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Excited states

What is an excited state?

higher-energy solution of Schrödinger equation

ĤΨk = EkΨk

=⇒ diagonalisation of Hamiltonian too expensive
=⇒ proposal of approximate variational theories
=⇒ natural minimisation problem for approximating ground
state:

EGS = min
Ψ

〈Ψ| Ĥ |Ψ〉

〈Ψ|Ψ〉

What about excited states?

2



Excited states

Possible definitions

look for higher eigenvalues of Hamiltonian than minimum: saddle-point search (Yukuan)

excited-state information from linearised dynamics: linear response
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Excited states

Possible definitions

look for higher eigenvalues of Hamiltonian than minimum: saddle-point search (Yukuan)

excited-state information from linearised dynamics: linear response

Coincide in exact formalism!

approximate nonlinear model

⇓

approximation to linear Schrödinger theory

⇓

introduction of artifacts!
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Let’s start from mathematics...
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Linear response - FCI

Time-dependent Schrödinger equation i dΨdt (t) = ĤΨ(t)
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(t) = (Ĥ − E0)Ψ

(1)(t) ⇔ i
dΓ(1)

dt
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Linear response - FCI

Time-dependent Schrödinger equation i dΨdt (t) = ĤΨ(t)

m

1 Quantum Liouville equation i dΓdt (t) = [Ĥ, Γ(t)]

2 Linearise equation of motion around ground state

i
dΨ(1)

dt
(t) = (Ĥ − E0)Ψ

(1)(t) ⇔ i
dΓ(1)

dt
(t) = [Ĥ, Γ(1)(t)]

3 Solution of form Ψ(1)(t) := e−iωtΨ, Ψ ⊥ Ψ(0)

4 Inserting gives linear response equations

(Ĥ − E0)Ψ = ωΨ, Ψ ⊥ Ψ(0) =⇒ ω = E1 − E0,E2 − E0, . . .
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Classical Hamiltonian dynamics

Potential energy V : Cn → R

Decomposition of x ∈ C
n as x = q + ip, with q,p ∈ R

n

Classical Hamiltonian H(q, p) := V (q + ip) on the phase space R
2n
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Classical Hamiltonian H(q, p) := V (q + ip) on the phase space R
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Classical Hamiltonian dynamics

Potential energy V : Cn → R

Decomposition of x ∈ C
n as x = q + ip, with q,p ∈ R

n

Classical Hamiltonian H(q, p) := V (q + ip) on the phase space R
2n

{
dq
dt (t) = dH

dp (q(t),p(t))
dp
dt (t) = −dH

dq (q(t),p(t))
⇔

d
dt

(
q(t)
p(t)

)
=

(
0 In

−In 0

)(dH
dq (q(t),p(t))
dH
dp (q(t),p(t))

)

or equivalently dx
dt (t) = i gradR2nV (x(t)).
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Classical Hamiltonian dynamics

Potential energy V : M → R, with M embedded in complex space

Classical Hamiltonian V (x) on MR (M seen as real)

Smooth energy functional E : M −→ R
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= Jx(t)gradMR
E(x(t))
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Classical Hamiltonian dynamics

Potential energy V : M → R, with M embedded in complex space

Classical Hamiltonian V (x) on MR (M seen as real)

Smooth energy functional E : M −→ R

dx(t)
dt

= Jx(t)gradMR
E(x(t))

with Jx(t) : TxMR → TxMR complex structure,
satisfying J 2

x(t) = −IdTxMR

TD-Schrödinger equation as classical Hamiltonian
dynamics

dΓ(t)
dt

= JΓ(t)gradMR
E(Γ(t)) = −i [Ĥ, Γ(t)]

with Γ(t) ∈ MR = Mexact and JΓ(t)(Q) := i [Γ,Q].
7



Kähler manifolds

How to find J for general manifolds?

Kähler manifold

Kähler manifold M: complex manifold of dimension n = dimC(M), endowed with
positive-definite Hermitian form 〈•, •〉•, allowing to endow MR (real 2n-dimensional) with
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Kähler manifolds

How to find J for general manifolds?

