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@ higher-energy solution of Schrédinger equation
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— diagonalisation of Hamiltonian too expensive
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— natural minimisation problem for approximating ground
state:
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What about excited states?
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Excited states

Possible definitions

@ look for higher eigenvalues of Hamiltonian than minimum: saddle-point search (Yukuan)

@ excited-state information from linearised dynamics: linear response

Coincide in exact formalism!

approximate nonlinear model

4

approximation to linear Schrddinger theory

4

introduction of artifacts!



Let's start from mathematics...
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Linear response - FCl

Time-dependent Schrddinger equation /‘é“t'( ) = HV(t)

=

© Quantum Liouville equation lﬂg( ) = [H,T(t)]

@ Linearise equation of motion around ground state

w(l) N
i t)=(H - E)V(t) & i
dt
@ Solution of form WD (t) := e~wtw, W | w0
@ Inserting gives linear response equations

A

(A-—E)W=wV, W1VO — \=F —F,E—E,...



Classical Hamiltonian dynamics

o Potential energy V: C" — R
@ Decomposition of x € C" as x = q + ip, with q,p € R"
e Classical Hamiltonian H(q, p) := V/(q + ip) on the phase space R?"



Classical Hamiltonian dynamics

o Potential energy V: C" — R
@ Decomposition of x € C" as x = q + ip, with q,p € R"
e Classical Hamiltonian H(q, p) := V/(q + ip) on the phase space R?"

{j‘g(t) = Gn(a(t).p(1)
L) =-92(a(t), p(t))



Classical Hamiltonian dynamics

o Potential energy V: C" — R
@ Decomposition of x € C" as x = q + ip, with q,p € R"
e Classical Hamiltonian H(q, p) := V/(q + ip) on the phase space R?"

(1) = H(a(r). p(1)) d /q(t) 0 1, (4 (q(t)
dt d a . d
{‘j’t’(t) = —p‘i—f,’(q(t),p(t)) “ d (p(t)) B (—/n o) d )



Classical Hamiltonian dynamics

o Potential energy V: C" — R
@ Decomposition of x € C" as x = q + ip, with q,p € R"
e Classical Hamiltonian H(q, p) := V/(q + ip) on the phase space R?"

(1) = H(a(r). p(1)) d /q(t) 0 1, (4 (q(t)
dt d a . d
{‘j’t’(t) = —p‘i—f,’(q(t),p(t)) “ d (p(t)) B (—/n o) d )

or equivalently 9% (t) = i gradgan V(x(t)).
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Classical Hamiltonian dynamics

o Potential energy V : M — R, with M embedded in complex space
o Classical Hamiltonian V(x) on Mg (M seen as real)

z(t) Jesradpé(z(t)

grad y & (z(t))
TeyM

Smooth energy functional £ : M — R

dx(t)

)~ Jograd a, E(x(1)
with J(z) 1 TxMr — TxMg complex structure,
satisfying jf(t) = —ld7 pmpe

TD-Schrddinger equation as classical Hamiltonian
dynamics

dr(t)

dt
Wlth r(t) S M]R == Mexact and jr(t)(Q) = I[r7 Q]

= Jr(neradpg, E(T(1) = —i[A,T(1)]
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Kahler manifolds

How to find J for general manifolds?

Kahler manifold

Kahler manifold M: complex manifold of dimension n = dimc (M), endowed with
positive-definite Hermitian form (e, e),, allowing to endow My (real 2n-dimensional) with

e Riemannian structure gx(u, v) := Re({u, v)x),Vu,v € TeMpg, x € Mg
e Symplectic structure wy(u, v) := Im((u, v)x),Vu,v € TuMp,x € Mg
o Symplectic operator 7y : TxMpr — TxMpg, T2 = —ld7 pmy

such that

gx(ua V) = WX(Uan(V))vvua S 7;<MR,X € MR
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Kahler manifolds for linear response

© Describe M and let £(x) := E(I'y) for x € Mg
@ Write Hamiltonian dynamics
dx(t
0 T grady ()

© Linearise at stable state x(0)

dx(D(t)

it = T Hessn, E(XN)xD(t) on ToMr

@ Excitation energies through computation of symplectic eigenvalues of HessMRS(X(O)) on

T Mr.
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Hartree-Fock manifold

Single-determinant ansatz

RHF RHF RHF RHF
ol ol oh o}

Grassmann manifold

Gr(N,Np) = {P € C)eNo| P2 = P Tr(P) = N}

sym

\> density matrix
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Linear response - HF

