planck) L∗

ε of the process:
Then the stationary distribution s is given by L∗s = 0 = 0 s

In the metastable setting:
The QSD νε is given by the eigenvector with the smallest eigenvalue: −L∗

ενε = λε νε.
Qualitative idea: Consider the eigen-decomposition of L∗

ε (it exists as Lε is self-adjoint
and has a compact resolvant), then

ρ(t) =
∑
k

⟨ρ(0), ukε ⟩e−λk
εtukε ,

At large time, the dominant term is the one with the smallest eigenvalue, which is
identified to the QSD by Yaglom’s limit.
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The QSD as an eigenvalue problem

We want to find the QSD νε
−∆νε = λενε in Ωε

∂nνε = 0 on ΓεN

νε = 0 on ΓεDi

Then the narrow escape problem is solved:

• E[τε] = λ−1
ε , the mean exit time

• Pνε [Xτ ∈ ΓεDi
] ∝

∫
ΓεDi

∂nνε , the exit hole

distribution
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The QSD as an eigenvalue problem

We want to find the QSD νε
−∆νε = λενε in Ωε

∂nνε = 0 on ΓεN

νε = 0 on ΓεDi

But thanks to [3]:

Flat angle between ΓεN and ΓεDi
: ∂nνε ̸∈ L2(∂Ω)

90◦ angle between ΓεN and Γ̃εDi
: ∂nνε ∈ L2(∂Ω)

We need to be able to do integration by parts to
get the exit hole distribution Xτ

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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Why modifying the domain?

We want to find the QSD νε
−∆νε = λενε in Ωε

∂nνε = 0 on ΓεN

νε = 0 on ΓεDi

But thanks to [3]:

Flat angle between ΓεN and ΓεDi
: ∂nνε ̸∈ L2(∂Ω)

90◦ angle between ΓεN and Γ̃εDi
: ∂nνε ∈ L2(∂Ω)

We need to be able to do integration by parts to
get the exit hole distribution Xτ

Figure: Level curves of the solution νε near
a flat hole.

[3] Jakab, Mitrea and Mitrea, Indiana University Mathematics Journal, (2009)
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A more regular narrow escape problem

Similar eigenvalue problem:
−∆νε = λενε in Ω̃ε

∂nνε = 0 on ΓεN

νε = 0 on Γ̃εDi

(1)

N holes of radius r
(i)
ε centered at x (i) ∈ ∂Ω

Domain Ω̃ε = Ω\∪N
i=1B(x

(i), r
(i)
ε )

New holes: Γ̃εDi
= ∂B(x (i), r

(i)
ε ) ∩ Ω
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A more regular narrow escape problem

Similar eigenvalue problem:
−∆νε = λενε in Ω̃ε

∂nνε = 0 on ΓεN

νε = 0 on Γ̃εDi

Previous work: Asymptotic scaling for the disk
and the ball [4]

My PhD work: Asymptotic scaling for general
domains in d ≥ 2 dimensions

[4] Lelièvre, Rachid and Stoltz, preprint (2024)
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What does the quasi-stationary distribution look like?

Figure: Dimension 2: Circle Figure: Dimension 3: Cube
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Explicit solution to (1) with 1 exit hole

In (1), when ε → 0, it holds |ΓεD| → 0 so we expect λε → 0 and νε → cst. This motivates
looking for a solution of the form νε = 1 + vε, with

−∆vε = λε + λεvε on Ωε

∂nvε = 0 on ΓεN

vε = −1 on ΓεD

Taking formally the limit ε → 0, we find that vε/λε should converge to a function f
satisfying {

−∆f = 1 on Ω

∂nf = 0 on ∂Ω \ {x1}

We will now try to build such f .
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Observations on f

From the compatibility condition:∫
∂Ω

∂nf =

∫
Ω
∆f = −|Ω|

The distribution f formally satisfies:{
−∆f = 1 in Ω

∂nf = −|Ω|δx(1) on ∂Ω
(2)

⇒ Neumann’s Green function with the singularity pushed to the boundary
The Narrow escape problem has been related to f before in the literature [5]

[5] Silbergleit, Mandel and Nemenman (link with electrostatics)
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Construction of f for 1 exit hole

Let Λ: Rd → R denote the fundamental solution of the Laplacian

Λ(x) ∝

{
log(x) if d = 2

− 1
|x |d−2 if d ≥ 3

Lemma: Construction of a quasimode

If ∂Ω is locally smooth around {x1}, there exists (f , Cd ,Ω) solution to (2), such that
f : Ω 7→ R is smooth on Ω and of the form f (x) = C−1

d ,ΩΛ(x − x1) + R(x)

The remainder term R : Ω → R satisfies

R(x) =


O(1) if d = 2

O
(
− log |x − x1|

)
if d = 3

O
(
|x − x1|−(d−3)

)
if d ≥ 4
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Proof of the lemma on f : step 1/3

Sketch of proof. Consider the change of variables

Ψ: Ω ∩ B(x1, δ) → R+ × Rd−1

that locally flattens the boundary ∂Ω while preserving the normals and satisfies Ψ(x1) = 0

Figure: Local change of coordinates Ψ Figure: Smooth cutoff function ηL

We will take the ansatz f = C−1
d ,Ω ηL ◦ Λ ◦Ψ+ S .
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Proof of the lemma on f : step 2/3

Ansatz : f = C−1
d ,Ω ηL ◦ Λ ◦Ψ+ S

• In the first term ηL ◦ Λ ◦Ψ(x) equals Λ(x − x1) to leading order, in a neighborhood
of x1, as Ψ(x) = x − x1 + O(|x − x1|2)

