

A geometric picture of linear response theory for variational methods

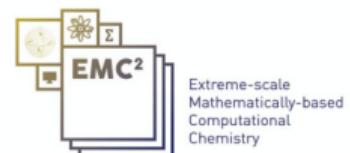
Laura Grazioli

CERMICS, École nationale des ponts et chaussées
INRIA, Paris

Séminaire des jeunes

European Research Council

Established by the European Commission



Extreme-scale
Mathematically-based
Computational
Chemistry

January 13, 2025

Excited states

What is an **excited state**?

- **higher-energy** solution of Schrödinger equation

$$\hat{H}\Psi_k = E_k\Psi_k$$

Excited states

What is an **excited state**?

- **higher-energy** solution of Schrödinger equation

$$\hat{H}\Psi_k = E_k\Psi_k$$

⇒ **diagonalisation** of Hamiltonian too **expensive**

Excited states

What is an **excited state**?

- **higher-energy** solution of Schrödinger equation

$$\hat{H}\Psi_k = E_k\Psi_k$$

⇒ **diagonalisation** of Hamiltonian too **expensive**

⇒ **proposal of approximate variational theories**

Excited states

What is an excited state?

- higher-energy solution of Schrödinger equation

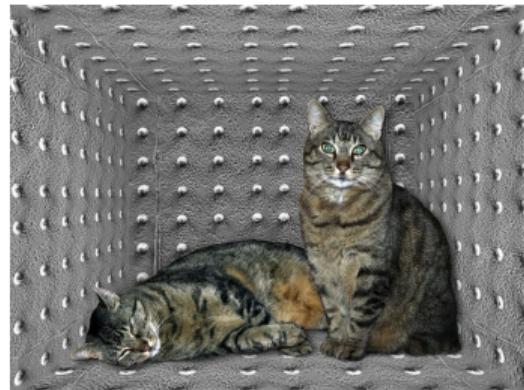
$$\hat{H}\Psi_k = E_k\Psi_k$$

⇒ diagonalisation of Hamiltonian too expensive

⇒ proposal of approximate variational theories

⇒ natural minimisation problem for approximating ground state:

$$\mathcal{E}_{GS} = \min_{\Psi} \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$



Excited states

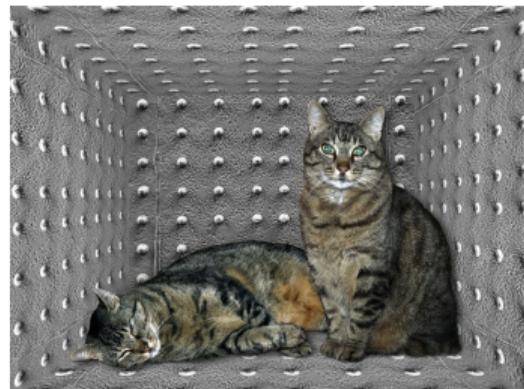
What is an **excited state**?

- **higher-energy** solution of Schrödinger equation

$$\hat{H}\Psi_k = E_k\Psi_k$$

⇒ **diagonalisation** of Hamiltonian too **expensive**
⇒ **proposal of approximate variational theories**
⇒ natural **minimisation** problem for approximating **ground state**:

$$\mathcal{E}_{GS} = \min_{\Psi} \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$



What about **excited states**?

Excited states

Possible definitions

- look for higher eigenvalues of Hamiltonian than minimum: saddle-point search (Yukuan)
- excited-state information from linearised dynamics: linear response

Possible definitions

- look for higher eigenvalues of Hamiltonian than minimum: saddle-point search (Yukuan)
- excited-state information from linearised dynamics: linear response

Coincide in exact formalism!

Possible definitions

- look for **higher eigenvalues** of Hamiltonian than minimum: **saddle-point search (Yukuan)**
- excited-state **information** from **linearised dynamics**: **linear response**

Coincide in exact formalism!

approximate **nonlinear** model

Excited states

Possible definitions

- look for **higher eigenvalues** of Hamiltonian than minimum: **saddle-point search** (Yukuan)
- excited-state **information** from **linearised dynamics**: **linear response**

Coincide in exact formalism!

approximate **nonlinear** model

approximation to **linear** Schrödinger theory

Excited states

Possible definitions

- look for **higher eigenvalues** of Hamiltonian than minimum: **saddle-point search** (Yukuan)
- excited-state **information** from **linearised dynamics**: **linear response**

Coincide in exact formalism!

approximate **nonlinear** model

approximation to **linear** Schrödinger theory

introduction of **artifacts**!

Let's start from mathematics...

Linear response - FCI

Time-dependent Schrödinger equation $i\frac{d\Psi}{dt}(t) = \hat{H}\Psi(t)$

Linear response - FCI

Time-dependent Schrödinger equation $i\frac{d\Psi}{dt}(t) = \hat{H}\Psi(t)$

\Updownarrow

① Quantum Liouville equation $i\frac{d\Gamma}{dt}(t) = [\hat{H}, \Gamma(t)]$

Linear response - FCI

Time-dependent Schrödinger equation $i\frac{d\Psi}{dt}(t) = \hat{H}\Psi(t)$

\Updownarrow

- ① Quantum Liouville equation $i\frac{d\Gamma}{dt}(t) = [\hat{H}, \Gamma(t)]$
- ② Linearise equation of motion around ground state

$$i\frac{d\Psi^{(1)}}{dt}(t) = (\hat{H} - E_0)\Psi^{(1)}(t) \Leftrightarrow i\frac{d\Gamma^{(1)}}{dt}(t) = [\hat{H}, \Gamma^{(1)}(t)]$$

Linear response - FCI

Time-dependent Schrödinger equation $i\frac{d\Psi}{dt}(t) = \hat{H}\Psi(t)$

\Updownarrow

- ① Quantum Liouville equation $i\frac{d\Gamma}{dt}(t) = [\hat{H}, \Gamma(t)]$
- ② Linearise equation of motion around ground state

$$i\frac{d\Psi^{(1)}}{dt}(t) = (\hat{H} - E_0)\Psi^{(1)}(t) \Leftrightarrow i\frac{d\Gamma^{(1)}}{dt}(t) = [\hat{H}, \Gamma^{(1)}(t)]$$

- ③ Solution of form $\Psi^{(1)}(t) := e^{-i\omega t}\Psi$, $\Psi \perp \Psi^{(0)}$

Linear response - FCI

Time-dependent Schrödinger equation $i\frac{d\Psi}{dt}(t) = \hat{H}\Psi(t)$

\Updownarrow

- ① Quantum Liouville equation $i\frac{d\Gamma}{dt}(t) = [\hat{H}, \Gamma(t)]$
- ② Linearise equation of motion around ground state

$$i\frac{d\Psi^{(1)}}{dt}(t) = (\hat{H} - E_0)\Psi^{(1)}(t) \Leftrightarrow i\frac{d\Gamma^{(1)}}{dt}(t) = [\hat{H}, \Gamma^{(1)}(t)]$$

- ③ Solution of form $\Psi^{(1)}(t) := e^{-i\omega t}\Psi$, $\Psi \perp \Psi^{(0)}$
- ④ Inserting gives linear response equations

$$(\hat{H} - E_0)\Psi = \omega\Psi, \quad \Psi \perp \Psi^{(0)} \implies \omega = E_1 - E_0, E_2 - E_0, \dots$$

Classical Hamiltonian dynamics

- Potential energy $V : \mathbb{C}^n \rightarrow \mathbb{R}$
- Decomposition of $x \in \mathbb{C}^n$ as $x = q + ip$, with $q, p \in \mathbb{R}^n$
- Classical Hamiltonian $H(q, p) := V(q + ip)$ on the phase space \mathbb{R}^{2n}

Classical Hamiltonian dynamics

- Potential energy $V : \mathbb{C}^n \rightarrow \mathbb{R}$
- Decomposition of $\mathbf{x} \in \mathbb{C}^n$ as $\mathbf{x} = \mathbf{q} + i\mathbf{p}$, with $\mathbf{q}, \mathbf{p} \in \mathbb{R}^n$
- Classical Hamiltonian $H(\mathbf{q}, \mathbf{p}) := V(\mathbf{q} + i\mathbf{p})$ on the phase space \mathbb{R}^{2n}

$$\begin{cases} \frac{d\mathbf{q}}{dt}(t) &= \frac{dH}{d\mathbf{p}}(\mathbf{q}(t), \mathbf{p}(t)) \\ \frac{d\mathbf{p}}{dt}(t) &= -\frac{dH}{d\mathbf{q}}(\mathbf{q}(t), \mathbf{p}(t)) \end{cases}$$

Classical Hamiltonian dynamics

- Potential energy $V : \mathbb{C}^n \rightarrow \mathbb{R}$
- Decomposition of $x \in \mathbb{C}^n$ as $x = \mathbf{q} + i\mathbf{p}$, with $\mathbf{q}, \mathbf{p} \in \mathbb{R}^n$
- Classical Hamiltonian $H(\mathbf{q}, \mathbf{p}) := V(\mathbf{q} + i\mathbf{p})$ on the phase space \mathbb{R}^{2n}

$$\begin{cases} \frac{d\mathbf{q}}{dt}(t) = \frac{dH}{d\mathbf{p}}(\mathbf{q}(t), \mathbf{p}(t)) \\ \frac{d\mathbf{p}}{dt}(t) = -\frac{dH}{d\mathbf{q}}(\mathbf{q}(t), \mathbf{p}(t)) \end{cases} \Leftrightarrow \frac{d}{dt} \begin{pmatrix} \mathbf{q}(t) \\ \mathbf{p}(t) \end{pmatrix} = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \begin{pmatrix} \frac{dH}{d\mathbf{q}}(\mathbf{q}(t), \mathbf{p}(t)) \\ \frac{dH}{d\mathbf{p}}(\mathbf{q}(t), \mathbf{p}(t)) \end{pmatrix}$$

Classical Hamiltonian dynamics

- Potential energy $V : \mathbb{C}^n \rightarrow \mathbb{R}$
- Decomposition of $\mathbf{x} \in \mathbb{C}^n$ as $\mathbf{x} = \mathbf{q} + i\mathbf{p}$, with $\mathbf{q}, \mathbf{p} \in \mathbb{R}^n$
- Classical Hamiltonian $H(\mathbf{q}, \mathbf{p}) := V(\mathbf{q} + i\mathbf{p})$ on the phase space \mathbb{R}^{2n}

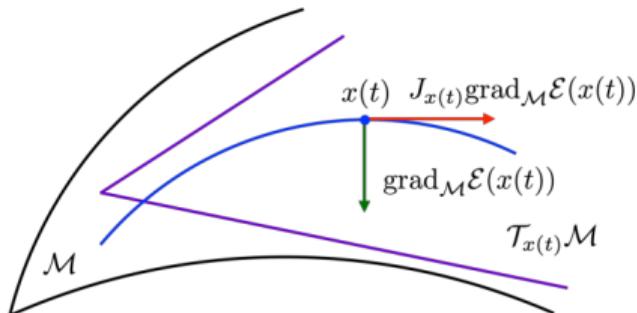
$$\begin{cases} \frac{d\mathbf{q}}{dt}(t) = \frac{dH}{d\mathbf{p}}(\mathbf{q}(t), \mathbf{p}(t)) \\ \frac{d\mathbf{p}}{dt}(t) = -\frac{dH}{d\mathbf{q}}(\mathbf{q}(t), \mathbf{p}(t)) \end{cases} \Leftrightarrow \frac{d}{dt} \begin{pmatrix} \mathbf{q}(t) \\ \mathbf{p}(t) \end{pmatrix} = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \begin{pmatrix} \frac{dH}{d\mathbf{q}}(\mathbf{q}(t), \mathbf{p}(t)) \\ \frac{dH}{d\mathbf{p}}(\mathbf{q}(t), \mathbf{p}(t)) \end{pmatrix}$$

or equivalently $\frac{d\mathbf{x}}{dt}(t) = i \operatorname{grad}_{\mathbb{R}^{2n}} V(\mathbf{x}(t))$.