© Quantum Liouville equation i‘i—“t)(t) = [Fp,, P(t)], with P, F € CNo*No

@ Linearise equation of motion around P(©)

dp®)
dt

(t) = [FOV, PO 1 [FO, p()]

i

@ Solution of form P1)(t) := I(De~™t + D*eiwt), D € CNoxNo

Q Inserting gives linear response equations (Casida)

o (7))

where A and B depend on orbital energies and 2-electron integrals.
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Casida’s equation

z(t) Jesradpé(z(t)

ToyM

e Find canonical basis of Tp, Mg
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Casida’s equation

e Find canonical basis of Tp, Mg

@ In this basis,

A+ B 0
Hessa,E(Po) = ( 0 A B)

A and B defined as in Casida
@ LR excitation energies — symplectic eigenvalues of Hess ., E(Po)

= eigenvalues of symmetric matrix (J. Williamson, Am. J. Math., 58, 1936)

0= <(A +B)2(A- B)(A+ 3)1/2)1/2

Equivalent to Casida's equation!

13



CASSCF

@ Describe multi-reference states = single determinant not sufficient

Complete active space self-consistent field (CASSCF) theory

virtual
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@ Describe multi-reference states = single determinant not sufficient

Complete active space self-consistent field (CASSCF) theory

virtual

-+
N

YeasscF = ¢ ———— + Co - + c3 +ca I

active

inactive

Nb Ndet
65 =Y CupXpr» P=1,...,No  [Vec)=> cll)
pn=1

J lin. comb. of ?
orbital rotation Slater Determinants
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CASSCF

@ Describe multi-reference states = single determinant not sufficient

Complete active space self-consistent field (CASSCF) theory

virtual
$ + ]
Yeasscr = ¢ ——— + 2 4 +c3 ta ¥ active
inactive
Ny Nyet
c._ _ _ C
pr = E CupXps P=1,...,Np Wee) = E all™)
p=1 =1

o Partition of orbital space into inactive, active and virtual orbitals

Ecasscr = min (Wecl AV c)
c,C
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CASSCEF excited states

Linear Response
— From dynamical equations (TD)
— Strong ground-state dependence
— Poor for charge-transfer or Rydberg states

P. Normann, K. Ruud, and T. Saue, John Wiley & Sons (2018)
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B. Helmich-Paris, J. Chem. Theory Comput. 15, 7, 4170-4179 (2019)
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CASSCF excited states

Linear Response
— From dynamical equations (TD)
— Strong ground-state dependence
— Poor for charge-transfer or Rydberg states

State Specific
— Optimised orbitals for each state
— Non-orthogonal states
— State flipping

State Average
— Shared orbitals for considered states
— Efficient for multiple states
— Bad approximation if states are very different

P. Normann, K. Ruud, and T. Saue, John Wiley & Sons (2018)

H.-J. Werner, W. Meyer, J. Chem. Phys. 74, 5794-5801 (1981)

B. Helmich-Paris, J. Chem. Theory Comput. 15, 7, 4170-4179 (2019)
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CASSCF manifold

virtual
i t 9
Vcasscr = 1 + e 4 +es +e ¥ active
inactive
State characterised by (c, C)
@ rotation in configuration space — coefficients vector ¢ (|c| = 1)
@ rotation in orbital space — orbitals (;Sg = ZN" CupXu, P=1,Np
M = {(c C) € (SNt 5 U(NG))/(U(1) x U(N) x U(N,) x U(N)) | rank (2) = N, }
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CASSCF manifold

virtual

Yeasscr = 1 +c - +c3 +eca

1 cee
13 active

inactive

State characterised by (c, C)

@ rotation in configuration space — coefficients vector ¢ (|c| = 1)

@ rotation in orbital space — orbitals (;Sg = Zgil CupXu, P=1,Np

Mii={(e,€) € (5" x U(Ne))/(U(1) x U(N) x U(N,) x U(Ne)) | rank (12%) = N }

equivalence int. orb. equivalence virt. orb.

equivalence act. orb.
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CASSCF manifold

Rotation of orbitals may compensate rotation of configurations —> two spaces cannot be
treated separately!

@ minimum: descent on all directions = nested minimisation

Ecasscr = min (Ve cl AW c) = min mCin (Wl AV c)
c,C ¢

@ saddle point: minimax problem = index-1 saddle
point carried by orbital or configuration part?

Manifold geometry needed for linear response!

M. Lewin, J. Math. Chem., 44, 967-980 (2018)
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CASSCF-LR

Conventional CASSCF-LR derivations involve ad hoc technicalities, to obtain

(o ) (7)-+(a 2)(¥)

— non-intelligible manifold geometry!
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CASSCF-LR

Conventional CASSCF-LR derivations involve ad hoc technicalities, to obtain

(o ) (7)-+(a 2)(¥)

— non-intelligible manifold geometry!
In canonical basis of Tp, Mp gives

Hess p1, E(Po)[v] = (AE g A 8 B> <:i>

— CASSCF-LR excitation energies are symplectic eigenvalues of :

Q= ((A+B)*(A- B)(A+ B)?)".