Kähler manifold

Kähler manifold M: complex manifold of dimension n = dimC(M), endowed with
positive-definite Hermitian form 〈•, •〉•, allowing to endow MR (real 2n-dimensional) with

Riemannian structure gx(u, v) := Re(〈u, v〉x), ∀u, v ∈ TxMR, x ∈ MR

Symplectic structure ωx(u, v) := Im(〈u, v〉x), ∀u, v ∈ TxMR, x ∈ MR

Symplectic operator Jx : TxMR −→ TxMR,J 2
x = −IdTxMR

such that
gx(u, v) = ωx(u,Jx(v)), ∀u, v ∈ TxMR, x ∈ MR
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Kähler manifolds for linear response

1 Describe M and let E(x) := E (Γx) for x ∈ MR
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Kähler manifolds for linear response

1 Describe M and let E(x) := E (Γx) for x ∈ MR

2 Write Hamiltonian dynamics

dx(t)
dt

= Jx(t)gradMR
E(x(t))

3 Linearise at stable state x (0)

dx (1)(t)
dt

= Jx(0)HessMR
E(x (0))x (1)(t) on Tx(0)MR
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Kähler manifolds for linear response

1 Describe M and let E(x) := E (Γx) for x ∈ MR

2 Write Hamiltonian dynamics

dx(t)
dt

= Jx(t)gradMR
E(x(t))

3 Linearise at stable state x (0)

dx (1)(t)
dt

= Jx(0)HessMR
E(x (0))x (1)(t) on Tx(0)MR

4 Excitation energies through computation of symplectic eigenvalues of HessMR
E(x (0)) on

Tx(0)MR.

9



Methods

FCI
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FCI

HF

MPDFT

CC

CI CASSCF
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Single-determinant ansatz
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Grassmann manifold

Gr(N,Nb) = {P ∈ C
Nb×Nb
sym |P2 = P ,Tr(P) = N}

# electrons # basis functions
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Hartree-Fock manifold

Single-determinant ansatz

Grassmann manifold

Gr(N,Nb) = {P ∈ C
Nb×Nb
sym |P2 = P ,Tr(P) = N}

density matrix
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Linear response - HF

1 Quantum Liouville equation i dPdt (t) = [FP0 ,P(t)], with P ,F ∈ C
Nb×Nb
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Linear response - HF

1 Quantum Liouville equation i dPdt (t) = [FP0 ,P(t)], with P ,F ∈ C
Nb×Nb

2 Linearise equation of motion around P(0)

i
dP(1)

dt
(t) = [F (1),P(0)] + [F (0),P(1)]

3 Solution of form P(1)(t) := 1
2(De

−iωt + D∗e iωt), D ∈ C
Nb×Nb

4 Inserting gives linear response equations (Casida)

(
A B

−B −A

)(
X

Y

)
= ω

(
X

Y

)

where A and B depend on orbital energies and 2-electron integrals.
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Casida’s equation

Find canonical basis of TP0MR

13



Casida’s equation

Find canonical basis of TP0MR

In this basis,

HessMR
E(P0) =

(
A + B 0

0 A − B

)

A and B defined as in Casida

13



Casida’s equation

Find canonical basis of TP0MR

In this basis,

HessMR
E(P0) =

(
A + B 0

0 A − B

)

A and B defined as in Casida
LR excitation energies −→ symplectic eigenvalues of HessMR

E(P0)

(J. Williamson, Am. J. Math., 58, 1936)=⇒ eigenvalues of symmetric matrix

Ω̃ :=
(
(A + B)1/2(A − B)(A + B)1/2

)1/2

Equivalent to Casida’s equation!
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Describe multi-reference states =⇒ single determinant not sufficient

Complete active space self-consistent field (CASSCF) theory

φC
p :=

Nb∑

µ=1

Cµpχµ, p = 1, . . . ,Nb |Ψc,C 〉 =
Ndet∑

I=1

cI |I
C 〉

orbital rotation
lin. comb. of

Slater Determinants
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CASSCF

Describe multi-reference states =⇒ single determinant not sufficient

Complete active space self-consistent field (CASSCF) theory

φC
p :=

Nb∑

µ=1

Cµpχµ, p = 1, . . . ,Nb |Ψc,C 〉 =
Ndet∑

I=1

cI |I
C 〉

Partition of orbital space into inactive, active and virtual orbitals

ECASSCF = min
Ψc,C

〈Ψc,C | Ĥ |Ψc,C 〉

T. Helgaker, P. Jorgensen, and J. Olsen, John Wiley & Sons (2013)
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CASSCF excited states