Classical Hamiltonian dynamics

- Potential energy $V : \mathcal{M} \rightarrow \mathbb{R}$, with \mathcal{M} embedded in complex space
- Classical Hamiltonian $V(x)$ on $\mathcal{M}_{\mathbb{R}}$ (\mathcal{M} seen as real)

Smooth energy functional $\mathcal{E} : \mathcal{M} \rightarrow \mathbb{R}$



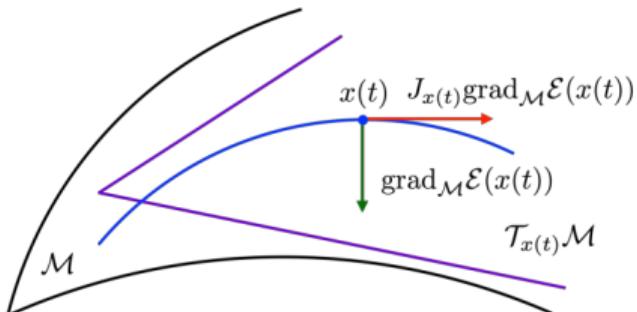
Classical Hamiltonian dynamics

- Potential energy $V : \mathcal{M} \rightarrow \mathbb{R}$, with \mathcal{M} embedded in complex space
- Classical Hamiltonian $V(x)$ on $\mathcal{M}_{\mathbb{R}}$ (\mathcal{M} seen as real)

Smooth energy functional $\mathcal{E} : \mathcal{M} \rightarrow \mathbb{R}$

$$\frac{dx(t)}{dt} = \mathcal{J}_{x(t)} \text{grad}_{\mathcal{M}} \mathcal{E}(x(t))$$

with $\mathcal{J}_{x(t)} : \mathcal{T}_{x(t)} \mathcal{M}_{\mathbb{R}} \rightarrow \mathcal{T}_{x(t)} \mathcal{M}_{\mathbb{R}}$ complex structure,
satisfying $\mathcal{J}_{x(t)}^2 = -\text{Id}_{\mathcal{T}_{x(t)} \mathcal{M}_{\mathbb{R}}}$



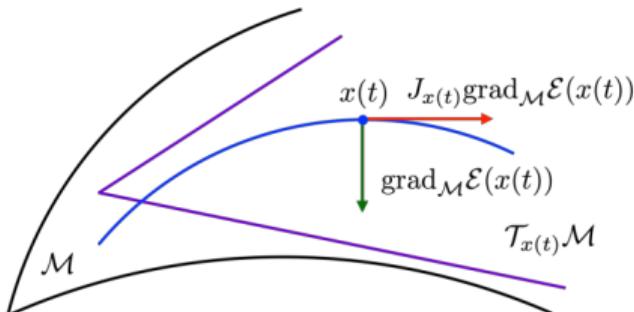
Classical Hamiltonian dynamics

- Potential energy $V : \mathcal{M} \rightarrow \mathbb{R}$, with \mathcal{M} embedded in complex space
- Classical Hamiltonian $V(x)$ on $\mathcal{M}_{\mathbb{R}}$ (\mathcal{M} seen as real)

Smooth energy functional $\mathcal{E} : \mathcal{M} \rightarrow \mathbb{R}$

$$\frac{dx(t)}{dt} = \mathcal{J}_{x(t)} \text{grad}_{\mathcal{M}} \mathcal{E}(x(t))$$

with $\mathcal{J}_{x(t)} : \mathcal{T}_{x(t)} \mathcal{M}_{\mathbb{R}} \rightarrow \mathcal{T}_{x(t)} \mathcal{M}_{\mathbb{R}}$ complex structure,
satisfying $\mathcal{J}_{x(t)}^2 = -\text{Id}_{\mathcal{T}_{x(t)} \mathcal{M}_{\mathbb{R}}}$
TD-Schrödinger equation as classical Hamiltonian dynamics



$$\frac{d\Gamma(t)}{dt} = \mathcal{J}_{\Gamma(t)} \text{grad}_{\mathcal{M}_{\mathbb{R}}} \mathcal{E}(\Gamma(t)) = -i[\hat{H}, \Gamma(t)]$$

with $\Gamma(t) \in \mathcal{M}_{\mathbb{R}} = \mathcal{M}_{\text{exact}}$ and $\mathcal{J}_{\Gamma(t)}(Q) := i[\Gamma, Q]$.

Kähler manifolds

How to find \mathcal{J} for general manifolds?

Kähler manifold

Kähler manifold \mathcal{M} : complex manifold of dimension $n = \dim_{\mathbb{C}}(\mathcal{M})$, endowed with positive-definite Hermitian form $\langle \bullet, \bullet \rangle_{\bullet}$, allowing to endow $\mathcal{M}_{\mathbb{R}}$ (real $2n$ -dimensional) with

Kähler manifolds

How to find \mathcal{J} for general manifolds?

Kähler manifold

Kähler manifold \mathcal{M} : complex manifold of dimension $n = \dim_{\mathbb{C}}(\mathcal{M})$, endowed with positive-definite Hermitian form $\langle \bullet, \bullet \rangle_{\bullet}$, allowing to endow $\mathcal{M}_{\mathbb{R}}$ (real $2n$ -dimensional) with

- Riemannian structure $g_x(u, v) := \operatorname{Re}(\langle u, v \rangle_x)$, $\forall u, v \in \mathcal{T}_x \mathcal{M}_{\mathbb{R}}$, $x \in \mathcal{M}_{\mathbb{R}}$
- Symplectic structure $\omega_x(u, v) := \operatorname{Im}(\langle u, v \rangle_x)$, $\forall u, v \in \mathcal{T}_x \mathcal{M}_{\mathbb{R}}$, $x \in \mathcal{M}_{\mathbb{R}}$
- Symplectic operator $\mathcal{J}_x : \mathcal{T}_x \mathcal{M}_{\mathbb{R}} \rightarrow \mathcal{T}_x \mathcal{M}_{\mathbb{R}}$, $\mathcal{J}_x^2 = -Id_{\mathcal{T}_x \mathcal{M}_{\mathbb{R}}}$

such that

$$g_x(u, v) = \omega_x(u, \mathcal{J}_x(v)), \forall u, v \in \mathcal{T}_x \mathcal{M}_{\mathbb{R}}, x \in \mathcal{M}_{\mathbb{R}}$$

Kähler manifolds for linear response

- ① Describe \mathcal{M} and let $\mathcal{E}(x) := E(\Gamma_x)$ for $x \in \mathcal{M}_{\mathbb{R}}$

Kähler manifolds for linear response

- ➊ Describe \mathcal{M} and let $\mathcal{E}(x) := E(\Gamma_x)$ for $x \in \mathcal{M}_{\mathbb{R}}$
- ➋ Write Hamiltonian dynamics

$$\frac{dx(t)}{dt} = \mathcal{J}_{x(t)} \text{grad}_{\mathcal{M}_{\mathbb{R}}} \mathcal{E}(x(t))$$

Kähler manifolds for linear response

- ➊ Describe \mathcal{M} and let $\mathcal{E}(x) := E(\Gamma_x)$ for $x \in \mathcal{M}_{\mathbb{R}}$
- ➋ Write Hamiltonian dynamics

$$\frac{dx(t)}{dt} = \mathcal{J}_{x(t)} \text{grad}_{\mathcal{M}_{\mathbb{R}}} \mathcal{E}(x(t))$$

- ➌ Linearise at stable state $x^{(0)}$

$$\frac{dx^{(1)}(t)}{dt} = \mathcal{J}_{x^{(0)}} \text{Hess}_{\mathcal{M}_{\mathbb{R}}} \mathcal{E}(x^{(0)}) x^{(1)}(t) \text{ on } \mathcal{T}_{x^{(0)}} \mathcal{M}_{\mathbb{R}}$$

Kähler manifolds for linear response

- ① Describe \mathcal{M} and let $\mathcal{E}(x) := E(\Gamma_x)$ for $x \in \mathcal{M}_{\mathbb{R}}$
- ② Write Hamiltonian dynamics

$$\frac{dx(t)}{dt} = \mathcal{J}_{x(t)} \text{grad}_{\mathcal{M}_{\mathbb{R}}} \mathcal{E}(x(t))$$

- ③ Linearise at stable state $x^{(0)}$

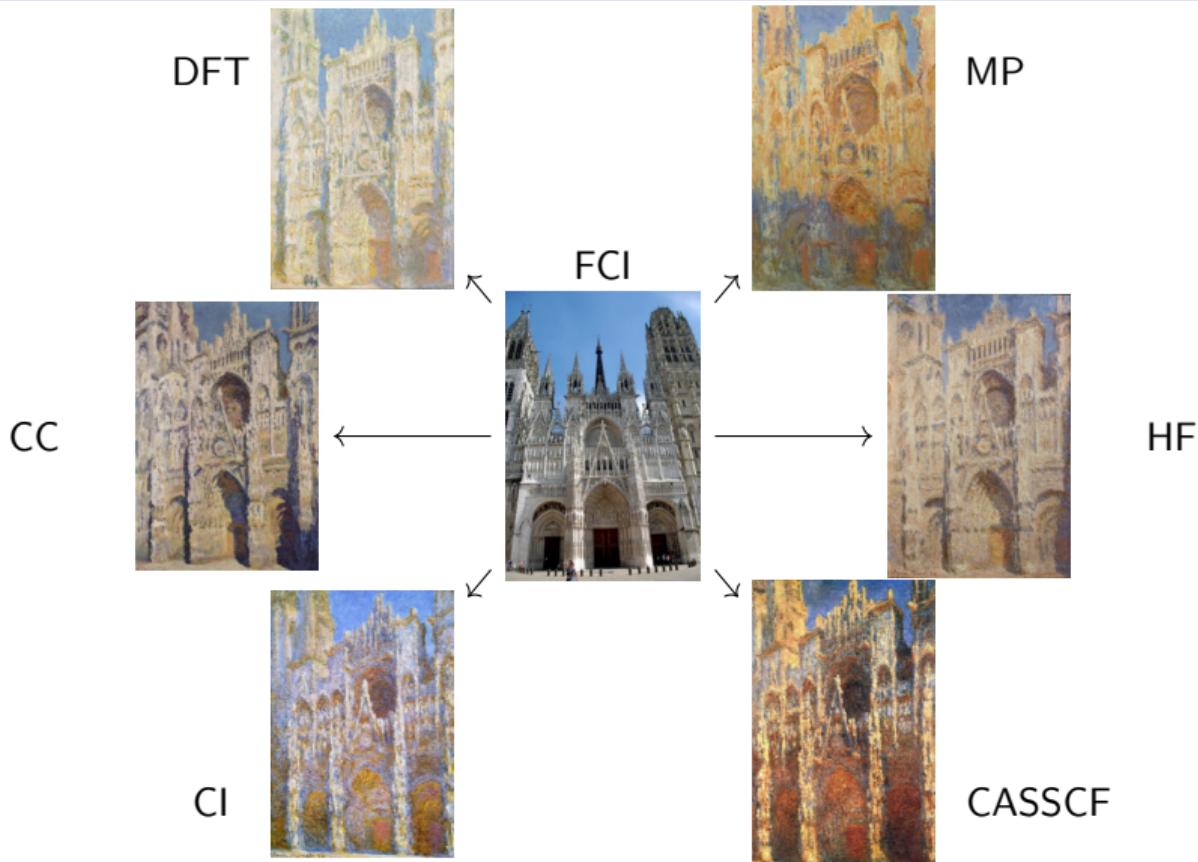
$$\frac{dx^{(1)}(t)}{dt} = \mathcal{J}_{x^{(0)}} \text{Hess}_{\mathcal{M}_{\mathbb{R}}} \mathcal{E}(x^{(0)}) x^{(1)}(t) \text{ on } \mathcal{T}_{x^{(0)}} \mathcal{M}_{\mathbb{R}}$$

- ④ Excitation energies through computation of symplectic eigenvalues of $\text{Hess}_{\mathcal{M}_{\mathbb{R}}} \mathcal{E}(x^{(0)})$ on $\mathcal{T}_{x^{(0)}} \mathcal{M}_{\mathbb{R}}$.