18



Model system Hy

H H 0.875A H H

@ Hy known to have multiple SCF solutions

H H H—H

@ Generally, multiple local minima, maxima
and saddle points

24 — HF nonlinear approximation

— symmetry breaking (UHF)

— bad single-reference approximation

1A

H. G. A. Burton and D. J. Wales, J. Chem. Theory Comput. 17, 151-169 (2021)
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Comparison between LR and CP

Comparison in perturbative framework

I

>

<
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Comparison between LR and CP

Comparison in perturbative framework

H="h+\
@ LR-UHF and CP-UHF coincide with FCl at A =0
@ analytic expressions differ for 0 < A <« 1
0.45
0.40 0.35
0.35 0.30
30.30 3 0.25
0.25
—e— CPHF 0.20
0201 —— LR-HF
—— Fa 0.15

0.0 0.2 0.4 0.6 0.8

A
Hy linear geometry, 3-21G

—e— CP-HF
—e— LR-HF
—e— FCI

0.0 0.2 0.4 0.6

A

0.8 1.0

Hj rectangular geometry, 3-21G




Hj index-1 saddle points

17— cpiunr
—— CP2-UHF

01 —— CP3-UHF
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A L. Grazioli, Y. Hu, E. Cancés, arXiv:2506.16420, 2025
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Hj index-1 saddle points
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Hj index-1 saddle points

11— CP1-UHF
CP2-UHF
07 — CP3-UHF

0.8

0.7

o
=N

A7)
= =
- (<2

i

o
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o
o

0.1

0.0

(w5 )

NN~~~
[
T W N = O

(W5 gty

0.25

1.25 1.50 1.75

Symmetry-broken state WHFP lin. comb. WIC! (triplet) and WEC! (singlet)




Hj index-1 saddle points

11— cpiuBF 1.0

~—— CP2-UHF :
01 — CP3-UHF <\Ij§IF7CP|qj§CI>
-1 HF,CP

e

£ ¥ \ 0.8
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]
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
A
L. Grazioli, Y. Hu, E. Canceés, arXiv:2506.16420, 2025. Accepted J. Chem. Phys.

Spurious saddle point close to wgCI!
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Conclusions

Universal derivation of LR equations based on Kahler
manifolds; derivation for HF and CASSCF
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Conclusions

Universal derivation of LR equations based on Kahler
manifolds; derivation for HF and CASSCF

— comparison between linear response, state specific and state average results for CASSCF

— testing on bigger molecules
— implementation of second-order methods for faster convergence

— extend to other methods in quantum chemistry

L. Grazioli, Y. Hu, E. Cancés, arXiv:2506.16420, 2025. Accepted in J. Chem. Phys.
25
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LR-UHF vs CP-UHF

Np—1 Np—1
LR-UHF, (1 - ..
whoveiomo = O (No+ LN, +11i.i)ss — Y (Np. Nolli,i)s
i=1 i=1
N N
+ 3 (N + 1N+ 1[0, 7)o — S (N p, Npli, i)pa
i=1 i=1

7(Npa Np + 1|NP + 17Np)ﬂa

Np—1 Np—1
CP-UHF,(1
WHOMOL(U)MO— Z (Np+1,Np+1]i,i)ss — (Np, Nplli, 1)
i=1 i=1
N Ny
+Y (Np+ 1, N+ 1[0, i)pa — 3 (N, Npli i)sa
i=1 i=1
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Hj index-1 saddle points

2
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=
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e FCI states are spin-eigenfunctions
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Hj index-1 saddle points

2
1=0
I=1
1 1=2
— I=3
I=4
0 I=5
*  Crossing (2,3) ~ 0.77
= Crossing (24) ~ 1.33
-1

Crossing (2,5) &~ 1.49

0.00 0.25 0.50 0.75 1.00 1.25
A

e FCI states are spin-eigenfunctions

@ degeneracies at A = 0 for singlet and
triplet states with S, =0

1(1: ::_)
Va\l— 4 —
VI\ITT I
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Different approaches

CISD

LR for variational models

Compute HF ground state
®g € argming E HF ()
Xp € argmin, ¢ rq E(x)

Compute a ground state of the model
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Different approaches

CISD

LR for variational models

Compute HF ground state
®g € argming E HF ()
Xp € argmin, ¢ rq E(x)

Compute a ground state of the model

Identity CISD subspace canonical basis

H 150 = Span(®, 7, 7°)

T Mpr = Spang(u1, ..., Un, —Jyoun, . ..
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