• By substitution we look for S satisfying{
−∆S = 1− C−1

d ,Ω∆(ηL ◦ Λ ◦Ψ) on Ω

∂nS = 0 on ∂Ω

This problem admits a unique mean-zero weak solution if RHS is mean-zero,
⇝ defines Cd ,Ω as

|Ω|Cd ,Ω =

∫
Ω
∆(ηL ◦ Λ ◦Ψ)
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Proof of the lemma on f : step 3/3

Determine Cd ,Ω:

1. ∆(ηL ◦ Λ ◦Ψ) ∈ Lp(Ω) with 1 < p ≤ d
d−1

2. Computation using Green’s theorem:∫
Ω
∆(ηL ◦ Λ ◦Ψ) =

∫
∂Ω

∂n(ηL ◦ Λ ◦Ψ)

Proof that S is subsingular:
Using the integral representation of S (layer potential techniques [6]), we have that, in
the limit x → x (1)

S(x) = O
(∫

Ω
Λ(x − y)∆S(y)dy

)
= o
(
Λ(x − y)

)
[6] Ammari, Kang and Lee, American Mathematical Society, (2009)
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The Dirichlet condition (still with 1 exit hole)

Remember that

• f ”=” limε→0 λ
−1
ε vε with vε = νε − 1 = −1 on Γ̃εD

• Close to x1, we have f ∼ C−1
d ,ΩΛ.

⇝ A good approximation of (λε, νε) is the pair (λ̂ε, ν̂ε), with λ̂ε := Cd ,|Ω| (Λ(r
ε
1 ))

−1

and ν̂ε := 1 + λ̂εf , satisfies the initial problem with small residuals
−∆ν̂ε = λ̂εν̂ε − λ̂2

εf on Ωε

∂nuε = 0 on ΓεN

νε = λ̂εR on ΓεD

These resilduals have been quantified in the previous lemma
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Estimate of the error on the eigenvalue

Reminder: νε is the QSD, ν̂ε is the quasimode
Similarily to [4], we have ⟨ν̂ε, νε⟩ = 1 +O(λε) +O(λ̂ε)
By Green’s identity, we have

λε⟨ν̂ε, νε⟩ = −⟨ν̂ε,∆νε⟩
= −⟨∆ν̂ε, νε⟩+ ⟨∂nν̂ε, νε⟩Γε − ⟨ν̂ε, ∂nνε⟩Γε

= λ̂ε⟨ν̂ε, νε⟩ − λ̂2
ε⟨f , νε⟩+ 0− λ̂ε⟨R, ∂nνε⟩ΓεD

Therefore we deduce that∣∣∣λε − λ̂ε

∣∣∣ ⟨ν̂ε, νε⟩ ≤ O(λ̂2
ε) + λ̂ε∥R∥L∞(ΓεD)∥∂nνε∥L1(ΓεD)

To conclude: the bound on R comes from the lemma,
and it can be shown that ∥∂nνε∥L1(ΓεD) = O(λε) [4].
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Results for N exit holes and d ≥ 2

We define

K i
ε = −Λ(r εi ) =


− 1

log(r εi )
if d = 2

(r εi )
d−2 if d ≥ 3

K ε = K1 + · · ·+ KN

Theorem (Eigenvalue)

The mean exit time when X0 ∼ νε is given by Eνε [τ ] =
1
λε
, where

λε = Cd ,ΩK ε +


O
(
K

2
ε

)
for d = 2

O
(
K

2
ε log

(
K ε

))
for d = 3

O
(
K

d−1
d−2
ε

)
for d ≥ 4
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Results for N exit holes and d ≥ 2

Theorem (Exit hole distribution)

Pε(Xτ ∈ ΓεDi
) =

K i
ε

Kε

+


O(Kε), for d = 2

O(Kε log(Kε)), for d = 3

O(Kε

1
d−2 ) for d ≥ 4

Does the bound worsen with the dimension?
No! For d ≥ 4, for the eigenvalue

λε = Cd ,Ω (r εi )
d−2

(
1 +O

(
N∑
i=1

r εi

))

The same can be done with the exit hole distribution
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Measure of the exit time through Finite Element Method (FEM)

The constant Cd ,Ω is given by:

Cd ,Ω =
max{d − 2, 1}

2

|C (0, 1)|
|Ω|

In dimension 3 we find for the simple
shapes through FEM:

Shape C3,Ω C3,Ω (simu)

Sphere radius 1 1.500 1.46± 0.02

Sphere radius 2 0.187 0.18± 0.01

Cube 6.282 6.28± 0.02

Cylinder 8.000 8.06± 0.01
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Measure of the exit time in higher dimension

• Monte Carlo simulation of the exit
time τε for a unit ball in dimension
{2, 3, 4, 5}

• It’s a rare event so very long
simulations...

• Correct scaling in Kε, but:

Dimension Cball
d Cball

d (simu)

2 2 1.9

3 4.5 4.3

4 16 11

5 32.5 20.8

6 72 34.6
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Why are the simulations inacurate?

Several reasons:

• The previous simulations where done with the inital condition X0 ∼ δ0 ̸= νε .

• Trade-off
√
∆t ≪ ε and Nstep ≃ ∆tK ε

Solution: Adaptative timestep algorithm: walk on sphere
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Conclusion

• The QSD is a useful tool to study the narrow escape problem

• With this approach we can solve it for any (locally) smooth domain in any dimension

• We get the scaling of the escape time and the exit hole distribution

Future work:
Precise assymptotics starting for deterministic initial conditions
How does the shape of the hole influence the escape time? → the slit
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The slit
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