Methods

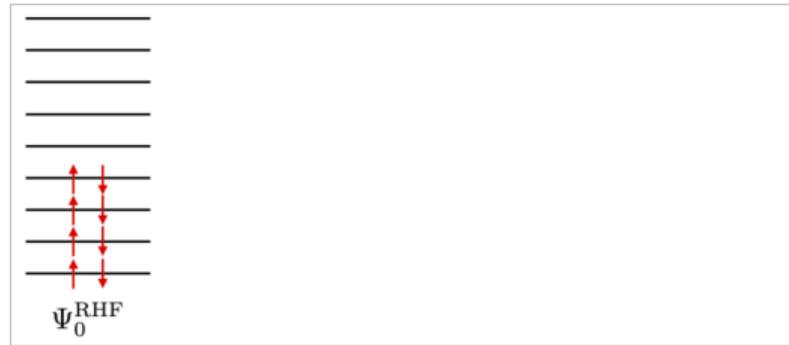
FCI

Methods



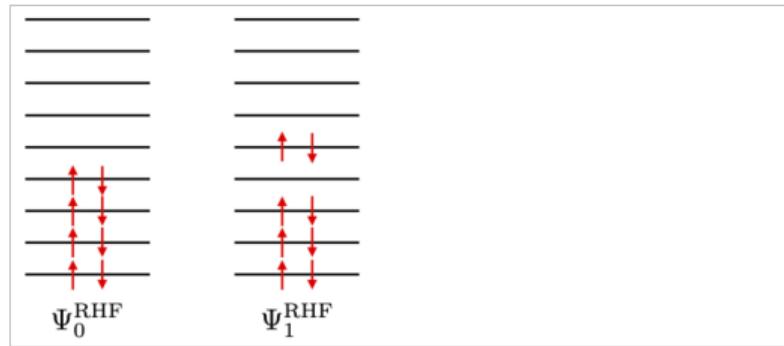
Hartree-Fock manifold

Single-determinant ansatz



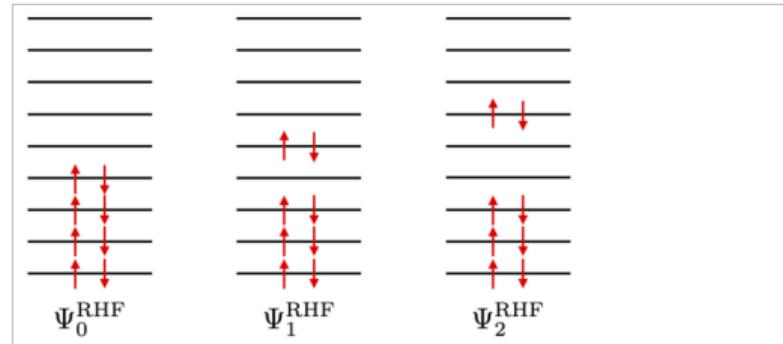
Hartree-Fock manifold

Single-determinant ansatz



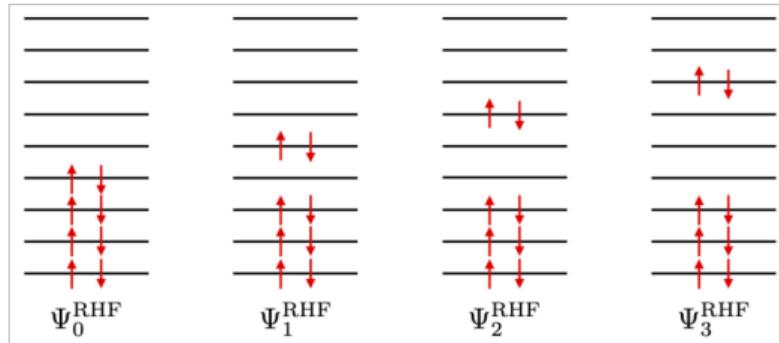
Hartree-Fock manifold

Single-determinant ansatz



Hartree-Fock manifold

Single-determinant ansatz

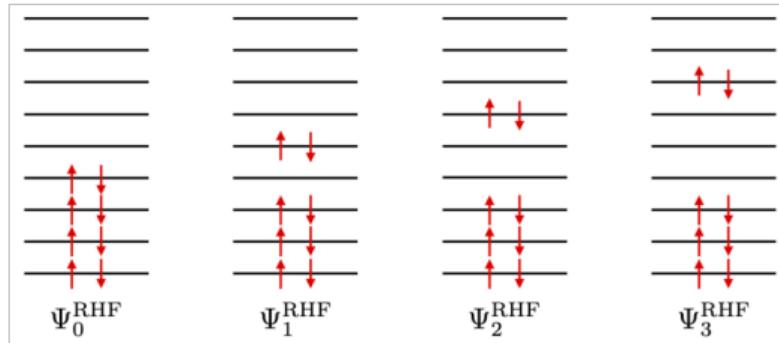


Grassmann manifold

$$\text{Gr}(N, \mathcal{N}_b) = \{P \in \mathbb{C}_{\text{sym}}^{\mathcal{N}_b \times \mathcal{N}_b} \mid P^2 = P, \text{Tr}(P) = N\}$$

Hartree-Fock manifold

Single-determinant ansatz



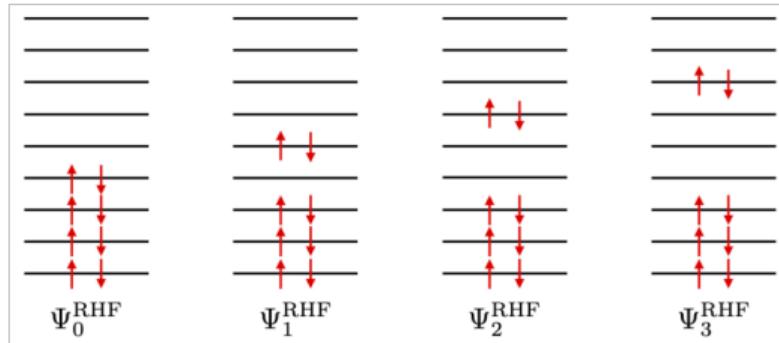
Grassmann manifold

$$\text{Gr}(N, \mathcal{N}_b) = \{P \in \mathbb{C}_{\text{sym}}^{\mathcal{N}_b \times \mathcal{N}_b} \mid P^2 = P, \text{Tr}(P) = N\}$$

electrons \leftarrow # basis functions

Hartree-Fock manifold

Single-determinant ansatz



Grassmann manifold

$$\text{Gr}(N, \mathcal{N}_b) = \{P \in \mathbb{C}_{\text{sym}}^{\mathcal{N}_b \times \mathcal{N}_b} \mid P^2 = P, \text{Tr}(P) = N\}$$

density matrix

- ① Quantum Liouville equation $i\frac{dP}{dt}(t) = [F_{P_0}, P(t)]$, with $P, F \in \mathbb{C}^{N_b \times N_b}$

Linear response - HF

- ➊ Quantum Liouville equation $i\frac{dP}{dt}(t) = [F_{P_0}, P(t)]$, with $P, F \in \mathbb{C}^{N_b \times N_b}$
- ➋ Linearise equation of motion around $P^{(0)}$

$$i\frac{dP^{(1)}}{dt}(t) = [F^{(1)}, P^{(0)}] + [F^{(0)}, P^{(1)}]$$

Linear response - HF

- ➊ Quantum Liouville equation $i\frac{dP}{dt}(t) = [F_{P_0}, P(t)]$, with $P, F \in \mathbb{C}^{N_b \times N_b}$
- ➋ Linearise equation of motion around $P^{(0)}$

$$i\frac{dP^{(1)}}{dt}(t) = [F^{(1)}, P^{(0)}] + [F^{(0)}, P^{(1)}]$$

- ➌ Solution of form $P^{(1)}(t) := \frac{1}{2}(D e^{-i\omega t} + D^* e^{i\omega t})$, $D \in \mathbb{C}^{N_b \times N_b}$

Linear response - HF

- ➊ Quantum Liouville equation $i\frac{dP}{dt}(t) = [F_{P_0}, P(t)]$, with $P, F \in \mathbb{C}^{N_b \times N_b}$
- ➋ Linearise equation of motion around $P^{(0)}$

$$i\frac{dP^{(1)}}{dt}(t) = [F^{(1)}, P^{(0)}] + [F^{(0)}, P^{(1)}]$$

- ➌ Solution of form $P^{(1)}(t) := \frac{1}{2}(D e^{-i\omega t} + D^* e^{i\omega t})$, $D \in \mathbb{C}^{N_b \times N_b}$
- ➍ Inserting gives linear response equations (Casida)

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B} & -\mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \omega \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$$

Linear response - HF

- ➊ Quantum Liouville equation $i\frac{dP}{dt}(t) = [F_{P_0}, P(t)]$, with $P, F \in \mathbb{C}^{N_b \times N_b}$
- ➋ Linearise equation of motion around $P^{(0)}$

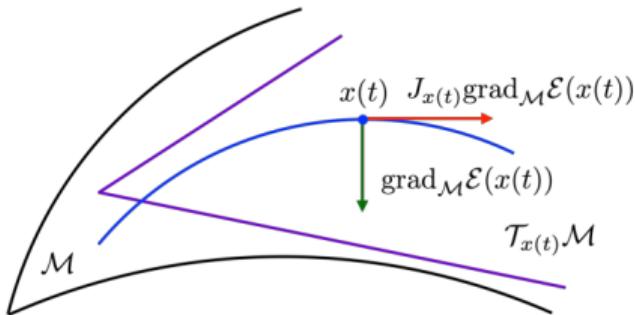
$$i\frac{dP^{(1)}}{dt}(t) = [F^{(1)}, P^{(0)}] + [F^{(0)}, P^{(1)}]$$

- ➌ Solution of form $P^{(1)}(t) := \frac{1}{2}(D e^{-i\omega t} + D^* e^{i\omega t})$, $D \in \mathbb{C}^{N_b \times N_b}$
- ➍ Inserting gives linear response equations (Casida)

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B} & -\mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \omega \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$$

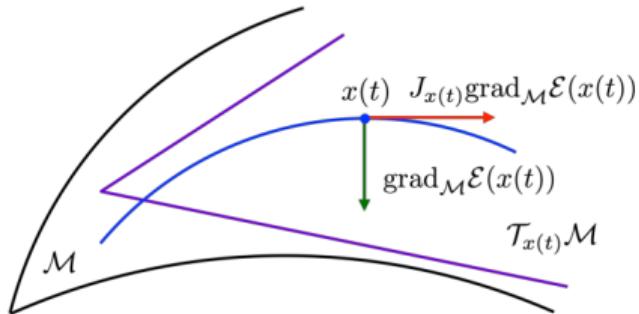
where \mathbf{A} and \mathbf{B} depend on orbital energies and 2-electron integrals.