Linear Response

– From dynamical equations (TD)
– Strong ground-state dependence

– Poor for charge-transfer or Rydberg states

P. Normann, K. Ruud, and T. Saue, John Wiley & Sons (2018)
H.-J. Werner, W. Meyer, J. Chem. Phys. 74, 5794–5801 (1981)

B. Helmich-Paris, J. Chem. Theory Comput. 15, 7, 4170–4179 (2019)
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CASSCF excited states

Linear Response

– From dynamical equations (TD)
– Strong ground-state dependence

– Poor for charge-transfer or Rydberg states

State Specific

– Optimised orbitals for each state
– Non-orthogonal states

– State flipping

State Average

– Shared orbitals for considered states
– Efficient for multiple states

– Bad approximation if states are very different

P. Normann, K. Ruud, and T. Saue, John Wiley & Sons (2018)
H.-J. Werner, W. Meyer, J. Chem. Phys. 74, 5794–5801 (1981)

B. Helmich-Paris, J. Chem. Theory Comput. 15, 7, 4170–4179 (2019)
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CASSCF manifold
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State characterised by (c ,C )

rotation in configuration space −→ coefficients vector c (|c | = 1)

rotation in orbital space −→ orbitals φC
p =
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CASSCF manifold

State characterised by (c ,C )

rotation in configuration space −→ coefficients vector c (|c | = 1)

rotation in orbital space −→ orbitals φC
p =

∑Nb

µ=1 Cµpχµ, p = 1,Nb

M :=
{
(c ,C ) ∈ (SNdet−1

C
× U(Nb))/(U(1)× U(Ni)× U(Na)× U(Ne)) | rank

(
γact
c,C

)
= Na

}

equivalence int. orb.

equivalence act. orb.

equivalence virt. orb.

16



CASSCF manifold

Caveat!

Rotation of orbitals may compensate rotation of configurations =⇒ two spaces cannot be
treated separately!

17



CASSCF manifold

Caveat!

Rotation of orbitals may compensate rotation of configurations =⇒ two spaces cannot be
treated separately!

minimum: descent on all directions =⇒ nested minimisation

ECASSCF = min
Ψc,C
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CASSCF manifold

Caveat!

Rotation of orbitals may compensate rotation of configurations =⇒ two spaces cannot be
treated separately!

minimum: descent on all directions =⇒ nested minimisation

ECASSCF = min
Ψc,C

〈Ψc,C | Ĥ |Ψc,C 〉 = min
c

min
C

〈Ψc,C | Ĥ |Ψc,C 〉

saddle point: minimax problem =⇒ index-1 saddle
point carried by orbital or configuration part?

Manifold geometry needed for linear response!

M. Lewin, J. Math. Chem., 44, 967–980 (2018)
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CASSCF-LR

Conventional CASSCF-LR derivations involve ad hoc technicalities, to obtain
(

A B

−B −A

)(
X

Y

)
= ω

(
Σ ∆

∆ Σ

)(
X

Y

)

=⇒ non-intelligible manifold geometry!
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CASSCF-LR

Conventional CASSCF-LR derivations involve ad hoc technicalities, to obtain
(

A B

−B −A

)(
X

Y

)
= ω

(
Σ ∆

∆ Σ

)(
X

Y

)

=⇒ non-intelligible manifold geometry!
In canonical basis of TP0MR gives

HessMR
E(P0)[v ] =

(
A + B 0

0 A − B

)(
v+

v−

)

=⇒ CASSCF-LR excitation energies are symplectic eigenvalues of Ω̃:

Ω̃ =
(
(A + B)1/2(A − B)(A + B)1/2

)1/2
.
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Model system H4

H4 known to have multiple SCF solutions

Generally, multiple local minima, maxima
and saddle points
−→ HF nonlinear approximation
−→ symmetry breaking (UHF)
−→ bad single-reference approximation

H. G. A. Burton and D. J. Wales, J. Chem. Theory Comput. 17, 151-169 (2021)

19



Comparison between LR and CP

Comparison in perturbative framework

Ĥ = ĥ + λV̂
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Comparison between LR and CP

Comparison in perturbative framework

Ĥ = ĥ + λV̂
LR-UHF and CP-UHF coincide with FCI at λ = 0
analytic expressions differ for 0 < λ ≪ 1
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H4 index-1 saddle points
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L. Grazioli, Y. Hu, E. Cancès, arXiv:2506.16420, 2025
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H4 index-1 saddle points