Casida's equation



- Find **canonical** basis of $\mathcal{T}_{P_0} \mathcal{M}_{\mathbb{R}}$

Casida's equation

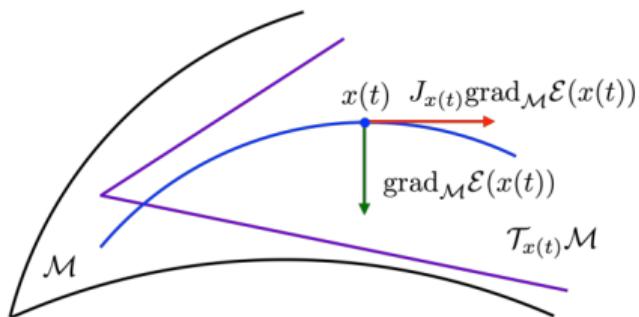


- Find **canonical** basis of $\mathcal{T}_{P_0}\mathcal{M}_{\mathbb{R}}$
- In this basis,

$$\text{Hess}_{\mathcal{M}_{\mathbb{R}}}\mathcal{E}(P_0) = \begin{pmatrix} \mathbf{A} + \mathbf{B} & 0 \\ 0 & \mathbf{A} - \mathbf{B} \end{pmatrix}$$

A and **B** defined as in [Casida](#)

Casida's equation



- Find **canonical** basis of $\mathcal{T}_{P_0} \mathcal{M}_{\mathbb{R}}$
- In this basis,

$$\text{Hess}_{\mathcal{M}_{\mathbb{R}}} \mathcal{E}(P_0) = \begin{pmatrix} \mathbf{A} + \mathbf{B} & 0 \\ 0 & \mathbf{A} - \mathbf{B} \end{pmatrix}$$

A and **B** defined as in [Casida](#)

- LR excitation energies \rightarrow **symplectic** eigenvalues of $\text{Hess}_{\mathcal{M}_{\mathbb{R}}} \mathcal{E}(P_0)$

\implies eigenvalues of **symmetric** matrix

(J. Williamson, Am. J. Math., 58, 1936)

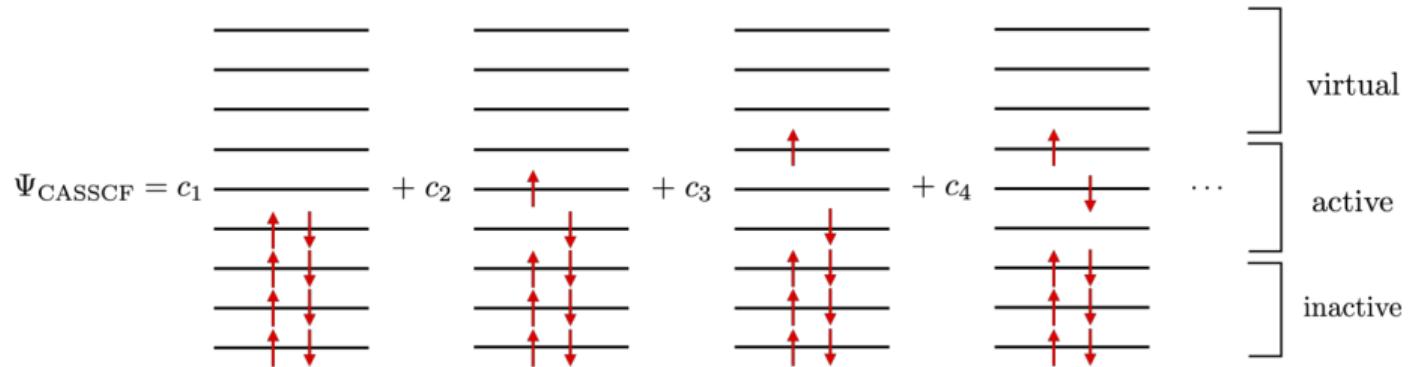
$$\tilde{\Omega} := \left((\mathbf{A} + \mathbf{B})^{1/2} (\mathbf{A} - \mathbf{B}) (\mathbf{A} + \mathbf{B})^{1/2} \right)^{1/2}$$

Equivalent to Casida's equation!

CASSCF

- Describe multi-reference states \Rightarrow single determinant not sufficient

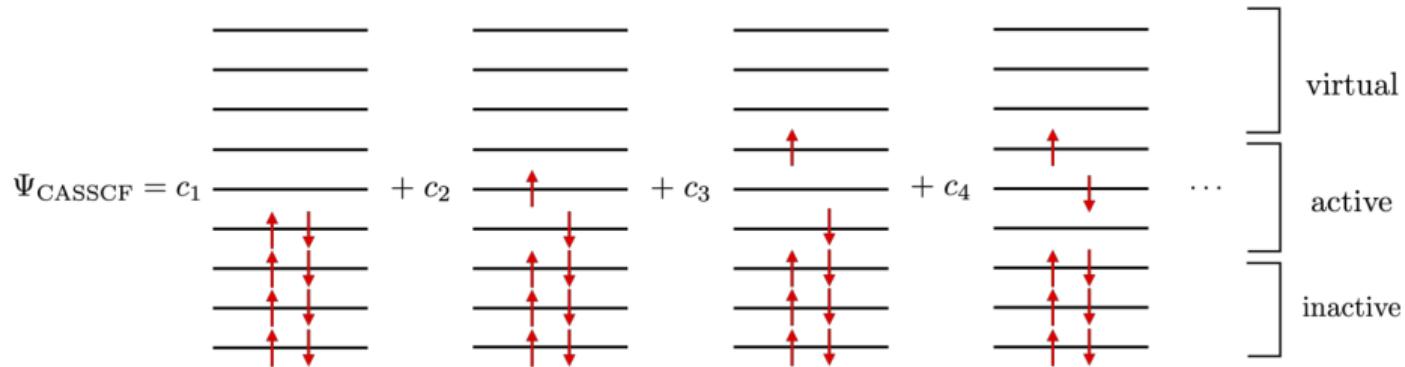
Complete active space self-consistent field (CASSCF) theory



CASSCF

- Describe multi-reference states \Rightarrow single determinant not sufficient

Complete active space self-consistent field (CASSCF) theory



$$\phi_p^C := \sum_{\mu=1}^{N_b} C_{\mu p} \chi_{\mu}, \quad p = 1, \dots, N_b \quad |\Psi_{c,C}\rangle = \sum_{l=1}^{N_{\text{det}}} c_l |I^C_l\rangle$$

orbital rotation

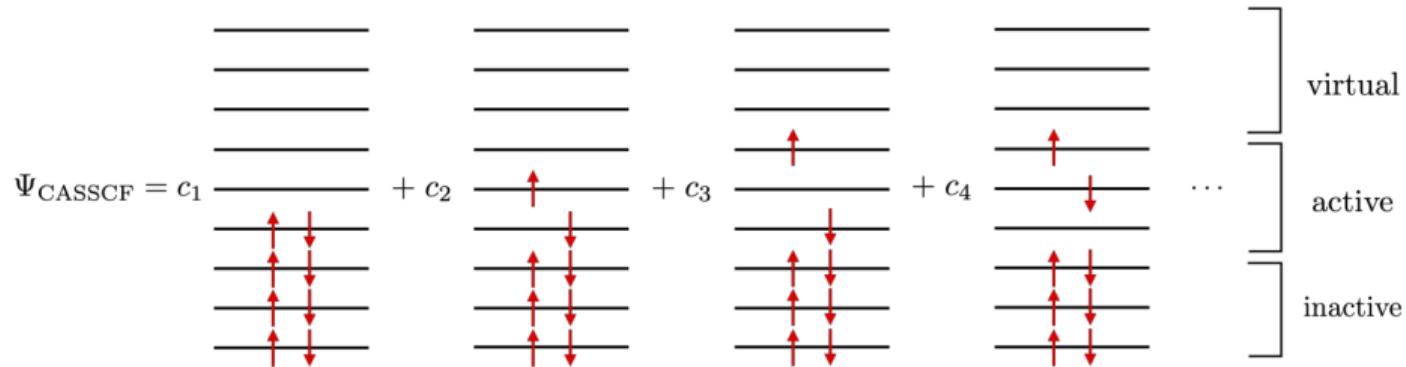
lin. comb. of

Slater Determinants

CASSCF

- Describe multi-reference states \Rightarrow single determinant not sufficient

Complete active space self-consistent field (CASSCF) theory



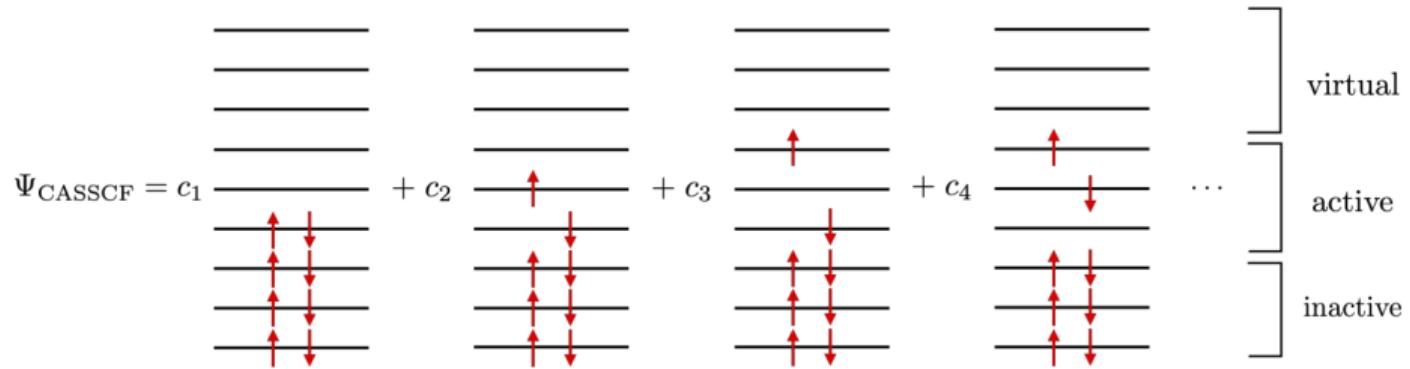
$$\phi_p^C := \sum_{\mu=1}^{N_b} C_{\mu p} \chi_{\mu}, \quad p = 1, \dots, N_b \quad |\Psi_{c,C}\rangle = \sum_{l=1}^{N_{\text{det}}} c_l |I^C\rangle$$

- Partition of orbital space into inactive, active and virtual orbitals

CASSCF

- Describe multi-reference states \Rightarrow single determinant not sufficient

Complete active space self-consistent field (CASSCF) theory



$$\phi_p^C := \sum_{\mu=1}^{N_b} C_{\mu p} \chi_{\mu}, \quad p = 1, \dots, N_b \quad |\Psi_{c,C}\rangle = \sum_{l=1}^{N_{\text{det}}} c_l |I^C\rangle$$

- Partition of orbital space into inactive, active and virtual orbitals

$$\mathcal{E}_{\text{CASSCF}} = \min_{\Psi_{c,C}} \langle \Psi_{c,C} | \hat{H} | \Psi_{c,C} \rangle$$

Linear Response

- From **dynamical** equations (**TD**)
- Strong **ground-state dependence**
- Poor for **charge-transfer** or **Rydberg** states

CASSCF excited states

Linear Response

- From **dynamical** equations (TD)

- Strong **ground-state dependence**

- Poor for **charge-transfer** or **Rydberg** states

State Specific

- **Optimised** orbitals for each state

- **Non-orthogonal** states

- **State flipping**

Linear Response

- From **dynamical** equations (TD)

- Strong **ground-state dependence**

- Poor for **charge-transfer** or **Rydberg** states

State Specific

- **Optimised** orbitals for each state

- **Non-orthogonal** states

- **State flipping**

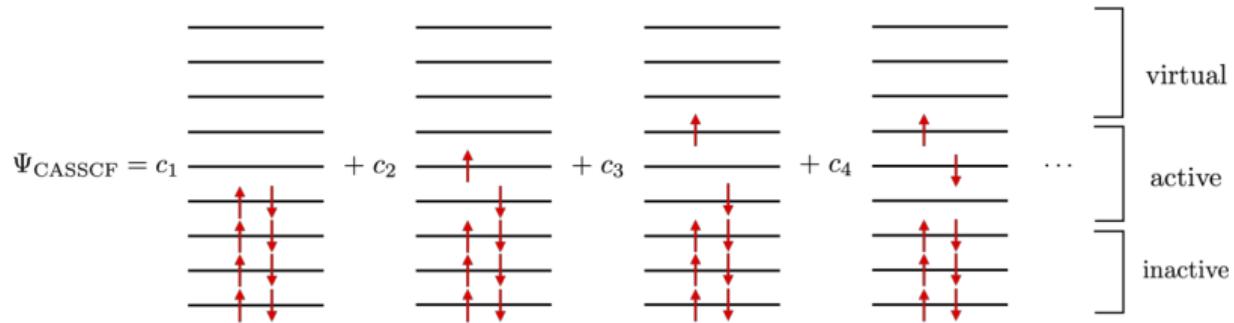
State Average

- **Shared** orbitals for considered states

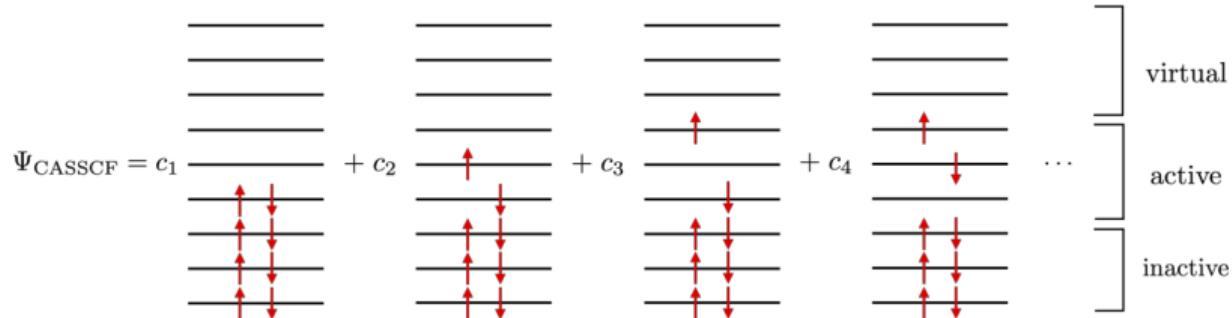
- Efficient for **multiple** states

- **Bad approximation** if states are very **different**

CASSCF manifold



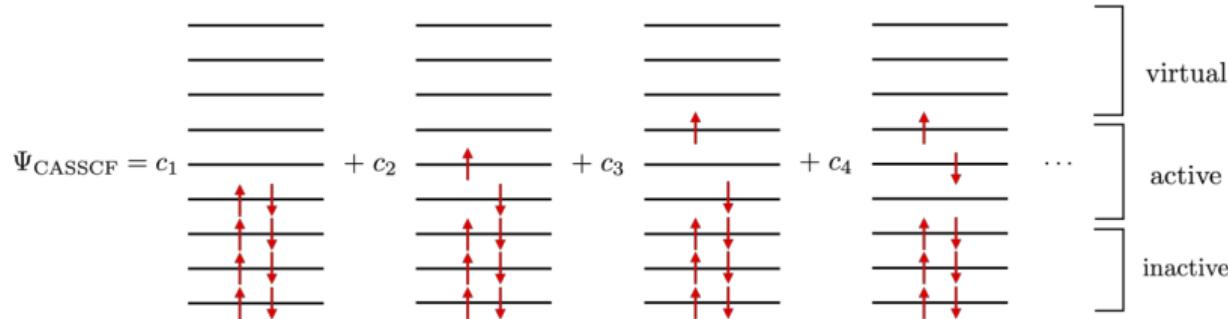
CASSCF manifold



State characterised by (c, C)

- rotation in **configuration** space \rightarrow coefficients vector c ($|c| = 1$)
- rotation in **orbital** space \rightarrow orbitals $\phi_p^C = \sum_{\mu=1}^{N_b} C_{\mu p} \chi_{\mu}$, $p = 1, N_b$

CASSCF manifold

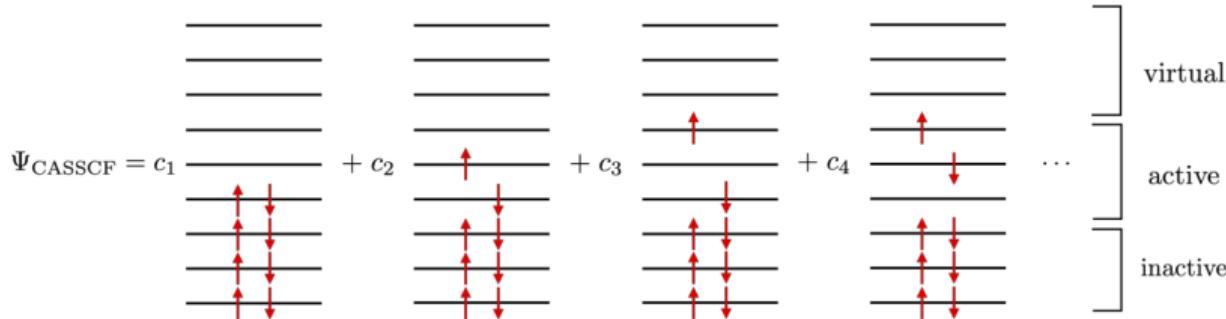


State characterised by (c, C)

- rotation in **configuration** space \rightarrow coefficients vector c ($|c| = 1$)
- rotation in **orbital** space \rightarrow orbitals $\phi_p^C = \sum_{\mu=1}^{N_b} C_{\mu p} \chi_{\mu}$, $p = 1, N_b$

$$\mathcal{M} := \left\{ (c, C) \in (\mathbb{S}_{\mathbb{C}}^{N_{\text{det}}-1} \times U(N_b)) \mid \text{rank} (\gamma_{c,C}^{\text{act}}) = N_a \right\}$$

CASSCF manifold

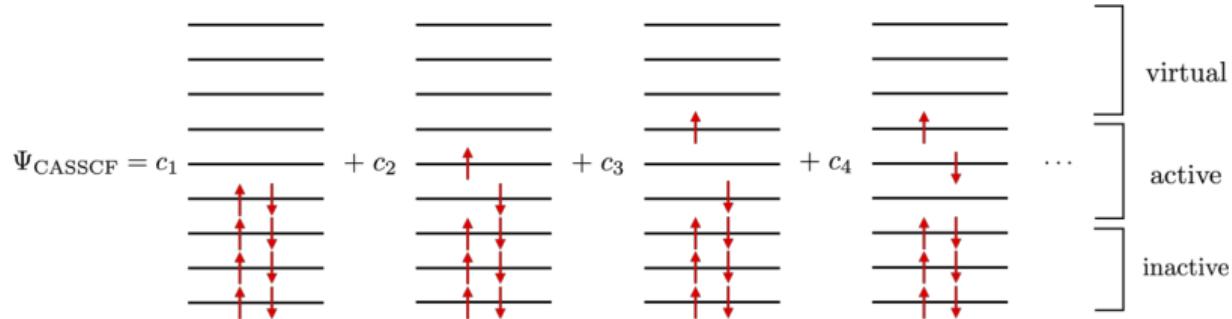


State characterised by (c, C)

- rotation in **configuration** space \rightarrow coefficients vector c ($|c| = 1$)
- rotation in **orbital** space \rightarrow orbitals $\phi_p^C = \sum_{\mu=1}^{N_b} C_{\mu p} \chi_{\mu}$, $p = 1, N_b$

$$\mathcal{M} := \left\{ (c, C) \in (\mathbb{S}_{\mathbb{C}}^{N_{\text{det}}-1} \times U(N_b)) / (U(1) \times U(N_i) \times U(N_a) \times U(N_e)) \mid \text{rank} (\gamma_{c,C}^{\text{act}}) = N_a \right\}$$

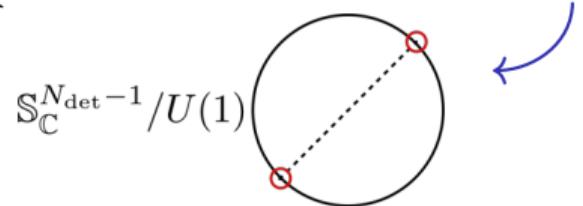
CASSCF manifold



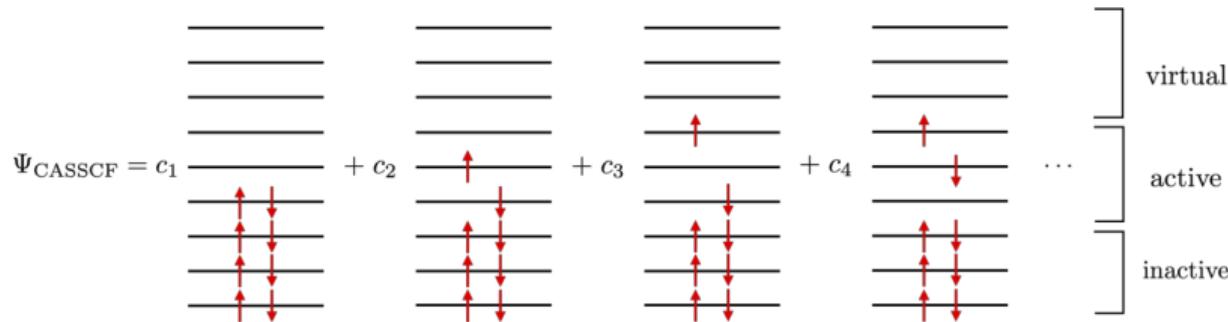
State characterised by (c, C)

- rotation in **configuration** space \rightarrow coefficients vector c ($|c| = 1$)
- rotation in **orbital** space \rightarrow orbitals $\phi_p^C = \sum_{\mu=1}^{N_b} C_{\mu p} \chi_{\mu}$, $p = 1, N_b$

$$\mathcal{M} := \left\{ (c, C) \in (\mathbb{S}_{\mathbb{C}}^{N_{\text{det}}-1} \times U(N_b)) / (\textcolor{red}{U(1)} \times U(N_i) \times U(N_a) \times U(N_e)) \mid \text{rank} (\gamma_{c,C}^{\text{act}}) = N_a \right\}$$



CASSCF manifold



State characterised by (c, C)

- rotation in **configuration** space \rightarrow coefficients vector c ($|c| = 1$)
- rotation in **orbital** space \rightarrow orbitals $\phi_p^C = \sum_{\mu=1}^{N_b} C_{\mu p} \chi_{\mu}$, $p = 1, N_b$

$$\mathcal{M} := \left\{ (c, C) \in (\mathbb{S}_{\mathbb{C}}^{N_{\text{det}}-1} \times U(N_b)) / (U(1) \times U(N_i) \times U(N_a) \times U(N_e)) \mid \text{rank}(\gamma_{c,C}^{\text{act}}) = N_a \right\}$$

equivalence int. orb. equivalence virt. orb.
 equivalence act. orb.

CASSCF manifold

Caveat!

Rotation of orbitals may **compensate** rotation of configurations \implies two spaces **cannot** be treated separately!

CASSCF manifold

Caveat!

Rotation of orbitals may **compensate** rotation of configurations \Rightarrow two spaces **cannot** be treated separately!