Spurious saddle point close to ΨFCI
0 ! L. Grazioli, Y. Hu, E. Cancès, arXiv:2506.16420, 2025
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H4 index-1 saddle points

Symmetry-broken state ΨHF,CP
2 , lin. comb. ΨFCI

1 (triplet) and ΨFCI
2 (singlet)
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H4 index-1 saddle points

Spurious saddle point close to ΨFCI
3 ! L. Grazioli, Y. Hu, E. Cancès, arXiv:2506.16420, 2025. Accepted J. Chem. Phys.
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Conclusions

Universal derivation of LR equations based on Kähler
manifolds; derivation for HF and CASSCF
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Conclusions

Universal derivation of LR equations based on Kähler
manifolds; derivation for HF and CASSCF

Next steps

– comparison between linear response, state specific and state average results for CASSCF
– testing on bigger molecules
– implementation of second-order methods for faster convergence
– extend to other methods in quantum chemistry

L. Grazioli, Y. Hu, E. Cancès, arXiv:2506.16420, 2025. Accepted in J. Chem. Phys.
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LR-UHF vs CP-UHF

ω
LR-UHF,(1)
HOMO-LUMO =

N p−1∑

i=1

(N p + 1,N p + 1||i , i)ββ −

N p−1∑

i=1

(N p,N p||i , i)ββ

+

N p∑

i=1

(N p + 1,N p + 1|i , i)βα −

N p∑

i=1

(N p,N p|i , i)βα

−(N p,N p + 1|N p + 1,N p)βα

ω
CP-UHF,(1)
HOMO-LUMO =

N p−1∑

i=1

(N p + 1,N p + 1||i , i)ββ −

N p−1∑

i=1

(N p,N p||i , i)ββ

+

N p∑

i=1

(N p + 1,N p + 1|i , i)βα −

N p∑

i=1

(N p,N p|i , i)βα
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H4 index-1 saddle points
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Crossing (2,3) ≈ 0.77

Crossing (2,4) ≈ 1.33

Crossing (2,5) ≈ 1.49

FCI states are spin-eigenfunctions
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Crossing (2,3) ≈ 0.77

Crossing (2,4) ≈ 1.33

Crossing (2,5) ≈ 1.49

FCI states are spin-eigenfunctions

degeneracies at λ = 0 for singlet and
triplet states with Sz = 0
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Different approaches

CISD LR for variational models

Compute HF ground state
Φ0 ∈ argminΦ E HF(Φ) Compute a ground state of the model
x0 ∈ argminx∈M E(x)
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Different approaches

CISD LR for variational models

Compute HF ground state
Φ0 ∈ argminΦ E HF(Φ) Compute a ground state of the model
x0 ∈ argminx∈M E(x)

Identity CISD subspace canonical basis
H CISD = Span(Φ0,Φ

a
i ,Φ

ab
ij ) Identify the canonical basis of Tx0MR

Tx0MR = SpanR(u1, . . . , un,−Jx0u1, . . . ,−Jx0un)

Build matrix of Ĥ in this basis

H CISD
0 =




E HF
0 〈Φ0|Ĥ|Φa

i 〉 〈Φ0|Ĥ|Φab
ij 〉

∗ 〈Φa
i |Ĥ|Φb

j 〉 〈Φa
i |Ĥ|Φbc

jk 〉

∗ ∗ 〈Φab
ij |Ĥ|Φcd

kl 〉


 Build the matrix of HessME(x0)

H LR
0 =

(
hqq hqp
hTqp hpp

)
in this basis
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Compute HF ground state
Φ0 ∈ argminΦ E HF(Φ) Compute a ground state of the model
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Build matrix of Ĥ in this basis

H CISD
0 =


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E HF
0 〈Φ0|Ĥ|Φa

i 〉 〈Φ0|Ĥ|Φab
ij 〉

∗ 〈Φa
i |Ĥ|Φb

j 〉 〈Φa
i |Ĥ|Φbc

jk 〉

∗ ∗ 〈Φab
ij |Ĥ|Φcd

kl 〉


 Build the matrix of HessME(x0)

H LR
0 =

(
hqq hqp
hTqp hpp

)
in this basis

Compute eigenvalues of H CISD
0 Compute symplectic eigenvalues of H LR

0
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