- **minimum**: descent on **all** directions \Rightarrow **nested** minimisation

$$\mathcal{E}_{\text{CASSCF}} = \min_{\Psi_{c,C}} \langle \Psi_{c,C} | \hat{H} | \Psi_{c,C} \rangle = \min_c \min_C \langle \Psi_{c,C} | \hat{H} | \Psi_{c,C} \rangle$$

CASSCF manifold

Caveat!

Rotation of orbitals may **compensate** rotation of configurations \Rightarrow two spaces **cannot** be treated separately!

- **minimum:** descent on **all** directions \Rightarrow **nested** minimisation

$$\mathcal{E}_{\text{CASSCF}} = \min_{\Psi_{c,C}} \langle \Psi_{c,C} | \hat{H} | \Psi_{c,C} \rangle = \min_c \min_C \langle \Psi_{c,C} | \hat{H} | \Psi_{c,C} \rangle$$

$$\frac{\partial^2 \mathcal{E}}{\partial c \partial c}$$

- **saddle point:** **minimax** problem \Rightarrow index-1 saddle point carried by **orbital** or **configuration** part?

$$\frac{\partial^2 \mathcal{E}}{\partial C \partial C}$$

CASSCF manifold

Caveat!

Rotation of orbitals may **compensate** rotation of configurations \Rightarrow two spaces **cannot** be treated separately!

- **minimum:** descent on **all** directions \Rightarrow **nested** minimisation

$$\mathcal{E}_{\text{CASSCF}} = \min_{\Psi_{c,C}} \langle \Psi_{c,C} | \hat{H} | \Psi_{c,C} \rangle = \min_c \min_C \langle \Psi_{c,C} | \hat{H} | \Psi_{c,C} \rangle$$

- **saddle point:** **minimax** problem \Rightarrow index-1 saddle point carried by **orbital** or **configuration** part?

$\frac{\partial^2 \mathcal{E}}{\partial c \partial c}$	$\frac{\partial^2 \mathcal{E}}{\partial c \partial C}$
$\frac{\partial^2 \mathcal{E}}{\partial C \partial c}$	$\frac{\partial^2 \mathcal{E}}{\partial C \partial C}$

CASSCF manifold

Caveat!

Rotation of orbitals may **compensate** rotation of configurations \Rightarrow two spaces **cannot** be treated separately!

- **minimum:** descent on **all** directions \Rightarrow **nested** minimisation

$$\mathcal{E}_{\text{CASSCF}} = \min_{\Psi_{c,C}} \langle \Psi_{c,C} | \hat{H} | \Psi_{c,C} \rangle = \min_c \min_C \langle \Psi_{c,C} | \hat{H} | \Psi_{c,C} \rangle$$

- **saddle point:** **minimax** problem \Rightarrow index-1 saddle point carried by **orbital** or **configuration** part?

$\frac{\partial^2 \mathcal{E}}{\partial c \partial c}$	$\frac{\partial^2 \mathcal{E}}{\partial c \partial C}$
$\frac{\partial^2 \mathcal{E}}{\partial C \partial c}$	$\frac{\partial^2 \mathcal{E}}{\partial C \partial C}$

Manifold geometry needed for linear response!

CASSCF-LR

Conventional CASSCF-LR derivations involve *ad hoc* technicalities, to obtain

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B} & -\mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \omega \begin{pmatrix} \boldsymbol{\Sigma} & \boldsymbol{\Delta} \\ \boldsymbol{\Delta} & \boldsymbol{\Sigma} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$$

⇒ non-intelligible manifold geometry!

CASSCF-LR

Conventional CASSCF-LR derivations involve *ad hoc* technicalities, to obtain

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B} & -\mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \omega \begin{pmatrix} \boldsymbol{\Sigma} & \boldsymbol{\Delta} \\ \boldsymbol{\Delta} & \boldsymbol{\Sigma} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$$

⇒ non-intelligible manifold geometry!

In canonical basis of $\mathcal{T}_{P_0}\mathcal{M}_{\mathbb{R}}$ gives

$$\text{Hess}_{\mathcal{M}_{\mathbb{R}}} \mathcal{E}(P_0)[\mathbf{v}] = \begin{pmatrix} \mathbf{A} + \mathbf{B} & 0 \\ 0 & \mathbf{A} - \mathbf{B} \end{pmatrix} \begin{pmatrix} \mathbf{v}^+ \\ \mathbf{v}^- \end{pmatrix}$$

CASSCF-LR

Conventional CASSCF-LR derivations involve *ad hoc* technicalities, to obtain

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B} & -\mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \omega \begin{pmatrix} \mathbf{\Sigma} & \mathbf{\Delta} \\ \mathbf{\Delta} & \mathbf{\Sigma} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$$

⇒ non-intelligible manifold geometry!

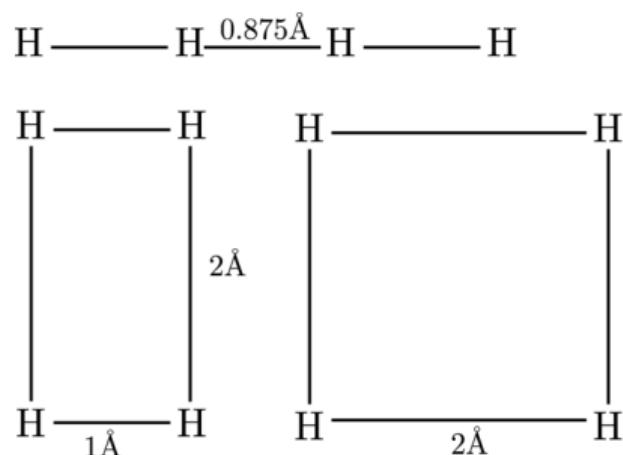
In canonical basis of $\mathcal{T}_{P_0}\mathcal{M}_{\mathbb{R}}$ gives

$$\text{Hess}_{\mathcal{M}_{\mathbb{R}}} \mathcal{E}(P_0)[\mathbf{v}] = \begin{pmatrix} \mathbf{A} + \mathbf{B} & 0 \\ 0 & \mathbf{A} - \mathbf{B} \end{pmatrix} \begin{pmatrix} \mathbf{v}^+ \\ \mathbf{v}^- \end{pmatrix}$$

⇒ CASSCF-LR excitation energies are symplectic eigenvalues of $\tilde{\Omega}$:

$$\tilde{\Omega} = \left((\mathbf{A} + \mathbf{B})^{1/2} (\mathbf{A} - \mathbf{B}) (\mathbf{A} + \mathbf{B})^{1/2} \right)^{1/2}.$$

Model system H₄



- H₄ known to have **multiple** SCF solutions
- Generally, **multiple** local minima, maxima and saddle points
 - HF **nonlinear** approximation
 - **symmetry breaking** (UHF)
 - **bad** single-reference approximation

H. G. A. Burton and D. J. Wales, J. Chem. Theory Comput. 17, 151-169 (2021)

Comparison between LR and CP

Comparison in **perturbative** framework

$$\hat{H} = \hat{h} + \lambda \hat{V}$$

Comparison between LR and CP

Comparison in **perturbative** framework

$$\hat{H} = \hat{h} + \lambda \hat{V}$$

- LR-UHF and CP-UHF **coincide** with FCI at $\lambda = 0$

Comparison between LR and CP

Comparison in **perturbative** framework

$$\hat{H} = \hat{h} + \lambda \hat{V}$$

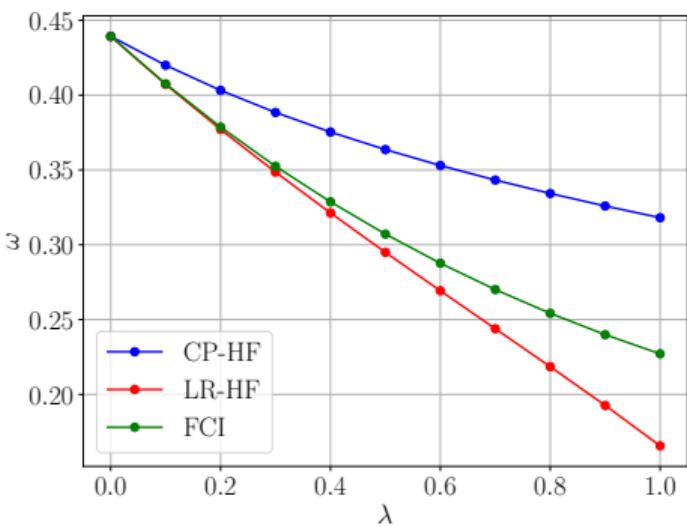
- LR-UHF and CP-UHF **coincide** with FCI at $\lambda = 0$
- **analytic** expressions **differ** for $0 < \lambda \ll 1$

Comparison between LR and CP

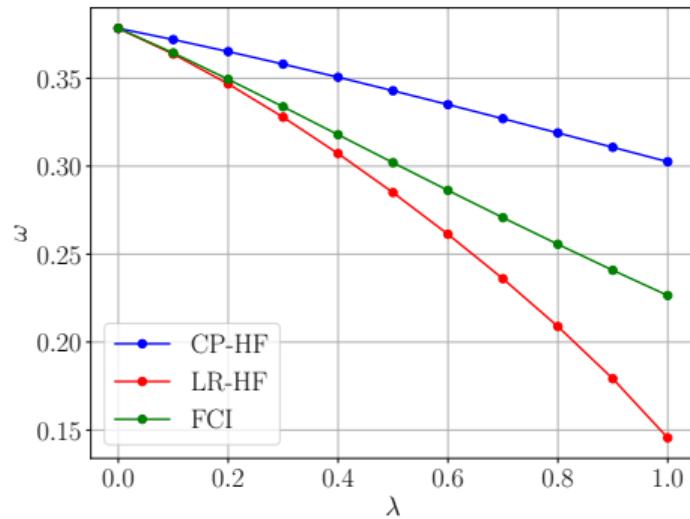
Comparison in **perturbative** framework

$$\hat{H} = \hat{h} + \lambda \hat{V}$$

- LR-UHF and CP-UHF **coincide** with FCI at $\lambda = 0$
- **analytic** expressions **differ** for $0 < \lambda \ll 1$

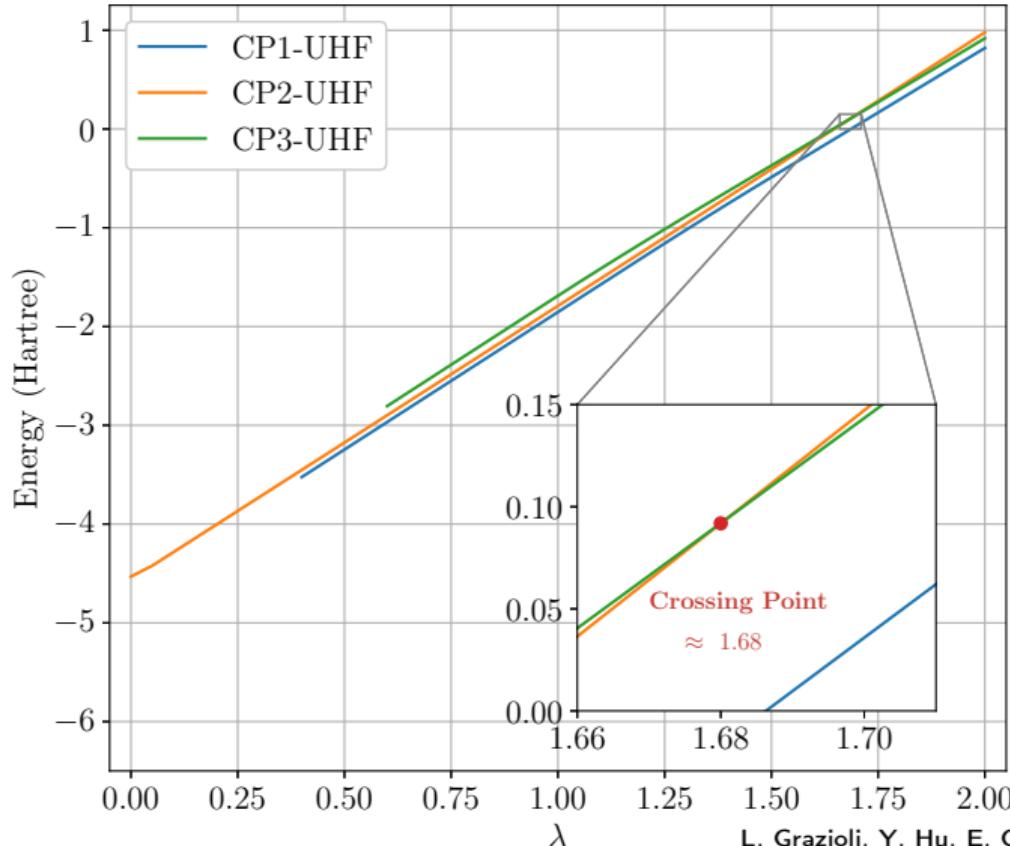


H_4 linear geometry, 3-21G

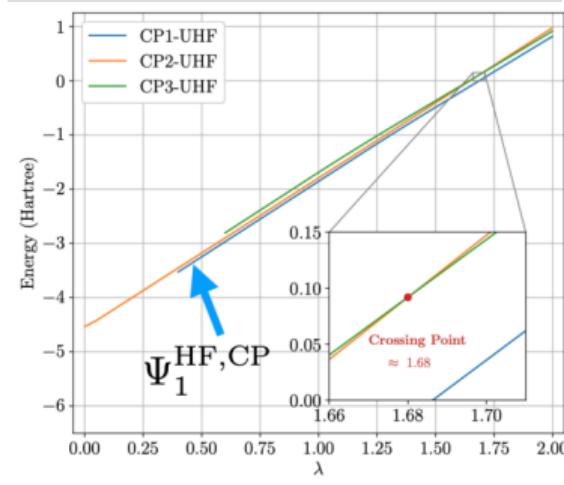
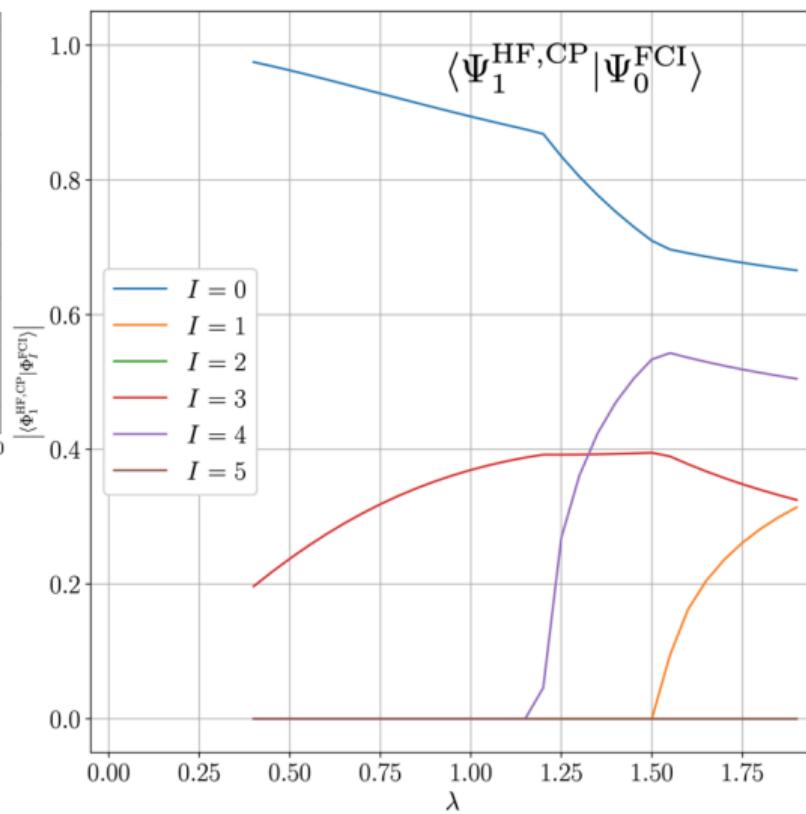


H_4 rectangular geometry, 3-21G

H_4 index-1 saddle points

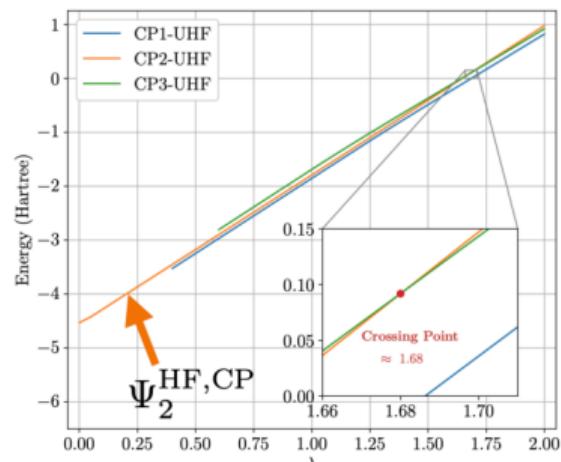
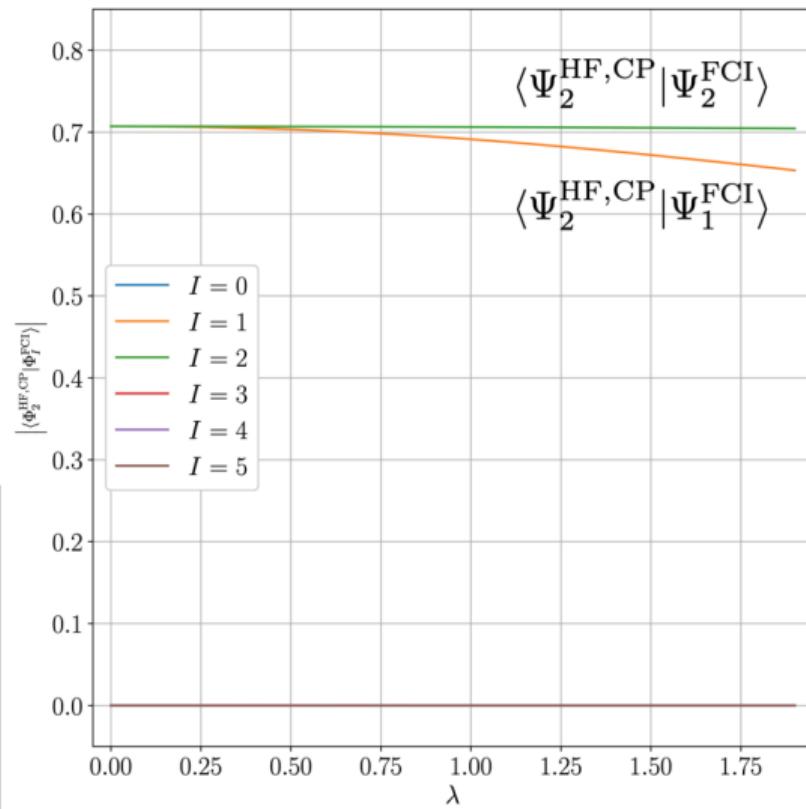


H_4 index-1 saddle points



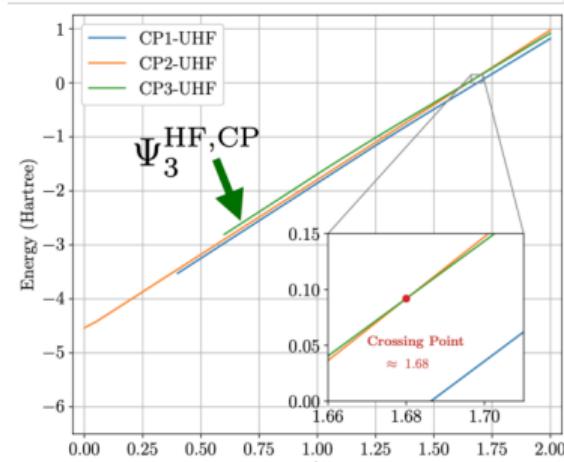
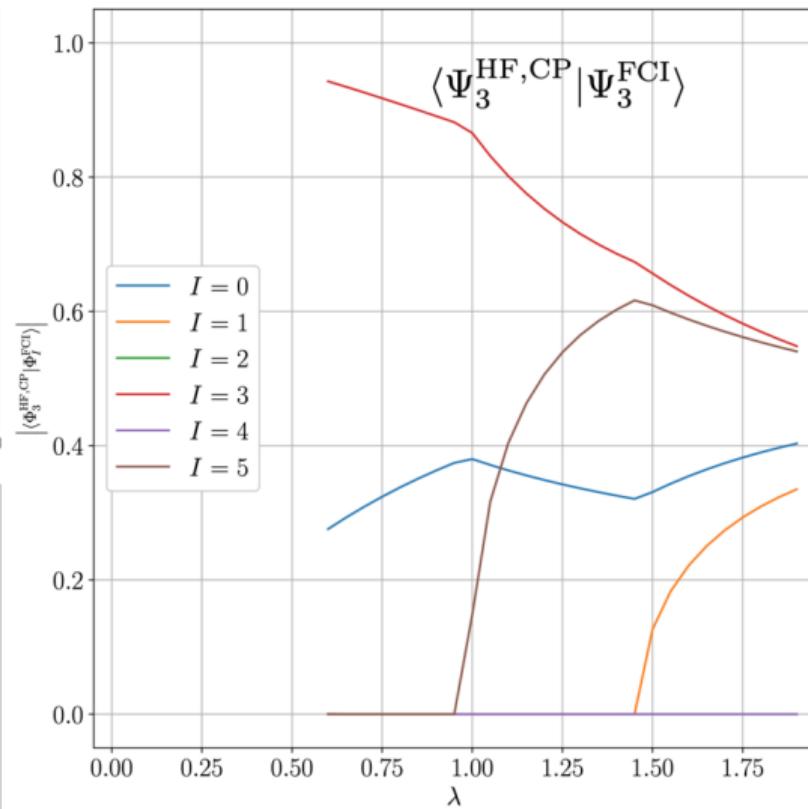
Spurious saddle point close to Ψ_0^{FCI} !

H_4 index-1 saddle points



Symmetry-broken state $\Psi_2^{\text{HF,CP}}$, lin. comb. Ψ_1^{FCI} (triplet) and Ψ_2^{FCI} (singlet)

H_4 index-1 saddle points



Spurious saddle point close to Ψ_3^{FCI} !

Conclusions

Universal derivation of LR equations based on Kähler manifolds; derivation for HF and CASSCF

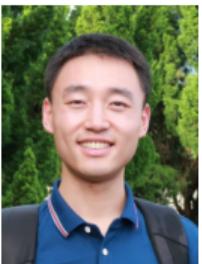
Conclusions

Universal derivation of LR equations based on Kähler manifolds; derivation for HF and CASSCF

Next steps

- comparison between linear response, state specific and state average results for CASSCF
- testing on bigger molecules
- implementation of second-order methods for faster convergence
- extend to other methods in quantum chemistry

Eric Cancès
(ENPC)



Yukuan Hu
(ENPC)

Tony Lelièvre
(ENPC)

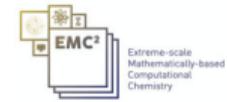
Panos Parpas
(ICL)

Filippo Lipparini
(UniPi)

Tommaso Nottoli
(UniPi)

Thank you for your attention!

European Research Council
Established by the European Commission



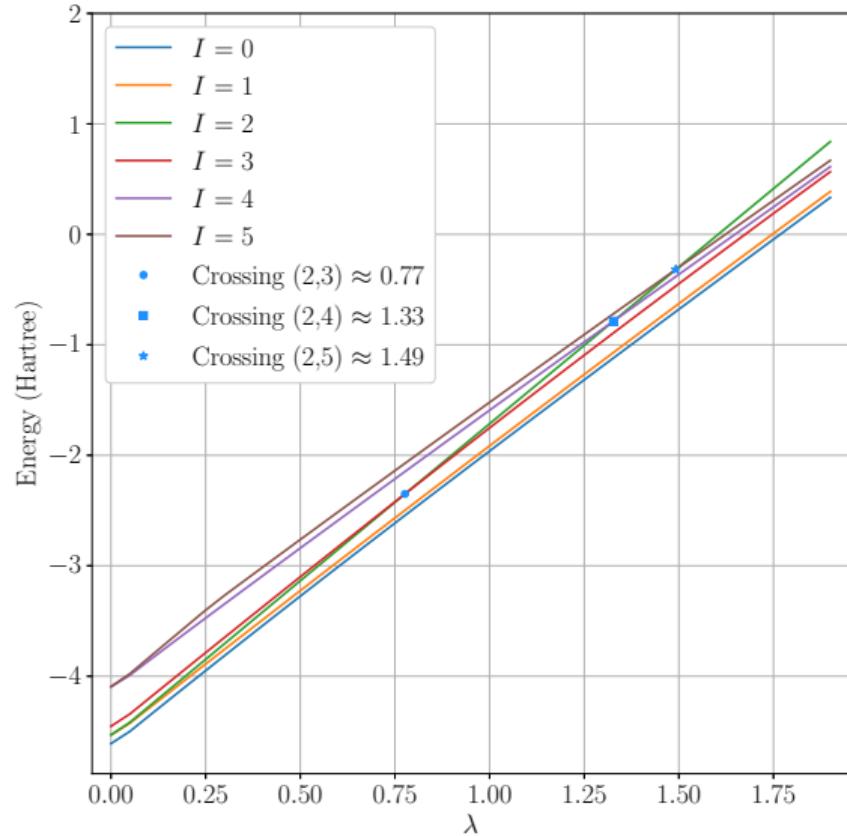
Extreme-scale
Mathematically-based
Computational
Chemistry

LR-UHF vs CP-UHF

$$\begin{aligned}\omega_{\text{HOMO-LUMO}}^{\text{LR-UHF},(1)} = & \sum_{i=1}^{N_p-1} (N_p + 1, N_p + 1 | i, i)_{\beta\beta} - \sum_{i=1}^{N_p-1} (N_p, N_p | i, i)_{\beta\beta} \\ & + \sum_{i=1}^{N_p} (N_p + 1, N_p + 1 | i, i)_{\beta\alpha} - \sum_{i=1}^{N_p} (N_p, N_p | i, i)_{\beta\alpha} \\ & - (N_p, N_p + 1 | N_p + 1, N_p)_{\beta\alpha}\end{aligned}$$

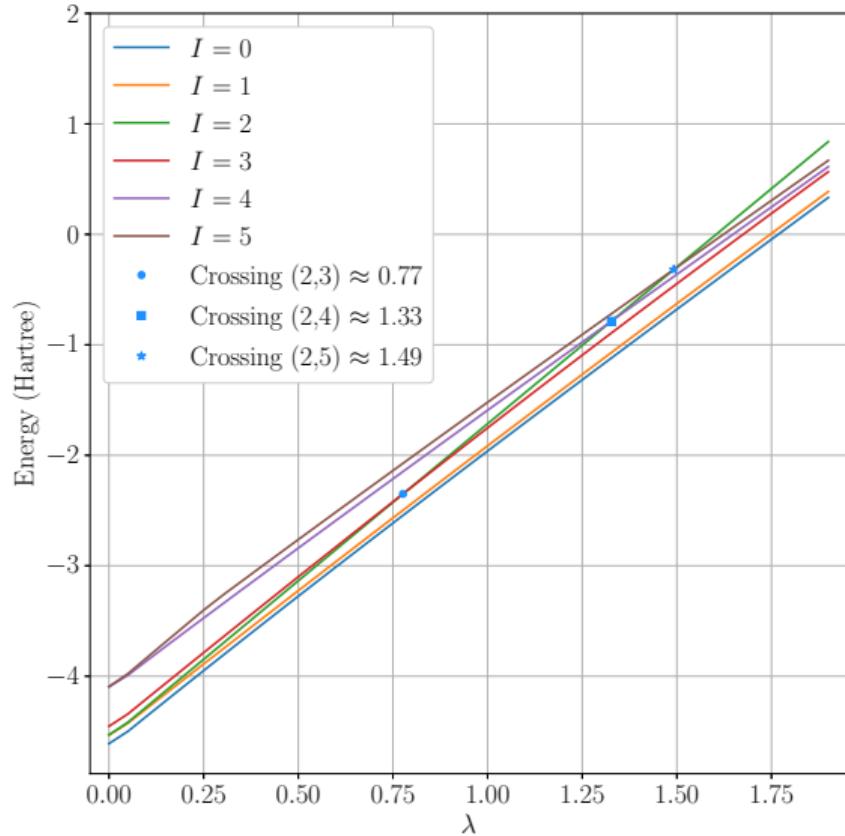
$$\begin{aligned}\omega_{\text{HOMO-LUMO}}^{\text{CP-UHF},(1)} = & \sum_{i=1}^{N_p-1} (N_p + 1, N_p + 1 | i, i)_{\beta\beta} - \sum_{i=1}^{N_p-1} (N_p, N_p | i, i)_{\beta\beta} \\ & + \sum_{i=1}^{N_p} (N_p + 1, N_p + 1 | i, i)_{\beta\alpha} - \sum_{i=1}^{N_p} (N_p, N_p | i, i)_{\beta\alpha}\end{aligned}$$

H_4 index-1 saddle points



- FCI states are spin-eigenfunctions

H_4 index-1 saddle points



- FCI states are spin-eigenfunctions
- degeneracies at $\lambda = 0$ for singlet and triplet states with $S_z = 0$

$$\frac{1}{\sqrt{2}} \left(\begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \pm \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \right)$$

Diagram illustrating the degeneracy of FCI states at $\lambda = 0$. The left column shows a singlet state with two electrons (one up, one down) in the lowest two orbitals. The right column shows a triplet state with three electrons (one up, one down in each of the two lowest orbitals). The two columns are connected by a plus sign, indicating they are degenerate.

Different approaches

CISD	LR for variational models
Compute HF ground state $\Phi_0 \in \operatorname{argmin}_\Phi E^{\text{HF}}(\Phi)$ $x_0 \in \operatorname{argmin}_{x \in \mathcal{M}} \mathcal{E}(x)$	Compute a ground state of the model

Different approaches

CISD	LR for variational models
Compute HF ground state $\Phi_0 \in \operatorname{argmin}_\Phi E^{\text{HF}}(\Phi)$ $x_0 \in \operatorname{argmin}_{x \in \mathcal{M}} \mathcal{E}(x)$	Compute a ground state of the model
Identify CISD subspace canonical basis $\mathcal{H}^{\text{CISD}} = \text{Span}(\Phi_0, \Phi_i^a, \Phi_{ij}^{ab})$ $T_{x_0} \mathcal{M}_{\mathbb{R}} = \text{Span}_{\mathbb{R}}(u_1, \dots, u_n, -J_{x_0} u_1, \dots, -J_{x_0} u_n)$	Identify the canonical basis of $T_{x_0} \mathcal{M}_{\mathbb{R}}$

Different approaches

CISD	LR for variational models
<p>Compute HF ground state</p> $\Phi_0 \in \operatorname{argmin}_\Phi E^{\text{HF}}(\Phi)$ $x_0 \in \operatorname{argmin}_{x \in \mathcal{M}} \mathcal{E}(x)$	<p>Compute a ground state of the model</p>
<p>Identify CISD subspace canonical basis</p> $\mathcal{H}^{\text{CISD}} = \text{Span}(\Phi_0, \Phi_i^a, \Phi_{ij}^{ab})$ $T_{x_0} \mathcal{M}_{\mathbb{R}} = \text{Span}_{\mathbb{R}}(u_1, \dots, u_n, -J_{x_0} u_1, \dots, -J_{x_0} u_n)$	<p>Identify the canonical basis of $T_{x_0} \mathcal{M}_{\mathbb{R}}$</p>
<p>Build matrix of \hat{H} in this basis</p> $\mathfrak{H}_0^{\text{CISD}} = \begin{pmatrix} E_0^{\text{HF}} & \langle \Phi_0 \hat{H} \Phi_i^a \rangle & \langle \Phi_0 \hat{H} \Phi_{ij}^{ab} \rangle \\ * & \langle \Phi_i^a \hat{H} \Phi_j^b \rangle & \langle \Phi_i^a \hat{H} \Phi_{jk}^{bc} \rangle \\ * & * & \langle \Phi_{ij}^{ab} \hat{H} \Phi_{kl}^{cd} \rangle \end{pmatrix}$ $\mathfrak{H}_0^{\text{LR}} = \begin{pmatrix} \mathfrak{h}_{qq} & \mathfrak{h}_{qp} \\ \mathfrak{h}_{qp}^T & \mathfrak{h}_{pp} \end{pmatrix}$	<p>Build the matrix of $\text{Hess}_{\mathcal{M}} \mathcal{E}(x_0)$ in this basis</p>

Different approaches

CISD	LR for variational models
<p>Compute HF ground state</p> $\Phi_0 \in \operatorname{argmin}_\Phi E^{\text{HF}}(\Phi)$ $x_0 \in \operatorname{argmin}_{x \in \mathcal{M}} \mathcal{E}(x)$	<p>Compute a ground state of the model</p>
<p>Identify CISD subspace canonical basis</p> $\mathcal{H}^{\text{CISD}} = \text{Span}(\Phi_0, \Phi_i^a, \Phi_{ij}^{ab})$ $T_{x_0} \mathcal{M}_{\mathbb{R}} = \text{Span}_{\mathbb{R}}(u_1, \dots, u_n, -J_{x_0} u_1, \dots, -J_{x_0} u_n)$	<p>Identify the canonical basis of $T_{x_0} \mathcal{M}_{\mathbb{R}}$</p>
<p>Build matrix of \hat{H} in this basis</p> $\mathfrak{H}_0^{\text{CISD}} = \begin{pmatrix} E_0^{\text{HF}} & \langle \Phi_0 \hat{H} \Phi_i^a \rangle & \langle \Phi_0 \hat{H} \Phi_{ij}^{ab} \rangle \\ * & \langle \Phi_i^a \hat{H} \Phi_j^b \rangle & \langle \Phi_i^a \hat{H} \Phi_{jk}^{bc} \rangle \\ * & * & \langle \Phi_{ij}^{ab} \hat{H} \Phi_{kl}^{cd} \rangle \end{pmatrix}$ $\mathfrak{H}_0^{\text{LR}} = \begin{pmatrix} \mathfrak{h}_{qq} & \mathfrak{h}_{qp} \\ \mathfrak{h}_{qp}^T & \mathfrak{h}_{pp} \end{pmatrix}$	<p>Build the matrix of $\text{Hess}_{\mathcal{M}} \mathcal{E}(x_0)$ in this basis</p>
<p>Compute eigenvalues of $\mathfrak{H}_0^{\text{CISD}}$</p>	<p>Compute symplectic eigenvalues of $\mathfrak{H}_0^{\text{LR}}$</p>